H. Fujimoto Nagoya Math. J. Vol. 37 (1970), 91-106

ON THE AUTOMORPHISM GROUP OF A HOLOMORPHIC FIBER BUNDLE OVER A COMPLEX SPACE

HIROTAKA FUJIMOTO

Dedicated to Prof. K. Ono on his 60th birthday

§1. Introduction.

In [8], A. Morimoto proved that the automorphism group of a holomorphic principal fiber bundle over a compact complex manifold has a structure of a complex Lie group with the compact-open topology. The purpose of this paper is to get similar results on the automorphism groups of more general types of locally trivial fiber spaces over complex spaces.¹⁾ We study automorphisms of a holomorphic fiber bundle over a complex space which has a complex space Y as the fiber and a (not necessarily complex Lie) group G of holomorphic automorphisms of Y as the structure group (see Definition 3. 1).

The main result is the following

THEOREM. For any holomorphic fiber bundle B over a complex space X, the automorphism group of B is a (real) Lie group if the structure group is a locally compact subgroup of the holomorphic automorphism group of the fiber and X is *-strongly pseudo-concave (Theorem 4.1).

As a special case of this, we see that the group of all fiber-preserving holomorphic automorphisms of a locally trivial fiber space over a *-strongly pseudo-concave complex space is a Lie group if the holomorphic automorphism group of the fiber is locally compact.

Let **B** be a holomorphic fiber bundle over a compact normal complex space X and M be an analytic set of codimension ≥ 2 in X. We can prove

Received February 5, 1969

¹⁾ In this paper, a complex space means a reduced complex analytic space which is always assumed to be σ -compact and irreducible.

that any automorphism of the portion B|X - M of B over X - M sufficiently near to the identity is the restriction of an automorphism of B if the structure group G is a locally compact subgroup of the holomorphic automorphism group of the fiber. In this case, the automorphism group F(B|X-M)of B|X - M is a Lie group. Moreover, if G is a complex Lie transformation group of the fiber, F(B|X-M) is shown to be a complex Lie group.

§2. Holomorphic maps of complex spaces into mapping spaces.

Let X, Y and Z be complex spaces. We denote the space of all holomorphic maps of Y into Z with the compact-open topology by Hol(Y, Z) and the space of all holomorphic automorphisms of Y as a subspace of Hol(Y): = Hol(Y, Y) by Aut(Y).

DEFINITION 2.1. Take an arbitrary subset H of Hol(Y, Z). A map $g: X \to H$ is called to be *holomorphic* if the induced map $\tilde{g}(x, y) := g(x)(y) (x \in X, y \in Y)$ of $X \times Y$ into Y is holomorphic (c.f. W. Kaup [5], p. 75).

By $\operatorname{Hol}(X, H)$ we denote again the space of all holomorphic maps of X into H with the compact-open topology, where H is considered as a topological subspace of $\operatorname{Hol}(Y, Z)$. Obviously, we may consider $\operatorname{Hol}(X, \operatorname{Hol}(Y, Z)) = \operatorname{Hol}(X \times Y, Z)$.

Let $h: X' \to X$ be a holomorphic map for another complex space X'. For any $g \in \text{Hol}(X, H)$ $(H \subset \text{Hol}(Y, Z))$, the composite $g \cdot h: X' \to H$ is also holomorphic. Particularly, the normalization $\mu: X^* \to X$ of X gives the map $\mu^*: \text{Hol}(X, H) \to \text{Hol}(X^*, H)$ defined as $\mu^*(g) = g \cdot \mu$ for each $g \in \text{Hol}(X, H)$.

(2. 2) The topological space Hol(X, H) can be canonically identified with a closed subspace of $Hol(X^*, H)$.

The injectivity of μ^* is evident. While, Hol $(X \times Y, Z)$ can be identified with a closed subspace of Hol $(X^* \times Y, Z)$ because $\mu \times 1_Y$: $X^* \times Y \to X \times Y$ is a proper, nowhere degenerate surjective map, where $1_Y: Y \to Y$ is the identity map. Since we may consider Hol $(X, H) \subset$ Hol $(X \times Y, Z)$ and Hol $(X^*, H) \subset$ Hol $(X^* \times Y, Z)$, we conclude easily the assertion (2. 2).

Each $g \in \text{Hol}(X, \text{Hol}(Y))$ gives a map $g^* := 1_X \times \tilde{g} \in \text{Hol}(X \times Y)$ (i.e. $g^*(x, y) = (x, g(x)y)$ for any $x \in X$, $y \in Y$). By this correspondence, Hol (X, Hol(Y)) is homeomorphic with the subspace

$$\operatorname{Hol}_{X}(X \times Y) := \{ g \in \operatorname{Hol}(X \times Y); \ \pi_{X}g = \pi_{X} \}$$

93

of Hol $(X \times Y)$, where $\pi_X \colon X \times Y \to X$ is the canonical projection. Moreover, we see easily

(2.3) Each $g^* \in \operatorname{Aut}(X \times Y)$ with the property $\pi_X g^* = \pi_X$ corresponds exactly to a map $g \in \operatorname{Hol}(X, \operatorname{Aut}(Y))$ whose inverse $g^{-1}: X \to \operatorname{Aut}(Y)$ is also holomorphic, where $g^{-1}(x) = g(x)^{-1}(x \in X)$.

Let G be an effective complex Lie transformation group of Y. We may identify G with a subset of Aut (Y). Since the given transforming map $\psi(g, y) = g \cdot y(g \in G, y \in Y)$ of $G \times Y$ into Y is holomorphic, we have easily

(2.4) If a map $g: X \to G$ is holomorphic with respect to the given complex structure of G, it is also holomorphic in the sense of Definition 2.1.

Conversely, we can prove

PROPOSITION 2.5. For a normal X, if $g: X \to G (\subset \operatorname{Aut}(Y))$ is holomorphic in the sense of Definition 2.1, then g is holomorphic with respect to the complex structure of G.

To prove this, we give

LEMMA 2.6. Let X, H, Y and Z be complex spaces and $\varphi: H \times Y \to Z$ be a holomorphic map such that X is normal and Z is holomorphically separable and $\varphi(h, y) = \varphi(h', y)$ for any $y \in Y$ only if $h = h'(h, h' \in H)$. For a map $g: X \to H$, if the map $\varphi(g(x), y)$ $(x \in X, y \in Y)$ of $X \times Y$ into Z is holomorphic, then g is also a holomorphic map of X into H.

Proof of Lemma 2.6. It suffices to show that the graph $\Gamma_g := \{(x, g(x)); x \in X\}$ of g is analytic in $X \times H$. Indeed, in this case, $\pi_X | \Gamma_g : \Gamma_g \to X$ is a bijective holomorphic map. Then $(\pi_X | \Gamma_g)^{-1} : X \to \Gamma_g$ is also holomorphic by the normality of X(c.f. ([9]) and so $g = \pi_H(\pi_X | \Gamma_g)^{-1} : X \to H$ is holomorphic. Now, we consider the family \mathscr{F} of all holomorphic functions $\varphi^{f,y}$ on $X \times H$ defined as

$$\varphi^{f,y}(x,h) := f(\varphi(h,y)) - f(\varphi(g(x),y)) \qquad (x \in X, h \in H)$$

for any $y \in Y$ and holomorphic function f on Z. And we put

$$A := \{ (x, h) \in X \times Y; \ \psi(x, h) = 0 \text{ for any } \psi \in \mathscr{F} \}.$$

Since A is the set of the common zeros of a family of holomorphic functions on $X \times H$, it is analytic in $X \times H$ by the well-known H. Cartan's

theorem. We want to show $\Gamma_g = A$. Evidently, $\Gamma_g \subset A$. Conversely, if $(x, h) \in A$, i.e. $f(\varphi(h, y)) = f(\varphi(g(x), y))$ for any $y \in Y$ and holomorphic f on Z, $\varphi(h, y) = \varphi(g(x), y)$ for any $y \in Y$ because Z is holomorphically separable. By the assumption, we conclude h = g(x), which shows $(x, h) \in \Gamma_g$. This completes the proof of Lemma 2. 6.

Proof of Proposition 2.5. Let $\psi: G \times Y \to Y$ be the given transforming map. We can take an open neighborhood N of the identity in G such that

$$N = \{ g \in G; \ \psi(g, y) \in Y'' \text{ for any } y \in \overline{Y'} \},\$$

where Y'' is a holomorphically separable open set in Y and Y' ($\subseteq Y''$) is a non-empty open set. If $\psi(g, y) = \psi(g', y)$ for any $y \in Y'$ $(g, g' \in N)$, it remains valid for any $y \in Y$ by the theorem of identity and hence g = g' by the assumption of the effectivity. This shows that the map $\varphi := \psi | N \times Y' : N \times Y'$ $\rightarrow Y''$ satisfies the conditions in Lemma 2.6 for the spaces H := N, Y := Y'and Z := Y''.

Now, take a map $g: X \to G$ which is holomorphic in the sense of Definition 2.1. Each $x_0 \in X$ has obviously a neighborhood U such that $h(x):=g(x)g(x_0)^{-1} \in N$ for any $x \in U$. By Lemma 2.6, since $h: U \to N$ is holomorphic in the sense of Definition 2.1, h is holomorphic with respect to the complex structure of G. So, g is also holomorphic on U in the same sense.

For later uses, we give the following proposition on the continuability of holomorphic maps.

Proposition 2.7. Let G be a locally compact subgroup of Aut(Y). Then we can find a neighborhood N of the identity in G satisfying the following conditions:

For any connected open $V \subset X$ and analytically thin set M in V a holomorphic map $g: V - M \rightarrow G$ is holomorphically continuable to V if there is an open set $D(\subset V - M)$ such that $g(D) \subset N$ and every holomorphic function on D is continuable to V.

Proof. By the assumption, G has a relatively compact neighborhood N of the identity in G which can be written

$$N = \{ g \in G; g(Y'_j) \subset Y''_j \text{ for any } j(1 \le j \le s) \},\$$

where Y'_{j} , Y''_{j} are Stein open sets in Y with $Y'_{j} \in Y''_{j}$. We shall show that N satisfies the desired conditions. Let $g: V - M \rightarrow G$ be a holomorphic map

with $g(D) \subset N$. Since $g(x)(Y'_i) \subset Y''_i$ for any $x \in D$, we see $\tilde{g}(D \times Y'_i) \subset Y''_i$ for each $j(1 \le j \le s)$, where $\tilde{g}(x, y) = g(x)(y)$ $(x \in V - M, y \in Y)$. Then φ_j := $\tilde{g}|D \times Y'_j$ is continuable to a holomorphic map $\psi_j \colon V \times Y'_j \to Y''_j$ by H. Kerner's theorem, because every holomorphic function on $D \times Y'_i$ is continuable to $V \times Y'_i$ (e.g. [1], Corollary 1 to Theorem 10, p. 63) and Y''_i is Stein. This shows also $g(x)(Y'_j) \subset Y''_j (1 \le j \le s)$ i.e. $g(x) \in N$ for any $x \in V - M$. Take an arbitrary $x \in M$. For any sequence $\{x_n\}$ in V - M with $\lim_{n \to \infty} x_n = x$, $\{g(x_n)\}$ has a convergent subsequence in \overline{N} whose limit $g_0(x)$ satisfies the condition $g_0(x)(y) = \psi_i(x, y)$ for any $y \in Y'_i$. And any convergent subsequence of $\{g(x_n)\}$ has the same limit $g_0(x)$ by the theorem of identity. So, we obtain $g_0(x) =$ $\lim g(x') \in \overline{N} \subset G$ for any $x \in M$. Obviously, g_0 is continuous on V and so \tilde{g}_0 : $V \times Y \to Y$ is also continuous. Since $\tilde{g}_0 | (V - M) \times Y = \tilde{g}$ is holomorphic, \tilde{g}_0 : $V \times Y \rightarrow Y$ is also holomorphic according to Riemann's theorem on removable singularities. This shows that g has a holomorphic continuation $g_0: V \to \overline{N} \subset G$.

§3. Holomorphic fiber bundles over complex spaces.

Let B, X and Y be complex spaces, $\pi: B \to X$ be a holomorphic map and G be a subgroup of Aut (Y).

DEFINITION 3.1. The space B is said to have a structure of a holomorphic fiber bundle over X with fiber Y and structure group G if X has an open covering $\{U_i; i \in I\}$ such that each $\pi^{-1}(U_i)$ $(i \in I)$ is mapped onto $U_i \times Y$ by a biholomorphic map γ_i with the property $\pi_{U_i} \cdot \gamma_i = \pi$ on $\pi^{-1}(U_i)$, where π_{U_i} : $U_i \times Y \to U_i$ is the canonical projection, and each $\gamma_i \gamma_j^{-1} \in \operatorname{Hol}_{U_i \cap U_j}((U_i \cap U_j) \times Y)$ $(i, j \in I)$ can be written $\gamma_i \gamma_j^{-1}(x, y) = (x, g_{ij}(x)y)$ $(x \in U_i \cap U_j, y \in Y)$ with a holomorphic map $g_{ij}: U_i \cap U_j \to G$ which we say a transition function. Another structure on B given by an open covering $\{V_k: k \in K\}$ and the biholomorphic maps γ'_k : $\pi^{-1}(V_k) \to V_k \times Y$ with the property as the above is said to be equivalent to the above structure if there is a holomorphic map $\bar{g}_{ki}: V_k \cup U_i \rightarrow G$ such that $\gamma'_k \gamma_i^{-1}(x, y) = (x, \bar{g}_{ki}(x)y)$ $(x \in V_k \cap U_i, y \in Y)$ for each $i \in I, k \in K$. As usual, a holomorphic fiber bundle is defined to be an equivalence class of structures of holomorphic fiber bundles attached to a fixed space B. For brevity, we denote a holomorphic fiber bundle over X with fiber Y and structure group G by $B = B(X, Y, G, \pi)$, or simply B.

Let $B = B(X, Y, G, \pi)$ and $B' = B'(X', Y, G, \pi')$ be two holomorphic fiber bundles with the same fiber Y and the same structure group G.

DEFINITION 3.2. By a homomorphism φ of **B** into **B'** we mean a holomorphic map $\varphi: B \to B'$ with the following properties;

(i) $\pi \varphi = \overline{\varphi} \pi$ for a suitable $\overline{\varphi} \in \text{Hol}(X, X')$,

(ii) taking structures $\{(U_i, r_i); i \in I\}$ on B and $\{(V_k, r'_k); k \in K\}$ on B' as in Definition 3. 1, we can write $r'_k r_i^{-1} = \bar{\varphi} \times \tilde{g}_{ki}$ on $(U_i \cap \bar{\varphi}^{-1}(V_k))XY$ with holomorphic maps $g_{ki}: U_i \cap \bar{\varphi}^{-1}(V_k) \to G(i \in I, k \in K)$, where $\tilde{g}_{ki}(x, y) = g_{ki}(x)(y)$.

If a homomorphism $\varphi: B \to B$ has the inverse homomorphism, it is said to be an automorphism of **B**. By F(B) we denote the set of all automorphisms of **B**.

By definition an automorphism of $B = B(X, Y, G, \pi)$ is a holomorphic automorphism of the space B. So, F(B) is considered as a subspace of Aut (B) with the compact-open topology. According to the well-known Bochner-Montgomery's theorem (c.f. W. Kaup [5], Satz 4, p. 83 and Satz 6, p. 85), we see

(3.3) If F(B) is locally compact, it has a structure of a Lie transformation group of B.

EXAMPLE 3. 4. (i) A holomorphic principal fiber bundle over a complex space X in the usual sense defines canonically a holomorphic fiber bundle over X in the sense of Definition 3. 1 by (2. 4). If X is normal, an automorphism of this bundle is nothing but an automorphism of this as a holomorphic principal fiber bundle in the usual sense (c.f. [8], p. 158) according to Proposition 2. 5.

(ii) Let $B = B(X, Y, G, \pi)$ be assumed that X is normal and G is an effective complex Lie transformation group of Y with the topology induced from Aut (Y). In view of Proposition 2.5, **B** is regarded as an associated fiber bundle **P** over X with structure group G which is canonically defined by the same transition functions as **B**. Moreover, as is easily seen, F(B) is topologically isomorphic with the group of all automorphisms of **P**.

(iii) Let $\pi: B \to X$ be a locally trivial fiber space over a complex space X with fiber Y, i.e. π be a holomorphic map such that, for a suitable open covering $\{U_i; i \in I\}$ of X, each $\pi^{-1}(U_i)$ is biholomorphic with $U_i \times Y$ by a map γ_i with $\pi_{U_i} \cdot \gamma_i = \pi$. Then we can define canonically a holomorphic

96

fiber bundle $\mathbf{B} = B(X, Y, \operatorname{Aut}(Y), \pi)$, where the transition functions $g_{ij}: U_i \cap U_j \to \operatorname{Aut}(Y)$ are given so as to satisfy $\tilde{\tau}_i \tilde{\tau}_j^{-1} = 1_{U_i \cap U_j} \times \tilde{g}_{ij}$. In this case, an automorphism of \mathbf{B} means exactly a fiber-preserving holomorphic automorphism of B, i.e. an element $\varphi \in \operatorname{Aut}(B)$ with the property $\pi \varphi = \bar{\varphi} \pi$ for some $\bar{\varphi} \in \operatorname{Aut}(X)$.

Let $h: X' \to X$ be a holomorphic map and **B** be a holomorphic fiber bundle over X which is defined by the structure with the transition functions g_{ij} . As usual, the induced bundle $h^{-1}(B)$ over X' can be defined by the structure with the transition functions $g_{ij} \cdot h$. If X' is an open set in X and $h: X' \to X$ is the inclusion map, we call $B|X':=h^{-1}(B)$ the portion of **B** over X'.

Take the normalization $\mu: X^* \to X$ of X. A holomorphic fiber bundle $B = B(X, Y, G, \pi)$ induces the bundle $B^*: = \pi^{-1}(B) = B^*(X^*, Y, G, \pi^*)$.

PROPOSITION 3.5. The automorphism group $F(\mathbf{B})$ is topologically isomorphic with a closed subgroup of $F(\mathbf{B}^*)$.

Proof. By the definition of the induced bundle, a holomorphic map $\tilde{\mu}: B^* \to B$ with $\pi \cdot \tilde{\mu} = \mu \cdot \pi^*$ is defined canonically. And each $\varphi \in F(B)$ gives exactly one $\mu^*(\varphi): = \varphi^* \in F(B^*)$ with $\tilde{\mu} \varphi^* = \varphi \tilde{\mu}$. The map $\mu^*: F(B) \to F(B^*)$ is obviously a continuous injective group homomorphism. It suffices to show the closedness of $\mu^*(F(B))$ in $F(B^*)$. Take a sequence $\{\varphi_n\}$ in F(B) such that $\{\mu^*(\varphi_n)\}$ converges to φ^* in $F(B^*)$. Since $\tilde{\mu}$ is a proper nowhere degenerate, surjective map, we can find easily some $\varphi \in \text{Hol}(B)$ with $\tilde{\mu} \varphi^* = \varphi \tilde{\mu}$ and $\bar{\varphi} \in \text{Hol}(X)$ with $\bar{\varphi} \pi = \pi \varphi$. Then, it can be easily proved by (2. 2) that φ satisfies the condition (ii) in Definition 3. 2 in its local representation. On the other hand, $\{\mu^*(\varphi_n)^{-1}\}$ converges also to φ^{*-1} in $F(B^*)$. By the same argument as the above, we have the inverse homomorphism of φ and so $\varphi \in F(B)$. Thus $\mu^*(F(B))$ is closed in $F(B^*)$.

§4. Holomorphic fiber bundles over a *-strongly pseudoconcave space.

In this section, we prove the following main theorem.

THEOREM 4.1. For any $B = B(X, Y, G, \pi)$, if G is a locally compact subgroup of Aut (Y) and X is *-strongly pseudo-concave (see Definition 8.1 in [2], p. 104), then F(B) has a structure of a Lie transformation group of B. We need some preparations.

LEMMA 4.2. Let N be a compact subset of Aut (Y) such that $N \subset \{g \in Aut(Y); g(\overline{Y'}) \subset Y''\}$, where Y' is a non-empty open set and Y'' is relatively compact in some K-complete open subset of Y. Then the set

 $\mathfrak{N} := \{g \in \operatorname{Hol}(X, \operatorname{Aut}(Y)); g(x) \in N \text{ for any } x \in X\}$

is also compact in Hol(X, Aut(Y)).

Proof. By Arzelà-Ascoli's theorem it suffices to show that \mathfrak{N} is equicontinuous on X with the canonical uniform structure of Aut(Y) because $\{g(x); g \in \mathfrak{N}\}$ is included in a compact N for any $x \in X$. By the assumption, the restriction map $r: N \to \operatorname{Hol}(Y', Y'')$ (r(g): = g|Y') for each $g \in N$ is welldefined. With each $g \in \mathfrak{N}$ we associate the map $g' = r \cdot g: X \to \operatorname{Hol}(Y', Y'')$ and $\tilde{g}': X \times Y' \to Y''$ with $\tilde{g}'(x, y) = g'(x)(y)$ $(x \in X, y \in Y')$. In view of the assumption of Y'', $\{\tilde{g}'; g \in \mathfrak{N}\}$ is relatively compact in $\operatorname{Hol}(X \times Y', Y)$ ([2], Theorem 2. 1, p. 86) and so equicontinuous on $X \times Y'$, where Y is considered as a metric space with a suitable metric. Then $\{g'; g \in \mathfrak{N}\}$ ($\subset \operatorname{Hol}(X, \operatorname{Hol}(Y', Y''))$ is also equicontinuous on X. On the other hand, since r is injective by the theorem of identity, r is a topological map of N onto a compact subset of $\operatorname{Hol}(Y', Y'')$. Therefore, \mathfrak{N} itself is equicontinuous.

For the proof of Tehrorem 4.1, we have only to show that F(B) is locally compact by (3.3). Moreover, X may be assumed to be normal. Indeed, in Theorem 4.1, the normalization X^* of X is also *-strongly pseudo-concave and hence the induced bundle B^* of B over X^* satisfies all conditions in Theorem 4.1. If $F(B^*)$ is shown to be locally compact, F(B)is also locally compact according to Proposition 3.5. In the following, $B = B(X, Y, G, \pi)$ denotes a holomorphic fiber bundle over a normal *-strongly pseudo-concave space X with a locally compact $G(\subset \operatorname{Aut}(Y))$.

By definition, there is a positive real-valued continuous function v on X such that v is *-strongly (dim X-1)-convex on X-K (see [2], p. 101) for a suitable compact $K \subset X$ and $\{x; v(x) > c\} \Subset X$ for any c > 0. We put $c_0 := \min \{v(x); x \in K\}, X_c = \{x \in X; v(x) > c\}$ and $B_c := \pi^{-1}(X_c)$ for any $c(0 < c < c_0)$.

LEMMA 4.3. In the above situation, we can find a neighborhood N of the identity in F(B) such that, for a suitable $c(\langle c_0 \rangle)$, any sequence $\{\varphi_n\}$ in N has a subsequence $\{\varphi_{n_k}\}$ having the following properties;

(i) $\{\varphi_{n_k} | B_c\}$ converges to an injective map φ in Hol (B_c, B) ,

(ii) the limit φ is a homomorphism of $B | X_c$ into B,

(iii) $\{\bar{\varphi}_{n_k}\}$ converges in Aut (X), where $\bar{\varphi}$ denotes an automorphism of X with $\pi \varphi = \bar{\varphi}\pi$ for each $\varphi \in F(\mathbf{B})$.

Proof. The compact set \bar{X}_{c_0} has an open covering $\{V_i: 1 \leq i \leq k\}$ such that each $B|V_i$ has a locally trivial bundle structure, i.e. there are biholomorphic maps $r_i: \pi^{-1}(V_i) \to V_i \times Y$ with $\pi_{V_i} \cdot r_i = \pi$ on $\pi^{-1}(V_i)$ and holomorphic maps $g_{ij}: V_i \cap V_j \to G$ with $r_i r_j^{-1} = \mathbb{1}_{V_i \cap V_j} \times \tilde{g}_{ij}$ on $(V_i \cap V_j) \times Y (1 \leq i, j \leq k)$. Moreover we take open coverings $\{U_i; 1 \leq i \leq k\}$ and $\{U'_i; 1 \leq i \leq k\}$ of X with the property $U_i \Subset U'_i \Subset V_i$ for each i. By Theorem 8.3 in [2], p. 105, Aut (X) is locally compact. There is a compact neighborhood N of $\mathbb{1}_X$ in Aut (X) such that

$$N \subset \{g \in \operatorname{Aut}(X); g(U'_i) \subset V_i \text{ for any } i\}.$$

We consider the set

 $N^* = \{ \varphi \in F(B) ; \text{ the corresponding } \bar{\varphi} \in N \}.$

For each $\varphi \in N^*$, since $\bar{g}(U'_i) \subset V_i$, the holomorphic maps $\varphi_i := \gamma_i \cdot \varphi \cdot \gamma_i^{-1}$: $U'_i \times Y \to V_i \times Y$ are well-defined $(1 \leq i \leq k)$. Then we have holomorphic maps $g_i(\varphi) : U'_i \to G$ with the property $\varphi_i = \bar{\varphi} \times g_i(\tilde{\varphi})$ on $U'_i \times Y$. On the other hand, there is a compact neighborhood N' of the identity in G such that $N' \subset \{g \in \operatorname{Aut}(Y); g(\bar{Y}') \subset Y''\}$ for open sets Y', Y'' with the same properties as in Lemma 4. 2. We put

 $N: = \{ \varphi \in N^*; g_i(\varphi)(x) \in N' \text{ for any } x \in \overline{U}_i (1 \le i \le k) \},\$

which is obviously a neighborhood of 1_B in F(B). We shall prove that N has the desired properties in Lemma 4.3 for $c := \sup \{v(x); x \in \bigcup_{i=1}^{k} U_i\} (< c_0)$.

Take an arbitrary $\{\varphi_n\}$ in N. Since $\{\bar{\varphi}_n\} \subset N$, a suitable subsequence $\{\bar{\varphi}_{n_k}\}$ converges to some $\bar{\varphi}$ in Aut(X). On the other hand, $\{g_i(\varphi_n)\}$ is relatively compact in Hol(U_i, G) by Lemma 4. 2. Relabeling indices suitably, we may assume that $\{g_i(\varphi_{n_k})\}$ converges to some g_i^0 in Hol(U_i, G) for each *i*. Since Hol($U_i \times Y, Y$) = Hol(U_i , Hol(Y)), $\{\mathcal{T}_i \cdot \varphi_{n_k} \cdot \mathcal{T}_i^{-1}\}$ converges to $\varphi_i^0 := \tilde{\varphi} \times \tilde{g}_i^0$ in Hol($U_i \times Y, V_i \times Y$). So, $\{\varphi_{n_k} \mid \pi^{-1}(U_i)\}$ converges to $\mathcal{T}_i^{-1} \cdot \varphi_i^0 \cdot \mathcal{T}_i$ in Hol($\pi^{-1}(U_i)$, B). The subsequence $\{\varphi_{n_k}\}$ of $\{\varphi_n\}$ converges obviously on $B_c \subset \bigcup_i \pi^{-1}(U_i)$ and satisfies all desired conditions.

REMARK. If X is compact, we may take $X_c = X$. In this case, Theorem 4.1 is an immediate consequence of Lemma 4.3.

LEMMA 4. 4. Let $\{\varphi_n\}$ be a sequence in $F(\mathbf{B})$ such that $\{\varphi_n | B_c\}$ converges to an injective map φ in Hol (B_c, B) for some $c < c_0$ and the corresponding $\{\bar{\varphi}_n\}$ converges to some $\bar{\varphi}$ in Aut(X). Then any x with v(x) = c has a neighborhood Usuch that $\{\varphi_n | \pi^{-1}(U)\}$ converges to an injective map φ^* in Hol $(\pi^{-1}(U), B)$.

Proof. Take a Stein neighborhood V of x such that $\pi^{-1}(V)$ is biholomorphic with $V \times Y$ by a map r. By Lemma 7.2 in [2], p. 101, there is a connected Stein neighborhood U of $x(U \in V)$ such that, for a suitable open $D \in X_c$, every holomorphic function on D is uniquely continuable to U and any 1-codimensional analytic subset of U intersects D. Moreover, we choose Stein open sets U' and U* in X such that $x \in U \in U' \in V$, $\varphi(\overline{U'}) \subset U^*$, $\overline{\varphi}_n(\overline{U'}) \subset U^*$ for almost all n and $\pi^{-1}(U^*)$ is biholomorphic with $U^* \times Y$ by a map τ' . Then we can define the maps $\varphi' = \tau' \cdot \varphi \cdot \tau^{-1} \colon U' \otimes Y \to U^* \times Y$ and $\varphi'_n \colon = \tau' \cdot \varphi_n \cdot \tau^{-1} \colon U' \times Y \to U^* \times Y$ for almost all n, where $U'_c = U' \cap \{v > c\}$. Take an open set D' with $D \in D' \in U'_c$ and Stein neighborhoods W, W' of y with $W \in W' \in Y$ for each $y \in Y$. Since $D \times W \in D' \times W' \subset U'_c \times W'$ and φ' is injective on $U'_c \times Y$, there is a suitable n_0 such that

$$\varphi'_n(D \times W) \Subset \varphi_{n_0}(D' \times W') \subset \varphi'_{n_0}(U' \times W') \subset U^* \times Y$$

for any $n \ge n_0$ by Lemma 3.2 in [2], p. 89. Now, every holomorphic function on $D \times W$ is uniquely continuable to $U \times W$ (e.g. Corollary 1 in [1], p. 63) and $\varphi'_{n_0}(U' \times W')$ is Stein. As in the proof of Lemma 7.3 in [2], p. 102, we have $\varphi'_n(U \times W) \subset \varphi'_{n_0}(U' \times W')$ for any $n \ge n_0$ by H. Kerner's theorem ([6]). Since $\varphi'_{n_0}(U' \times W')$ may be assumed to be relatively compact in some *K*-complete subset of $U^* \times Y$, $\{\varphi'_n; n \ge n_0\}$ may be considered as a normal family in Hol $(U \times W, U^* \times Y)$ by Theorem 2.1 in [2], p. 86. A suitable subsequence of $\{\varphi'_n\}$ converges on $U \times W$. Covering Y by countably many open sets W's with the above property, we can choose a subsequence $\{\varphi_{n_k}\}$ of $\{\varphi'_n\}$ which converges to a map ψ in Hol $(\pi^{-1}(U), B)$. Moreover, any subsequence of $\{\varphi_n\}$ has a subsequence which converges to the same limit φ^* . So, $\{\varphi_n\}$ itself converges to φ^* in Hol $(\pi^{-1}(U), B)$. It remains to prove the injectivity of φ^* on $\pi^{-1}(U)$, or equivalently, ψ on $U \times Y$. Let E be the set of degeneracy of ψ , which is analytic in $U \times Y$ by R. Remmert's theorem ([9]). Then E is of codimension ≥ 2 . In fact, if $\operatorname{codim} E = 1$, $E \cap \{y = y_0\}$ can be identified with an analytic set of codimension ≥ 1 at x_0 in U for any $(x_0, y_0) \in E$. By the assumption of U, E intersects $U_c \times Y$. This contradicts with the injectivity of φ . Now, we apply Lemma 7.3 in [2], p. 102, whence ψ is injective on $U \times Y$. This completes the proof.

Proof of Theorem 4.1. Take a neighborhood N of 1_B in F(B) satisfying the conditions in Lemma 4.3. We shall prove that $N' := \{\varphi \in F(B); \varphi \text{ and } \varphi^{-1} \in N\}$ is a relatively compact neighborhood of 1_B in F(B). An arbitrary $\{\varphi_n\}$ in N' has a subsequence $\{\varphi_{n_k}\}$ which satisfies the conditions (i), (ii), (iii) in Lemma 4.3. As in the proof of Theorem 7.5, p. 103, putting

 $\Gamma := \{c; \{\varphi_{n_k}\} \text{ converges to an injective map in } \operatorname{Hol}(B_c, B)\},\$

we conclude that $\inf \Gamma = 0$ according to Lemma 4. 4. This shows that $\{\varphi_{n_k}\}$ converges to some φ in Hol(B, B), which satisfies obviously $\bar{\varphi}\pi = \pi\varphi$ for $\bar{\varphi} = \lim_{k \to \infty} \bar{\varphi}_{n_k} \in \operatorname{Aut}(X)$. Then, applying the same argument to the sequence $\{\varphi_n^{-1}\}$, we see easily $\varphi \in \operatorname{Aut}(B)$. It remains to show $\varphi \in F(B)$. The condition (ii) in Definition 3. 2 is of local nature. For each $x \in X$ taking sufficiently small neighborhood U of x and V of $\bar{\varphi}(x)$, we may assume that $\pi^{-1}(U) = U \times Y$, $\pi^{-1}(V) = V \times Y$, $\varphi(U \times Y) \subset V \times Y$ and $\varphi_{n_k}(U \times Y) \subset V \times Y$ for almost all k. Moreover, it may be assumed that $\varphi_{n_k} = \bar{\varphi}_{n_k} \times \tilde{g}_{n_k}$ for suitable $g_{n_k} \in \operatorname{Hol}(U, \operatorname{Aut}(Y))$ by Definition 3. 2 and $\varphi = \bar{\varphi} \times \tilde{g}$ on $U \times Y$ for a suitable $g \in \operatorname{Hol}(U, \operatorname{Aut}(Y))$ by Example 3. 4 (iii). Then we have $g = \lim_{k \to \infty} g_{n_k} \in \operatorname{Hol}(U, G)$ because G is closed in Aut (Y). This concludes $\varphi \in F(B)$. Theorem 4. 1 is completely proved.

According to Example 3.4 (iii), Theorem 4.1 implies

COROLLARY 4.5. Let B be a locally trivial fiber space over a *-strongly pseudo-concave complex space with fiber Y. If Aut(Y) is locally compact, the group of all fiber-preserving holomorphic automorphisms of B is a Lie group.

We have also in view of Example 8. 2 in [2], p. 104,

COROLLARY 4.6. Let X be a compact complex manifold and M be an analytic set with emdim $M \le \dim X - 2$. For any $\mathbf{B} = B(X - M, Y, G, \pi)$, if G is a locally compact subgroup of Aut (Y), $F(\mathbf{B})$ is a Lie group.

In connection with this, for a holomorphic fiber bundle B defined over

the total X we give more precise informations on automorphisms of B|X-M in the next section.

§5. Holomorphic fiber bundles over a compact complex space.

Let $B = B(X, Y, G, \pi)$ be a holomorphic fiber bundle over a compact complex space X. We want to study F(B|X-M) for a thin analytic set M in X. By G^0 we denote the connected component of the identity in a topological group G.

THEOREM 5.1. If X is a compact normal complex space, G is a locally compact subgroup of Aut (Y) and M is of codimension ≥ 2 , then any element in $F(\mathbf{B}|X-M)^0$ is the restriction of an automorphism of **B** over the total X.

Proof. It suffices to show that there is a neighborhood N of 1_B in F(B|X-M) such that any $\varphi \in N$ is the restriction of some $\psi \in F(B)$, because any element in F(B|X-M) is represented as the product of finitely many elements in N. The compact set M has an open covering $\{V_i; 1 \leq i \leq k\}$ such that, for a suitable connected open subset D_i of V_i with $D_i \in X - M$, any holomorphic function on D_i is uniquely continuable to V_i for each i. If we choose sufficiently small $V_i(1 \leq i \leq k)$, it may be assumed that there is another open covering $\{U_i; 1 \leq i \leq k\}$ of M such that each U_i is Stein, $V_i \in U_i$ and $B|U_i$ has a locally trivial bundle structure, and so $\pi^{-1}(U_i)$ is biholomorphic with $U_i \times Y$ by a map τ_i . We consider the set

 $N:=\{g\in \operatorname{Aut}(X-M); \ g(\bar{D}'_i)\subset U_i \text{ and } g^{-1}(\bar{D}'_i)\subset U_i \text{ for any } i(1\leq i\leq k)\}$ where D'_i is an open set with $D_i \Subset D'_i \Subset U_i - M$. And, as in the proof of Lemma 4.3, we put

 $N^*:=\{\varphi \in F(B|X-M); \text{ the corresponding } \bar{\varphi} \in N\}.$

Since $\bar{\varphi}(\bar{D}'_i) \subset U_i$ and so $\varphi(\pi^{-1}(D'_i)) \subset \pi^{-1}(U_i)$, each $\varphi \in N^*$ defines a holomorphic map $g_i(\varphi): D'_i \to G$ such that $\varphi_i:= \gamma_i \varphi \gamma_i^{-1} = \bar{\varphi} \times g_i(\varphi)$ on $D'_i \times Y$. Now, taking a neighborhood N' with the property in Proposition 2.7, we put

 $N' = \{ \varphi \in N^*; g_i(\varphi)(x) \in N' \text{ for any } x \in \overline{D}_i, 1 \leq i \leq k \}.$

We shall prove that $N := \{\varphi \in F(B|X - M); \varphi \in N' \text{ and } \varphi^{-1} \in N'\}$ is a desired neighborhood of 1_B in F(B).

Take an arbitrary $\varphi \in N$. The corresponding $\bar{\varphi} \in \operatorname{Aut}(X-M)$ with $\pi \varphi = \bar{\varphi} \pi$ defines the map $\bar{\varphi} | D_i \colon D_i \to U_i$ for each *i*. Since U_i is Stein, $\bar{\varphi} | D_i$

is uniquely continuable to a map $\bar{\varphi}_i: V_i \to U_i$ by H. Kerner's theorem ([6]). Obviously, $\bar{\varphi}_i = \bar{\varphi}_j$ on $V_i \cap V_j$ if $V_i \cap V_j \neq \phi$. Therefore $\bar{\varphi}$ has a continuation to X, which we denote by the same notation $\bar{\varphi}$. Since N is symmetric, $\bar{\varphi}^{-1}$ has also a continuation to X. Thus we conclude $\bar{\varphi} \in \operatorname{Aut}(X)$.

Now, since $\bar{\varphi}(V_i) \subset U_i$ by the above argument, $\varphi(\pi^{-1}(V_i - M)) \subset \pi^{-1}(U_i)$ and so the map $\varphi_i: r_i \varphi r_i^{-1}: (V_i - M) \times Y \to U_i \times Y$ is well-defined for each *i*. Then we get a holomorphic map $g_i: V_i - M \to G$ with $\varphi_i = \bar{\varphi} \times \tilde{g}_i$, which satisfies $g_i(D_i) \subset N'$. By the assumption of N', each g_i is continuable to a holomorphic map $g_i^0: V_i \to G$ in view of Proposition 2. 7. We consider the map $\varphi_i: = \bar{\varphi} \times \tilde{g}_i^0: V_i \times Y \to U_i \times Y$. The map $\psi \in \text{Hol}(B)$ with $\psi = r_i^{-1} \cdot \psi_i \cdot r_i$ on $\pi^{-1}(V_i)$ is obviously well-defined and a continuation of φ to the total B. The above proof shows also $\psi \in F(B)$. This completes the proof.

As a special case of Theorem 5.1, we have

COROLLARY 5.2. Let M be an analytic subset of codimension ≥ 2 in a normal compact complex space X. Then any element in Aut $(X - M)^{\circ}$ is the restriction of an automorphism of X.

In Corollary 5.2, an automorphism of X - M not belonging to $\operatorname{Aut}(X - M)^{\circ}$ is not necessarily the restriction of an automorphism of X. In fact, for any integer k, we can construct a normal compact complex space X and an analytic set M in X with codim $M \ge k$ such that there is an automorphism of X - M which cannot be continuable to the total X. To construct such a space X and an analytic set M, take a continuous proper modification $\pi: Y_1 \to Y_2$ with normal compact complex spaces Y_1 and Y_2 such that, for a suitable M_2 : = $\{x_0\} \subset Y_2$, M_1 : = $\pi^{-1}(M_2)$ is biholomorphic with the Riemann sphere P^1 and $\pi | Y_1 - M_1$: $Y_1 - M_1 \rightarrow Y_2 - M_2$ is a biholomorphic map (Grauert-Remmert [3], \$4, p. 292), where it can be assumed that $\dim Y_1 = \dim Y_2 \ge k$ for any given k and Y_1 is not biholomorphic with Y_2 . We consider the complex space $X:=Y_1\times Y_2$ and the analytic set $M:=(Y_1\times M_2)$ $\cup (M_1 \times Y_2)$ in X, which is of codimension $\ge k$. Let $g := \pi | Y_1 - M_1$ and $h:=g^{-1}: Y_2 - M_2 \rightarrow Y_1 - M_1.$ The map $\bar{g}(x, y):=(h(y), g(x)) \ (x \in Y_1 - M_1, y)$ $y \in Y_2 - M_2$ is an automorphism of $(Y_1 - M_1) \times (Y_2 - M_2) = X - M$. And it cannot be the restriction of any automorphism of X. For, if there is some $g' \in \operatorname{Aut}(X)$ with $\overline{g} = g'$ on X - M, g is necessarily continuable to a biholomorphic map of Y_1 onto Y_2 . This is a contradiction.

COROLLARY 5.3. Let $B = B(X, Y, G, \pi)$ be a holomorphic fiber bundle over a compact complex space and M be an analytic set with codim $M \ge 2$. If G is a locally compact subgroup of Aut (Y), F(B|X-M) has a structure of a Lie transformation group of $B - \pi^{-1}(M)$.

Proof. Without loss of generality, we may assume that X is normal by Proposition 3. 5. As a special case of Theorem 4. 1, F(B) has a structure of a Lie transformation group of B (c.f. Remark to the proof of Lemma 4. 3). Then the closed subgroup $G := \{\varphi \in F(B); \varphi(\pi^{-1}(M)) = \pi^{-1}(M)\}$ of F(B) is also a Lie group and can be identified with a topological subgroup of F(B|X-M)by the restriction map. On the other hand, in view of the proof of Theorem 5. 1, there is a neighborhood N of the identity in F(B|X-M) such that any $\varphi \in N$ is the restriction of some $\varphi \in G$. This shows that F(B|X-M)and G have a common neighborhood of the identity. Thus F(B|X-M) is also a Lie transformation group of $B - \pi^{-1}(M)$.

THEOREM 5.4. Assume that **B**, X and M satisfy the conditions in Theorem 5.1 and, furthermore, G is a complex Lie transformation group of Y. Then $F(\mathbf{B}|X-M)$ has a structure of a complex Lie transformation group of $B - \pi^{-1}(M)$.

Proof. According to Example 3.4 (ii), B is an associated fiber bundle of the canonically defined holomorphic principal fiber bundle P over X and $F(\boldsymbol{B}|X-M)$ is isomorphic with the automorphism group of $\boldsymbol{P}|X-M$. As is easily seen, if the automorphism group of P is shown to be a complex Lie transformation group, F(B|X-M) is also a complex Lie transformation group of $B - \pi^{-1}(M)$. From the beginning, we may assume that **B** itself is a holomorphic principal fiber bundle, i.e. G acts on the fiber Y = G as the left translations. In this case, $F(\mathbf{B})$ is a complex Lie transformation group of B. For, we know that an arbitrary infinitesimal transformation group on a complex space is locally integrable (W. Kaup [5], Satz 3, p. 82) and so it can be proved that the Lie algebra of $F(\mathbf{B})$ is canonically isomorphic with the Lie algebra of infinitesimal transformations D on Bwith $R'_q \cdot D = D$ for any $q \in G$ by the same argument as in the proof of Proposition 1 in [8], p. 163, where R_g denotes the right translation by g acting on B. On the other hand, the closed subgroup $G := \{\varphi \in F(B)\}$; $\varphi(\pi^{-1}(M)) = \pi^{-1}(M)$ of F(B) and F(B|X-M) have a common neighborhood of the identity. Theorem 5.4 is a direct result of W. Kaup [5], Korollar to Satz 2, p. 80.

COROLLARY 5.5. Let X be a compact complex space and M be an analytic subset of X. If $\operatorname{codim} M \ge 2$, $\operatorname{Aut} (X - M)$ has a structure of a complex Lie transformation group of X - M.

Proof. Let $\mu: X^* \to X$ be the normalization of X and put $M^* = \mu^{-1}(M)$. The space $X^* - M^*$ is the normalization of X - M. Then Aut $(X^* - M^*)$ is a complex Lie transformation group of $X^* - M^*$ as a special case of Theorem 5.4. The rest of the proof of Corollary 5.5 is due to the following Lemma.

LEMMA 5.6. Let X be a complex space and $\mu: X^* \to X$ be the normalization of X. If Aut (X*) is a complex Lie transformation group of X*, Aut (X) is also a complex Lie transformation group of X as a closed subgroup of Aut (X*).

Proof. To each $g \in Aut(X)$ corresponds exactly one $g^* \in Aut(X^*)$ with $g \cdot \mu = \mu \cdot g^*$. By this correspondence, Aut (X) is considered as a closed subgroup of Aut (X^*) (e.g. [2], Proposition 4. 2) and so a real Lie group. For our purpose, it suffices to show that any real one-parameter subgroup $\{g_t\}$ of Aut(X) can be extended to a complex one-parameter group of transformations of X. The given $\{g_t\}$ in Aut (X) gives a real one-parameter group $\{g_i^*\}$ in Aut (X*). By the assumption, $\{g_i^*\}$ is extended to a complex oneparameter group of transformations of X*, which we denote by the same notation $\{g_t^*\}$. For each g_t^* , we can define a map $g_t: X \to X$ with $\mu \cdot g_t^* =$ $g'_t \cdot \mu$. In fact, if $\mu(x_1^*) = \mu(x_2^*)$ for any fixed x_1^*, x_2^* , the holomorphic maps $\mu \cdot g_{\iota}^{*}(x_{1}^{*})$ and $\mu \cdot g_{\iota}^{*}(x_{2}^{*})$ of the complex number space C into X coincide with each other for any real t. By the theorem of identity, it remains valid for any $t \in C$. This shows that the single-valued map $g'_t := \mu g^*_t \mu^{-1} : X \to X$ is well-defined. Since μ is proper nowhere degenerate surjective, $g'_t(x)$ $(t \in C,$ $x \in X$) is obviously continuous on $C \times X$ and $g'_t g'_s = g'_{t+s}$ for any $t, s \in C$. And $g'_t(x)$ is holomorphic in x for any fixed real t. For any $x_0 \in X$, take a neighborhood W of $(0, x_0)$ in $C \times X$ such that $g'_i(x) \in V$ with a Stein open set V in X for any $(t, x) \in W$. Then $f(g'_t(x))$ is holomorphic on W for any holomorphic function f on V (H. Kerner [7], Hilfssatz 4, p. 285) because $f(q_t \cdot \mu(x))$ $(t \in C, x \in X^*)$ is holomorphic on $C \times X^*$. From these fact, we conclude that $g'_t(x)$ $(t \in C, x \in X)$ is holomorphic and hence $\{g'_t\}$ defines a complex one-parameter transformation group of X with the property $g'_t = g_t$ for any real t. This completes the proof.

References

- H. Fujimoto, Vector-valued holomorphic functions on a complex space, J. Math. Soc. Japan, 17 (1965), 52-66.
- [2] F. Hujimoto, On the holomorphic automorphism groups of complex spaces, Nagoya Math. J., 33 (1968), 85-106.
- [3] H. Grauert and R. Remmert, Zur Theorie der Modifikationen. I, Math. Ann., 129 (1955), 274–296.
- [4] H. Grauert and R. Remmert, Komplexe Räume, Math. Ann., 136 (1958), 245-318.
- [5] W. Kaup, Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann., 160 (1965), 72–92.
- [6] H. Kerner, Über die Fortsetzung holomorpher Abbildungen, Arch. Math., 11 (1960), 44–49.
- [7] H. Kerner, Über die Automorphismengruppen kompakter komplexer Räume, Arch. Math., 11 (1960), 282–288.
- [8] A. Morimoto, Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe, Nagoya Math. J., 13 (1958), 157–168.
- [9] R. Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann., 133 (1957), 328–370.

Mathemı Nagoya