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Abstract

During infectious disease outbreaks, individuals may adopt protective measures like vaccination and
physical distancing in response to awareness of disease burden. Prior work showed how feedbacks between
epidemic intensity and awareness-based behaviour shape disease dynamics. These models often overlook
social divisions, where population subgroups may be disproportionately impacted by a disease and more
responsive to the effects of disease within their group. We develop a compartmental model of disease
transmission and awareness-based protective behaviour in a population split into two groups to explore
the impacts of awareness separation (relatively greater in- vs. out-group awareness of epidemic severity)
and mixing separation (relatively greater in- vs. out-group contact rates). Using simulations, we show
that groups that are more separated in awareness have smaller differences in mortality. Fatigue
(i.e. abandonment of protective measures over time) can drive additional infection waves that can even
exceed the size of the initial wave, particularly if uniform awareness drives early protection in one
group, leaving that group largely susceptible to future infection. Counterintuitively, vaccine or infec-
tion-acquired immunity that is more protective against transmission and mortality may indirectly lead
to more infections by reducing perceived risk of infection and therefore vaccine uptake. Awareness-
based protective behaviour, including awareness separation, can fundamentally alter disease dynamics.
Social media summary: Depending on group division, behaviour based on perceived risk can change
epidemic dynamics & produce large later waves.
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Introduction

When an infectious disease causes substantial disease burden and death, people may perceive their risk
of infection based on their awareness of the magnitude of disease-linked outcomes and respond by
modifying their behaviour (An et al, 2020; Cheok et al.,, 2021; Gidengil et al,, 2012; Ridenhour
et al,, 2022; Yan et al, 2021). In turn, protective behaviours like physical distancing, mask wearing
and vaccination may suppress transmission, reducing peak and total infections and disease-linked
mortality (Abaluck et al., 2022; Toor et al, 2021; Yan et al, 2021). Awareness-based behaviour
describes protective measures that are adopted in response to epidemic intensity. Bidirectional feed-
back between protective behaviour and epidemic intensity can lead to unexpected and nonlinear
dynamics, such as plateaus and oscillations in cases over time, if protective measures are abandoned
over time (e.g. fatigue with non-pharmaceutical interventions may lead to a regular decline in adher-
ence) or the strength of protection wanes (e.g. waning immunity from vaccination or infection)
(Arthur et al,, 2021; Eksin et al., 2017; Perra et al., 2011; Weitz et al., 2020). Models that split the popu-
lation into categories with respect to the disease (i.e. compartments) and mathematically define
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transition rates between different states are widely used to understand such complex epidemic dynam-
ics. Compartmental models may incorporate awareness as a function of deaths or cases that reduces
transmission evenly across the population (Arthur et al., 2021; Weitz et al., 2020). However, real popu-
lations are sharply divided in physical interactions, demography, ideology, education, housing and
employment structures, and information access. These social divisions can impact the transmission
of both pathogens and information within and between groups, altering epidemic dynamics.
The impacts of such asymmetrically spreading disease and awareness in a highly divided population
are not well understood (Acevedo-Garcia, 2000; Farmer, 1996; Grief & Miller, 2017).

Populations may be subdivided based on an array of factors (e.g. race, ethnicity, age and geog-
raphy), with marked differences in pathogen exposure and infection severity (Farmer, 1996; Greene
et al., 2015; Li et al.,, 2016; Poteat et al., 2020; Williams & Cooper, 2020; Zelner et al., 2020). Risk
of pathogen introduction may vary between groups: high-income groups may encounter pathogens
endemic to other regions through international travel, low-income groups may have heightened like-
lihood of exposure connected to poor housing quality and insufficient occupational protections, and
certain regions and occupations experience greater risks of exposure to zoonotic illnesses (Benfer et al.,
2021; Cubrich, 2020; Dhewantara et al., 2018; Greene et al., 2015; Pramasivan et al., 2021). Once a
pathogen is introduced, it may spread at different rates within groups based on factors like housing
density and access to healthcare (Benfer et al, 2021; Poteat et al, 2020; Quinn et al, 2011).
Further, the severity of infection may vary directly with group identity owing to underlying biological
differences (e.g. age or sex), as a function of co-morbidities especially prevalent in one group owing to
underlying inequities (e.g. lung disease connected to environmental pollution or heart disease asso-
ciated with factors driven by structural racism), or through heterogeneity in access to and quality of
healthcare (Calvin et al., 2003; Lane et al.,, 2022; Li et al., 2016; Poteat et al., 2020; Quinn et al.,
2011; Takahashi et al., 2020; Williams & Cooper, 2020; Wu et al., 2020). Mixing, or between-group
contact rates, can alter transmission dynamics. Physical barriers (e.g. geographic boundaries, schools,
residential segregation and incarceration) and preferential contact with members of one’s own group
may reduce interactions and subsequent transmission between groups, a characteristic we describe as
separated mixing (Arnold et al., 2022; Doherty et al., 2009; Greene et al., 2015; Harris et al., 2021;
Rothenberg et al., 2005). Infectious disease models that account for differences in vulnerability within
subgroups of a population and separated mixing can help to illustrate the emergence of health inequities
and justify structural interventions to reduce these disparities (Jacquez et al., 1988; K. C. Ma et al., 2021;
Richardson et al., 2021; Zelner et al., 2022). However, such models may miss an important behavioural
dimension by failing to account for variation in awareness-based behaviour changes among groups.

Awareness and behavioural heterogeneity can significantly alter disease dynamics: for example,
protective behaviour adoption based on disease status of social connections may slow pathogen trans-
mission, while social clustering in vaccine exemptions may lead to outbreaks (Funk et al., 2009;
Herrera-Diestra & Meyers, 2019; Omer et al., 2008). Personal perception of disease severity may be
influenced by population-level social norms and mass media, regardless of group identity. However,
attitudes toward diseases and protective behaviours may also vary considerably between groups and
correspond to actual risk and personal experiences of close social ties with the disease (Anthonj
et al., 2019; Brug et al., 2004; Christensen et al., 2020; Holtz et al, 2020; Oraby et al., 2014;
Simione & Gnagnarella, 2020). While prior awareness-based models have examined outcomes given
different scales of information (i.e. local or global), we aim to characterize risk perception based on
group-level information in a population split into two distinct and well-defined groups (Funk et al.,
2010). We define separated awareness as greater in- vs. out-group awareness of current epidemic con-
ditions in a split population. We predict that, by producing behavioural responses more reflective of
each group’s risk, separated awareness may reduce differences between groups in disease burden that
might otherwise occur (Steinegger et al., 2022). Understanding the impacts of separation with respect
to mixing and awareness on disease dynamics may be important for characterizing differences in epi-
demic burden and effectively intervening to mitigate population inequities (K. C. Ma et al., 2021;
Richardson et al., 2021; Steinegger et al., 2022; Weston et al., 2018; Zelner et al., 2022).
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Here, we investigate the impacts of intergroup divisions on epidemic dynamics using an awareness-
based model for transmission of an infectious disease, in which adoption of protective measures
(either non-pharmaceutical interventions or vaccinations) is linked to recent epidemic conditions
and mediated by awareness.

We ask:

1. How do separated awareness and mixing interact to affect differences between groups in epi-
demic dynamics?

2. How does fatigue interact with awareness separation to affect long-term epidemic dynamics?

3. When vaccines are introduced, how does immunity interact with awareness separation to affect
long-term epidemic dynamics?

Methods
Non-pharmaceutical intervention model

We model disease transmission with awareness-based adoption of non-pharmaceutical interventions
that reduce transmission rates. See Supplementary Figure S1 for a compartmental diagram for this
model and Supplementary Table S1 for parameter definitions. We model disease transmission with
a Susceptible-Infectious—-Recovered—-Deceased model, tracking the proportion of the population in
each compartment through time. Susceptible individuals have never been infected or vaccinated.
New infections arise through contact between susceptible and infected individuals, with the transmis-
sion coefficient 8 describing the rate at which the pathogen spreads. Individuals exit the infected com-
partment at per capita rate p, the inverse of infectious period 1/p and either recover or die. The fatality
probability, or fraction of individuals exiting the infectious compartment who die, is 4 (meaning that
recovery after infection occurs with probability 1 — u). In this model, recovered individuals have dur-
able immunity and cannot be reinfected. The initial model does not include vaccine-derived immun-
ity, an extension we consider below (Equation 3).

We further categorize the population based on whether they adopt behaviour that is Protective (P) or
Unprotective (U). Compartment names contain two letters, the first indicating disease status and the
second indicating behaviour (e.g. SU denotes Susceptible people with Unprotective behaviours). We
track the behavioural status of Recovered and Deceased individuals (at the time of death), although
they do not contribute directly to transmission. Protective measure efficacy against infection is determined
by a scaling factor x describing the degree to which the behaviour prevents infection (where k¥ =0 corre-
sponds to complete protection and k=1 corresponds to no protection). Protective measures affect the
behaviour of both susceptible and infected individuals, so transmission rate is reduced by a factor of
x* in encounters where both parties have adopted protective measures. Living individuals can switch
between protective and unprotective behaviour, and we assume that the rates of these behavioural transi-
tions are independent of their own disease status. Unprotective individuals adopt protective behaviours
based on awareness (a(t), Equation 2), or perceived epidemic intensity at a given point in time.
Awareness is the product of disease-induced deaths over the past £ days (making £ a measure of memory)
and a responsiveness constant 6. Protective behaviours are abandoned owing to fatigue at per capita rate ¢.

To study the impact of social divisions, we further split the population into two groups of equal
size, where group membership is fixed, and each group contains all epidemiological and behavioural
compartments. The groups are labelled as a and b and indicated as a subscript in compartment names
(e.g. SU, corresponds to the prevalence of Susceptible-Unprotective individuals in group a). We arbi-
trarily designate group a as having greater underlying vulnerability to infection or disease-linked mor-
tality in all of the following scenarios. Parameters may vary between groups, as indicated by subscripts
(e.g. 6, corresponds to responsiveness in group a). If parameters are equivalent for both groups, we
exclude the subscript (e.g. 6=6,=6,).

Preferential within-group mixing is represented by homophily parameter h, corresponding to the
proportion of contacts that are within-group. When # is 0.5, mixing is wuniform, meaning that
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individuals are equally likely to contact members of their own group as members of the opposite
group. As h approaches 1, mixing becomes increasingly separated, meaning that contacts are increas-
ingly concentrated within groups. Similarly, we consider separation in awareness, €, or the relative
weight of in-group vs. out-group awareness of deaths for protective behaviour.

The system of equations for group a is as follows (equations for group b can be derived
symmetrically):

SU, = —BSUL((h)IU, + kIP,) + (1 — h)(IU, + kIP;)) — 6SU,at(t) + ¢SP,
SP, = —BkSP,(W)(IU, + kIP,) + (1 — h)(IUy + KIPy)) + 0SU,at(t) — HSP,
U, = BSUL((W(IU, + KIP,) + (1 — h)(IU, + kIP})) — 01U, (1) + (¢ — p)IP,

1P, = BkSP,((h)(IU, + kIP,) + (1 — h)(IU, + KIPy)) + 61U, a(t) — (¢ + p)IP,

RU, = (1 — w)pIU, — 6RU, a,(t) + ¢RP, @
RP, = (1 — w)pIP, + ORU,a,(t) — $RP,
DU, = pplU,
DP, = uplP,
where a,(t) is the awareness equation for group a:
t
a(t) = [ ((e)(DUs+DP,) + (1 = &) (DU, +DPy ) ) dt @)

t—¢

Vaccination model

We develop an alternative model in which the awareness-based behaviour is vaccine uptake, rather
than non-pharmaceutical interventions. See Supplementary Figure S2 for a compartmental diagram
for this model and Supplementary Table S1 for parameter definitions. Here, the second letter of com-
partment names indicates immune status: Unprotective (U), Transmission and Mortality-reducing
Immunity (T), or Mortality-reducing Immunity (M). This reflects our assumption that immunity ini-
tially reduces both transmission and mortality following infection or vaccination, and later wanes to
reduce mortality but not infection.

As in the non-pharmaceutical intervention model, susceptible people without prior immunity (SU)
may become infected and then recover or die according to baseline infection parameter values.
Susceptible individuals may become vaccinated and transition directly to the recovered compartment,
bypassing infection, at a rate dependent on awareness. There may be a lag between the beginning of
the epidemic and vaccine introduction at time point t, (Supplementary Figures S13 and S14).
To evaluate long-term immune effects of vaccination and infection on epidemic dynamics,
we incorporate waning immunity by including distinct T and M compartments, as described above.

After vaccination or infection, individuals temporarily have complete protection from infection
(RT). At per capita rate o, they regain susceptibility to infection, this time with transmission and
mortality-reducing immunity (ie. ST). As in the non-pharmaceutical intervention model,
transmission-reducing protection scales transmission rates for susceptible and infected individuals
by a constant. Additionally, immunity reduces disease-linked mortality by scaling factor ¢
Transmission-reducing immunity is lost at per capita rate ¢, while mortality-reducing immunity is
retained over the course of the simulation, reflecting how neutralizing antibody production may
decay over time while cellular immune responses are more durable (Siggins et al, 2021).
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Susceptible individuals with mortality-reducing immunity alone (SM) may regain transmission-
reducing immunity via vaccination, which occurs based on the same awareness function as vaccination
of people without immune protection.

The system of equations for this model in a population without groups is:

t
SU = —BSUIU + KIT + IM) = 6SU | (D'U + DT+DM)dt
t—¢
ST = wRT — BkST(IU + kIT + IM) — ST
t
SM = —BSM(IU + KIT +IM) — 6SM | (D’U 4 DT+ DM)dt + ¢ST
t—¢

IU = BSU(IU + «IT 4 IM) — pIU
IT = BkST(IU + KIT + IM) — pIT (3)

IM = BSM(IU + kIT + IM) — pIM

t
RT = p((1 = WIU + (1 = {u)(IT + IM)) — oRT + 6(SU + SM) | (D'U+ DT+ DM)dt
t—~

DU = (up)IU
DT = ({pp)IP
DM = ({pp)IM

The equations for a split population with separated mixing and awareness can be derived following
Equation (1).

Simulations

We ran simulations in R version 4.0.2, using the dede function in the deSolve package, which solves
systems of differential equations (Soetaert et al., 2010). The population begins as almost fully suscep-
tible (S(0) ~ 1), with a small initial infection prevalence (I(0)) to seed the outbreak and no protective
behaviours. In the non-pharmaceutical intervention scenarios (scenario 1 and 2), the sole initial dif-
ference between groups is caused by introducing the pathogen into group a alone at prevalence I,(0) =
0.001. In the vaccination scenario (scenario 3), the pathogen is introduced in both groups at preva-
lence I(0) = 0.0005 and the fatality probability for group a is twice that of group b (u,=0.02 and
Up=0.01). An interactive R Shiny app that allows users to simulate epidemics for the non-
pharmaceutical intervention model across parameter values is available at https://mallory-harris.shi-
nyapps.io/divided-disease/.

Results

1. Separated mixing and awareness

To understand how separation in awareness and mixing interact to alter short-term epidemic dynam-
ics in a split population, we model awareness-based adoption of non-pharmaceutical interventions
(Equation 1); all model parameters are defined in Supplementary Table S1 and a compartmental dia-
gram is provided as Supplementary Figure S1. As described above, the pathogen is introduced in group
a alone; all other parameters are equivalent between groups. To simplify short-term awareness-based
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Figure 1. Epidemic peaks are offset in time between groups when mixing is separated (C, D), and in magnitude when awareness is
uniform but mixing is separated (C). Plots show the prevalence of infections over time in group a (pink) and group b (green) under
four scenarios: awareness is uniform (A, C; e = 0.5) or separated (B, D; e = 0.99); mixing is uniform (A, B; h=0.5) or separated (C, D;
h=0.99). We assume the pathogen is introduced only in group a at prevalence 0.001 and that all other parameters are equivalent
between groups: transmission coefficient (8= 0.2), infectious period (1/p = 10), fatality probability (z = 0.01), protective measure effi-
cacy (x=0.3), responsiveness (6=100), memory (£ =1), and fatigue (¢ =0). Lines overlap under uniform mixing (top row).

behaviour, this scenario does not incorporate memory or fatigue (£ = 1 and ¢ = 0). First, we allow both
mixing (h, which drives the contact and contagion process) and awareness (€, which drives protective
behaviour adoption) to be either uniform (functioning like a single population) (0.5) or highly sepa-
rated (0.99).

The groups experience identical epidemic dynamics regardless of awareness separation when mix-
ing is uniform (Figure 1A, B), as the pathogen introduced into group a quickly spreads into group b
and circulates evenly within and between groups. When groups mix separately, differences in epidemic
dynamics between groups arise and depend on awareness separation (Figure 1C, D). Therefore, we
focus the rest of our analyses on cases where mixing is separated to examine the impacts of awareness
separation. When awareness is uniform, epidemic shape differs in both timing and magnitude between
groups, increasing the peak size and total infections in the more vulnerable (earlier epidemic introduc-
tion) group a and decreasing both in group b (Figure 1C). Group a also has more cumulative deaths
than group b under uniform awareness, while cumulative deaths across the full population (group a
and group b combined) are approximately constant across different levels of awareness and mixing
separation (Supplementary Figure S3).

Awareness separation changes epidemic size in both groups by modulating how quickly protective
behaviour arises relative to pathogen spread (Figure 2). Uniform awareness reduces total infections in
group b, which adopts protective behaviour by observing mortality in group a at a point when infec-
tions within group b remain relatively low (Figures 1C and 2B, D, E). Meanwhile, uniform awareness
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Figure 2. Separated awareness reduces between-group differences by reducing group b’s awareness of the emerging epidemic and
augmenting group a’s response to the introduction of the pathogen. We initialize our model using the same parameters as Figure 1
with separated mixing (h=0.99). We compare uniform awareness (e = 0.5; dashed lines) and separated awareness (e = 0.99; solid
lines). At the top, we compare early time series (through t =80) of (A) protective attitude prevalence in group a; (B) protective atti-
tude prevalence in group b; (C) cumulative infections in group a; (D) cumulative infections in group b. (E) A phase portrait of pro-
tective attitude prevalence against cumulative infections in group a (pink) and group b (green). Points indicate values at t= 280,
corresponding to the end of the time series in (A-D). Arrows indicate differences in protective attitude prevalence (grey) and cumu-
lative infections (black) at t =280 for separated vs. uniform awareness, with letters corresponding to time series panel labels.

causes group a to underestimate disease severity owing to the lack of early mortality in group b, leading
to decreased early protective behaviour and a larger outbreak (Figures 1C and 2A, C, E). When aware-
ness is separated, group b has little awareness of the emerging epidemic localized to group a, while
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group a responds to its relatively higher early disease burden with increased awareness, driving epi-
demic dynamics between the two groups to be similar in shape but delayed in time for group b
(Figure 1D). Therefore, awareness separation reduces the differences between groups in epidemic
shape (e.g. peak size, total infections), while mixing separation offsets them in time (Figure 1C, D,
Supplementary Figures S4 and S5).

Differences between groups in epidemic dynamics only arise at high levels of mixing separation
(h>0.9) but can occur at intermediate levels of awareness separation (Supplementary Figures S4
and S5; e.g. € = 0.75). Awareness separation also reduces differences between groups in severe out-
comes when groups differ in their transmission coefficients, infectious periods, or fatality probabilities
(Supplementary Figures S6-8).

2. Fatigue and awareness separation

We introduce memory and fatigue to examine the long-term impacts of separated awareness when
awareness-driven protective behaviour is abandoned over time. Once again, the pathogen is intro-
duced into group a alone and all other parameters are equivalent between groups. To maintain
between-group differences, we assume separated mixing (h = 0.99).

In all cases, when protective behaviour wanes with fatigue, three distinct peaks emerge before trans-
mission plateaus at low levels and declines gradually (Figure 3). The initial difference between groups
with uniform awareness means that group b retains a relatively larger proportion of susceptible indi-
viduals who avoided infection in the first wave by rapidly adopting protective behaviours (Figures 1C
and 3A). As a result, the second and third waves in group b exceed the first wave in peak and total
infections (Figure 3A). Meanwhile, uniform awareness causes the second and third waves in group
a to be smaller compared with separated awareness (Figure 3A vs. B). Under uniform awareness,
the third wave in group a is considerably delayed, peaking around 800 days (vs. 450 days under sepa-
rated awareness). At intermediate awareness separation (€ = 0.75), the first and second waves in group
b are approximately equivalent in size (Supplementary Figure S10). As shown in the case without
memory and fatigue (Figure 1), when both mixing and awareness are separated, the groups differ
mainly in the timing of epidemic peaks rather than in their magnitude, before converging on a
long and slow decline (i.e. shoulder; Figure 3B). In the full population, awareness separation may
change infection prevalence over time but has no impact on cumulative deaths (Supplementary
Figure S11).

3. Immunity and awareness separation

Next, we consider the implications of awareness-based vaccine uptake in a split population given wan-
ing immune protection against infection and durable protection against mortality (Equation 3,
Supplementary Figure S2). We model immunity from prior infection as equivalent to immunity
from vaccination. Unlike in the previous analyses, the pathogen is now introduced at the same preva-
lence in both populations simultaneously to ensure that groups a and b begin the post-vaccine period
with similar levels of immunity. Group differences are driven by a fatality probability in group a that is
twice that of group b. Again, we assume separated mixing (h=0.99) to maintain distinct dynamics
between the groups. We initiate vaccination at 200 days, after an initial large wave of infections.
Our analyses focus on the period following the introduction of vaccines to understand how awareness
separation modulates the impact of this protective measure across a period where infection is already
well established in both populations but substantial proportions of the population remain susceptible.

After an initial large wave (displayed in Supplementary Figure S12), vaccination and waning
immunity lead to damped cycles of infections and deaths (Figure 4). As was the case with the non-
pharmaceutical intervention model (Figure 1), when awareness drives vaccination behaviour, sepa-
rated awareness helps to reduce differences in mortality between groups (Figure 4D vs. C). Group a
becomes vaccinated at a higher rate in response to the greater number of deaths observed in group
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a, an effect that is most notable during the second epidemic peak following vaccine introduction
(Figure 4D). Therefore, group a also has fewer infections than group b in later waves under separated
awareness (Figure 4B), while the two groups experience identical infection dynamics (despite the lar-
ger disparity in deaths) given uniform awareness (Figure 4A).

Because vaccination protects against infections and deaths, and recent deaths feed back to influence
awareness-driven vaccine uptake, there is a potential tradeoff between immune protection from vac-
cines and epidemic dynamics. We explored this tradeoff by examining the effect of variation in
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Figure 5. Greater immune protection (from vaccination and infection) leads to lower death rates (A), which in turn decreases vac-
cination rates (B) and increases infection rates (C); separated awareness reduces disparities in death rates (A) as groups are vacci-
nated at different rates proportional to their risks of death (B), creating differences in infection rates (C). We vary immune
protection, defined as transmission-reducing immunity and mortality-reducing immunity, where both parameters are assigned
the same values (k=¢). We assume immune protection is equivalent for vaccine- and infection-derived immunity. The x-axis is
reversed because smaller values indicate stronger protection. We examine the impacts of stronger immune protection (lower values
of k¥ and ¢) on total deaths (A), vaccinations (B) and infections (C) in the post-vaccine period (t =200 through t =2200). We consider
the post-vaccine period to focus on the impacts of an awareness-based intervention administered under different levels of aware-
ness separation. We compute each quantity for group a (pink) and group b (green) given uniform (dashed lines; € = 0.5) or sepa-
rated (solid lines; e = 0.99) awareness. Other parameter values are the same as Figure 4.

immune protection on epidemic dynamics and their feedbacks on vaccine uptake rate, assuming that
immune protection causes the same proportional reduction in transmission and mortality (i = (). As
expected, greater immune protection reduces the number of deaths by directly reducing the fatality
probability. However, because of awareness-driven vaccine uptake, vaccination can produce diminish-
ing returns at the population scale where doubling immune protection from death and infection only
reduces total deaths by about one eighth owing to the compensatory reduction in vaccine uptake
(Figure 5A), despite doubling individual protection for vaccinated people. Since a more effective
immune response reduces mortality, the perceived risk associated with infection declines and fewer
people become vaccinated (Figure 5B). The tradeoff between the direct impacts of immune protection
on preventing infections and reduced uptake produces a nonlinear relationship between total infec-
tions and immune protection (Figure 5C). At low immune protection, infections remain approxi-
mately constant as immune protection improves. At higher levels of immune protection, reduced
uptake with stronger protection leads to more infections (Figure 5C).

Separated awareness drives differences between groups in vaccination behaviour - the higher-risk
group a gets vaccinated at a higher rate in response to awareness of the greater cumulative mortality in
that group (Figure 5B). This in turn increases differences in infections (group a experiences lower
infection rates; Figure 5C) but decreases differences in mortality between groups (death rates are
lower for group a but higher for group b than in the uniform awareness scenario; Figure 5A).
Since group a is at a higher inherent risk of mortality given infection, separated awareness differen-
tially promotes vaccination and reduces infection in this group, while uniform awareness causes
group a to ignore its higher risk of mortality (Figure 5A, B, solid vs. dashed lines). Cumulative deaths
increase especially quickly during the initial wave absent vaccination because the population lacks
transmission- or mortality-reducing immunity. When vaccination begins earlier in the epidemic
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(prior to the initial peak around ¢ =100), separated awareness has greater potential to reduce the dif-
ference in cumulative deaths between the two groups (Supplementary Figures S13 and S14). Early vac-
cination may also reduce cumulative deaths and infections in each group (Supplementary Figure 14).

Discussion

Awareness separation and social divisions may interact to fundamentally alter disease dynamics, cre-
ating or erasing differences between groups in the timing and magnitude of epidemic peaks. Uniform
awareness can exacerbate differences between population subgroups when the more vulnerable group
(e.g. the group where the pathogen is introduced or the group with higher fatality probabilities) under-
estimates the in-group risk of disease and fails to adopt early protective measures (Figures 1 and 5). At
the same time, the initially less-vulnerable group receives indirect protection from observing and
responding to epidemic effects in the more vulnerable group, adopting protective measures that reduce
their total and peak infections (Figures 1 and 5). However, when awareness-driven behaviour fades
with fatigue, the relative disease burden may shift between groups such that the group that initially
had fewer infections has relatively more infections in subsequent waves, especially when uniform
awareness protects the initially less-vulnerable group during the first wave of infection (Figure 2).
Awareness separation diminishes between-group differences in severe outcomes (Figures 1-5,
Supplementary Figures S6-S8), but may do so by increasing differences in behaviour and infections
(Figures 4 and 5, Supplementary Figure S8). For example, when the more vulnerable group has a
higher rate of disease-linked mortality, awareness separation leads them to have higher vaccine uptake
in response to their heightened perceived (and actual) risk, narrowing the difference in mortality
(Figure 5). More broadly, awareness separation generally reduces differences in severe outcomes
between groups by producing preferential uptake of preventative measures by the group with the great-
est recent mortality, which is usually the group at greatest current risk.

In this model, greater awareness separation generally reduces differences in severe outcomes
between groups, but the magnitude of these impacts may vary depending on disease properties
(e.g. transmission coefficient) and behavioural and social processes (e.g. responsiveness to disease-
linked mortality) (Supplementary Figures S9, S13 and S14). Outcomes may be further modulated
by public health orders and the timing of different interventions. For example, there is greater poten-
tial for awareness separation to reduce between-group differences in mortality given earlier vaccine
introduction (Supplementary Figures S13 and S14). The existing models could be modified to incorp-
orate population-wide measures, particularly time-limited non-pharmaceutical intervention mandates,
to study how social and behavioural processes may shift the optimal timing of interventions in the full
population or either group (Ketcheson, 2021; Morris et al., 2021). Although this model and others
assume that protective behaviour uptake is independent of disease status (Mehta & Rosenberg,
2020; Smaldino & Jones, 2021), the model could be modified to link behaviour with known disease
status (e.g. accelerated uptake of or reduced fatigue with protective measures by people with symptom-
atic infections) (Eksin et al., 2017; Funk et al., 2009). To assess the robustness of our conclusions about
the effects of awareness separation, the same scenarios could be evaluated across different models of
awareness-based behaviour changes, including saturation at a certain threshold for deaths (Weitz et al.,
2020), consideration of both lethal and non-lethal impacts of disease (e.g. hospitalizations and cases),
or optimization to balance the benefits of protection against the costs of various measures (Arthur
et al., 2021; Barrett et al., 2011; Eksin et al., 2017). The latter approach may clarify a point that is
not addressed in our analysis: although awareness separation may reduce disparities in severe disease-
linked outcomes, this phenomenon is not necessarily equitable or desirable. In fact, if self-protection is
associated with significant costs, already-vulnerable populations may suffer compounding costs as they
balance self-protection against significant disease risk without adequate support from a broader com-
munity that does not share their risks (Atchison et al., 2021; Barrett et al., 2011; Jay et al., 2020;
Skinner-Dorkenoo et al., 2022). Further, structural inequities often leave population subgroups that
are vulnerable to larger, more severe outbreaks with reduced access to protective measures like health
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education, treatment, vaccination, and paid leave (Cardona et al., 2021; Christensen et al., 2020;
Clouston et al., 2015; Dryhurst et al., 2020; Heymann et al., 2021; Poteat et al., 2020; Ridenhour
et al., 2022; Simione & Gnagnarella, 2020; Williams & Cooper, 2020). Resulting differences in rates
of protective behaviour uptake and effectiveness can compound disparities between groups and reduce
the protective impact of awareness separation for more-vulnerable groups.

Epidemics are complex phenomena that typically involve heterogeneous mixing among groups of
people that differ in biological and social risk factors, dynamic evolution of host behaviour, pathogen
infectiousness and immune evasion, and ever-changing epidemiological and policy responses to real
and perceived risk. Despite this range of potential drivers, we show here that a simple model that cap-
tures two key social processes — awareness-driven protective behaviour in a split population that can be
separated in mixing and awareness — can drive many of the complex dynamics observed in emerging
epidemics like Covid-19. For example, when awareness is uniform and mixing is separated, the group
in which the pathogen is introduced later can experience second and third waves that exceed the initial
wave in size (Figure 3). This trend resembles one observed in the United States during the first year of
the Covid-19 pandemic, where certain regions where the virus was introduced early (e.g. New York
City metropolitan area) experienced a large early wave and relatively few infections over the rest of
the year, while other regions (e.g. the southern United States) generally had small early waves and lar-
ger second and third waves. Many hypotheses have been introduced to explain this phenomenon (e.g.
policy, seasonal climate factors, and population density) and several factors may have contributed to
this pattern (Y. Ma et al., 2021; Sy et al., 2021). Yet in our model these dramatic differences among
populations in epidemic waves occur despite the groups being identical in transmission rates and dis-
ease outcomes and are entirely due to awareness-driven behaviour with uniform awareness among
groups (Figure 3). Although the current analysis does not examine causation, and observed trends dur-
ing Covid-19 probably involved a confluence of drivers, we have demonstrated how a simple behav-
ioural process can qualitatively reproduce complex epidemic dynamics observed in real populations.
To understand the extent of awareness separation in real populations and the role of specific behav-
ioural processes in observed trends, our model could be parameterized using a combination of epi-
demiological, survey, mobility and social media data (Chang et al., 2021; Shen et al.,, 2021; Weitz
et al., 2020).

Feedback between vaccine efficacy and awareness-based vaccine uptake can also produce the
counterintuitive scenario where vaccines that cause a greater reduction in transmission and mortality
lead to more cumulative infections, even as deaths are reduced (Figure 5). If, as we assume here, pro-
tective behaviour is driven by awareness of severe outcomes like mortality, awareness separation may
reduce differences in deaths between groups while widening differences in cases (Figures 4 and 5). The
potential for awareness separation in vaccine uptake to reduce between-group differences in mortality
is greatest when vaccination is introduced earlier in the epidemic, indicating that intervention timing
may have health equity implications (Supplementary Figures S13 and S14). Accounting for awareness-
based adoption of protective behaviour is therefore critical for understanding complicated epidemic
dynamics such as plateaus and cycles (Figures 3 and 4), accurately deploying protective measures
and assessing their impact across different diseases and population subgroups (Arthur et al., 2021;
Steinegger et al., 2022; Weitz et al., 2020).

Here we have considered arbitrarily defined groups that can be separated in mixing and awareness
but initially differ only in the timing of pathogen introduction (Figures 1-3), fatality probability
(Figures 4 and 5, Supplementary Figure S8), pathogen transmission (Supplementary Figure S6) or
infectious period (Supplementary Figure S7). Real social groupings may fall along a number of social,
demographic and geographic lines, while the assumption of two distinct and identifiable groups may
not fully capture relevant social dynamics. The most relevant groupings with respect to awareness and
disease risk may also depend on the disease. For infectious diseases that are generally more prevalent
and severe in children (e.g. pertussis and measles), risk may depend on age while awareness is split
between parents of young children vs. adults without children or among parents with different senti-
ments towards childhood vaccination (Bhattacharyya & Bauch, 2010). In the context of Covid-19,
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disease burden and attitudes toward preventative measures (e.g. masks and vaccines) have differed
markedly across age, socioeconomic status and race, and over time, demonstrating how intersecting
and imperfectly overlapping identities may interact to determine attitudes, protective behaviours
and risk (Maroko et al., 2020; Schulz et al., 2020; van Holm et al., 2020). Moreover, ideological and
social factors that do not correspond directly to disease risk (e.g. political affiliation) may influence
decision-making and cause the level of protective behaviour in certain subgroups to diverge sharply
from their relative risk for severe disease, potentially overcoming the effects of awareness separation
(Christensen et al., 2020; Grossman et al., 2020). This process could be incorporated into our
model by splitting the population into additional groups with respect to a cultural contagion or
(mis)information spread process and allowing protective measures to be adopted based on awareness
or contact with protective in-group members and rejected through fatigue or aversion to protective
measures displayed by the opposite group (Mehta & Rosenberg, 2020; Smaldino & Jones, 2021).

Although we assumed that awareness was directly proportional to recent mortality, external influ-
ences like partisanship (Christensen et al., 2020; Grossman et al., 2020), media coverage (Shanta &
Biswas, 2020), misinformation (Lee et al., 2021) and policy (Yan et al., 2021) may alter the perception
of risk or the adoption of protective measures at both the individual and group level. Group identifi-
cation and assessment of relative risk may be unclear or inaccurate based on uncertainty at the begin-
ning of the outbreak, misinformation about risk factors, a gradient in risk (e.g. increasing risk with
age), lack of data stratification or unobserved risk factors. Attitudes based on one disease may carry
over to another disease even if risk factors differ. Relative risk across groups may also vary across
time and space, potentially leading to inaccurate assessment based on prior conditions: for example,
a mild initial epidemic wave can mislead a group into believing they are inherently more protected and
thereby relaxing protective behaviours. Cognitive interventions that increase the accuracy of individual
risk perception, especially in high-risk groups, may help to reduce between-group differences in dis-
ease burden (Sinclair, Hakimi, et al., 2021; Sinclair, Stanley, et al., 2021).

Our model may also be extended to other scenarios involving a transmission process and collective
behaviour, particularly social contagions like the spread of rumours and trends. Additional parameter
space may be explored via the R Shiny interactive app accompanying this project, which currently only
incorporates the non-pharmaceutical intervention model (https://mallory-harris.shinyapps.io/divided-dis-
ease/). Considering awareness separation as a social process that may interact with mixing, fatigue, waning
immunity, pathogen evolution and pharmaceutical and non-pharmaceutical interventions may help to
explain how humans are affected by and respond to infectious diseases in the presence of social divisions.
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