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ABSTRACT. The equation describing the surface evolution of a large ice sheet is
examined on the basis of a scale analysis applied to Antarctic conditions. Changes in
the surface elevation are mainly driven by mass-balance fluctuations which
approximately follow global atmospheric temperature variations. The essential spatial
non-uniformity ol the accumulation rate and the resultant difference between central
and coastal regions in reaction time-scales are taken into account. The dynamic
interaction of the time-lagging interior with the quasi-stationary margin is described.
As a result, a simplified model is deduced to simulate the surface-elevation variations
in the central parts of the Antarctic ice sheet caused by mass-balance perturbations
corresponding to the main Milankovich cycles with the periods of 19-100 kyears.
Special computational tests are performed to validate the model through inter-
comparison with the predictions obtained with a two-dimensional thermomechanical
model. The sensitivity of the model to physical factors (represented by dimensionless
tuning parameters) is discussed. Climatically controlled variations of the ice-sheet
thickness in the vicinity of Vostok Station during the past 200 kyears are estimated.

1. INTRODUCTION ling, starting with the conventional mass-conservation
equation for a radial flow pattern in an ice sheet lying on
The central parts of the Earth’s largest ice sheets, such as a horizontal bed where
those of Antarctica and Greenland. are composed of very a1
old ice deposits and contain unique information about +=—(rlu) = b. (1)
past climatic changes (e.g. Robin, 1977; Dansgaard and
others, 1985; Jouzel and others, 1993).

When studying physical processes in a glacier and

Here, t is time, r is the radial coordinate (the distance
[rom the glacier centre), u is the mean value of the

interpreting ice-core data at a certain site, we usually
need either to predict or to reconstruct the local time
variations ol the surface elevation. In general, this means
that we have to model the dynamics ol the whole ice sheet
even though the aim is to investigate the central regions,
because of the obvious interactions between the centre
and the margins. However, complete two- or three-
dimensional models demand detailed initial data and are
time-consuming for computation. In applications, where
high accuracy in simulating the surface-elevation changes
is not of principal significance, approximate reduced
computational schemes can be preferable or may even be
essential, especially if the speed of calculation becomes
crucial. The ease with which they can be directly used
and interpreted is also attractive.

With this in mind, let us concentrate on the main
available simplifications in ice-surface-evolution model-
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longitudinal velocity along a vertical, whereas I, z and b
should be understood, respectively, as the glacier thick-
ness (surface elevation), the distance from the bottom and
the mass-balance (accumulation) rate represented as the
equivalent of pure ice (sce e.g. Salamatin, 1991). In this
notation, the bottom ice-melting rate is neglected or is
considered as a small correction of b.

For a large ice sheet, Equation (1) is thought to
describe the temporal and spatial variations ol its surface
on average (with respect to the principal {low-direction
angle) and, therefore, with smoothed bed-reliel undula-
tions and an appropriate distribution of the accumulation
rate b as a function of r and t.

The next commonly made step is to determine the
velocity w from the Stokes” momentum- (foree-) balance
equations on the hasis of the scale analysis (see the reviews
by Hutter (1982, 1993)). Designating the typical values of
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the thermohydrodynamic characteristics as well as the
time and space scales by the superscript 0, we write
T“ = I“/[)“. :ll o i“. 'H.“ e T'llb“/[“. o (2)
Eventually, if the ratio K, = I'”/I'U is small, the general
cquations of the ice flow result in the boundary-layer
approximation which, in turn, leads to an explicit
formula for u (Grigoryan and others, 1976). It is relevant
to note that the two (vertical and longitudinal) space
scales 1Y and ™ are not independent and their ratio K, is
onc of the principal similarity criteria in glacier dynamics
theory (Fowler and Larson, 1978; Salamatin and Mazo,
1984). Actually, for Glen’s ice-flow law we have
(Salamatin, 1979)
) [ {080
f\,{, —

o it

where g is gravity acceleration, p; is the density of pure ice
and e is the creep exponent. We also define ' in
Equation (3) as a typical value of the viscosity factor gt (a
function of the temperature T) in the constitutive
relationship 2ég = 7 /i(T) between the effective strain
rate €y and shear stress 7 in an ice massil: ,u” =ypigdy
where 7Y is the characteristic temperature. Due to the
factor 2 introduced into the flow law, p is the Newtonian
viscosity at a = 1. Preliminary estimations give K,
~10% 101072 .

In accordance with the non-dimensionalizing proce-
dure, in what follows we use and refer to normalized
forms of characteristics and relations. substituting for
simplicity ¢/, 2/1°, #/r", /1, w/u®, p/u®.... by t, 2.,
(L il

Correspondingly, with an crror of the order of O(K}j’)
we write alter Salamatin (1979, 1991)

]H—l 0] 0!’” 1 /'l (l 73)'l+| I_ - 5
A or lor ———dz, z=-,
! r \9r o (T ]

where uy is the sliding velocity in the basal laver,

It should also be mentioned here that the basic typical
values and scales such as ', 7, 8".... in Equations (2)
and (3 stll have not been rigorously defined. Further-
more, the choice of these values may depend on the final
goal of the study. For instance, it has been convincingly
shown by Dahl-Jensen (1989) that the boundary layer (or
shallow ice) approximation (4) is not valid in the vicinity
of the ice divide. In other words, K, in Equation (3] does
not tend to zero when the scale of observations (1) is
chosen comparatively small and p” is large to represent
the viscosity of ice at low surface temperatures. Never-
theless, we use the latter relation (4) for w as an
appropriatec one to describe the global mass-transfer
interactions within a glacier.

Now. addressing the estimation of the sliding-velocity
magnitude in Equation (4), it is relevant to quote from
Fowler (1987) that “cavitation (as a sliding mechanism)
is ruled out for large ice sheets”, Consequently, restricting
our considerations to the framework of Kamb’s (1970
theory or just to sub-temperate basal sliding (Fowler,
1986). we conclude after Salamatin and Mazo (1984
that the relative input of uy into the ice transport in large

https://doi.org/10.3189/50260305500013227 Published online by Cambridge University Press

ice sheets is negligibly small and has the order of 1072 (the
scaled ratio). The only exceptions are the edge zones and
marginal ice streams which may also penetrate inland
and have an overall dynamic significance.

Finally, let us pass to the evaluation of the integral in
Equation (4). Following Lliboutry (1981), we represent
the exponental function p(7T') by an approximate power
relation

w(T) = po(1 =37, B> a. (5)
The apparent exponent [, estimated by Lliboutry.
adjusts ice rheology to non-isothermal conditions (1o the
temperature gradient in the ice-sheet thickness) and is
considered further as a tuning parameter. The typical
temperature 1V is herealier chosen as the mean basal
temperature in the central regions of the ice sheet. Hence,
being normalized by p" = p(T"), the dimensionless [actor
pto &= 1 for small r and may increase (or decrease) if the
basal temperature decreases (or increases) as r — (1)
the time-dependent radius of the ice-sheet area, 1y ~ 1.
The substitution of Equation (3) into Equation (4)
with g = 0 yields Equation (1) in the parametric form

fl—lﬂ

ol lr'?(r [t gp
r

o ror\u(3+2)lor

) +b, 0<r<rg. (6)

The latter formulation will be used in section 3 (o
deduce a model for simulating temporal variations of the
ice-sheet surface elevation in its central part. Possible
generalizations of Equation (6) and some additional
elfects, for example hedrock isostasy, are considered in
section 4.

2. SCALE ANALYSIS OF THE ICE-SHEET SURFACE
RESPONSE TO CLIMATIC PERTURBATIONS

The response of the ice-sheet surface to elimate changes is
not an immediate adjustment. Its reaction depends on
what sort of external influences have been encountered
and what their relative time-scales are.

The basal lavers of large ice sheets, such as the
Antarctic ice sheet in its present state, are at the melting
point or close to [usion (Budd and others, 1971 Salamatin
and others, 1982; Ritz, 1992). Due to this, most of the
shear deformation occurs in approximately constant
thermodynamic conditions. Non-stationary thermal el
fects will be discussed below. The influence ol possible
variability of the glacier margins (i.c. of ry in Equation
(6)) on its centre will be estimated and shown to be small
in the next section. So, the principal starting point here is
that the surface evolution of large ice sheets in accordance
with Equation (6) is mainly driven by mass-balance
changes, which approximately follow global atmospheric
temperature variation (Robin, 1977). In turn, the latter
fact means that the time-scales of the dominant climatic
forcing (variations of accumulation rate) correspond to
Milankovich eyeles and are the reciprocals of their
[requencies: wy; =2n/100, ws = 27/41, w3 = 27/23,
wy = 21/ 19 kyear .

Now. to predict quantitatively the behaviour of an ice
sheet in a changing climate, we have to estimate its own

28
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memory time-scale £, The similarity theory (Fowler and
Larson, 1978; Salamatin, 1979; Salamatin and Mazo,
1984) gives us t¥ ~ 1°/b° (see Equations (2) and (3)). An
appropriate choice of b’ has been discussed in detail by
Johannesson and others (1989). A glacier’s s lateral extent
was assumed to be controlled by ablation processes over
the terminus and b ~ [b(r")| was justified. In the case of a
large ice sheet, b is positive over the major part of the
surface. Therefore, the typical value b is represented by
the ice-accumulation rate in the central part of the ice
sheet 1978). This fact has been
demonstrated in test simu[atiom by galamatin and Mazo
(1980). For Antarctica, b ~ 5 cm year ' Drewry, 1983)
and in accordance with Equation (3) after Salamatin and
others (1982) [© ~ Kjpr? ~ 2500 m. Consequently, &
~ B0 kyear. Close, though somewhat smaller, estimates
of t° are valid for the Greenland ice sheet.

Thus, the dimensionless frequencies of Milankovich
climatic cycles ; = w;t®, =1, ... 4, in our case are of
the order of O(1) and can be considered neither as small
nor as large parameters, except maybe €23 and €2, whose

(Fowler and Larson,

magnitudes for Antarctica are about 10.

It should be emphasized that long-term changes in
climate with normalized frequencies ) < (; are simply
followed by the corresponding quasi-stationary states of
the glacier, whose memory time-scale is much shorter
than the time-scale of such perturbations. On the other
hand, if we deal with high-frequency climatic variations
and Q > 4, the model (6) becomes local (Ritz, 1989,
1992) with time-invariant ice-mass flows. The lead-order
terms in Equation (6) with the relative error magnitude of
O(Q™1) give

ol

=b—{b), ™
where the angle brackets () denote the constant
component of a certain characteristic, i.c. its mean value
averaged over the periods of the climatic cycles. Hence,
only the influence of the above-mentioned intermediate
spectrum represented in Equation (6) by Milankovich
climatic fluctuations has to be specially examined.

Computational experiments by Salamatin and Mazo
(1980) show that the model (7) is correct in general even
down to © ~ 3 for a uniform distribution of accumulation
(mass-balance) rate over the glacier surface. This does not
hold in Nature. In the case of the Antarctic ice sheet, for
instance, the maximum values of b are reached in a
comparatively narrow coastal zone (Drewry, 1983) and
can be 20-40 times higher than those in the interior parts
(see Salamatin and others, 1982). As a result, due to the
smaller ice thickness, the local time-scale of the transi-
tional dynamic processes within the glacier margins
becomes (see Equation (2)) almost two orders less than
the memory time-scale of the whole ice sheet. In
particular, the response of the marginal zones (with their
increased accumulation rates) to the Milankovich cycles
is practically instantancous. The latter conclusion was
fully confirmed in numerical tests by Salamatin and
Mazo (1980).

Thus, the primary task for modelling climatically
induced surface variations in the central regions of a large
ice sheet is to describe the dynamic interaction between its
quasi-stationary margins and the time-lagging interior.
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Influences of coastal, ice-shelf and sea-level changes are
taken into account by the time-dependent boundary
(grounding-line position): rg = 79(t).

3. CONSTRUCTION OF THE MODEL

Taking into account the above conclusions, let us
Then, using
= 0, we obtain

integrate Equation (6) with respect to 7.
the common boundary condition % L-_u

o1 a1 ol M£ f(b—*) d¢.  (8)

(u +2
ar ar r

It is important to note after Salamatin and Mazo
(1980) and Johannesson and others (1989) (or by direct
verification [rom Equation (8)) that the equilibrium
surface-elevation profile of a glacier is not affected much
by the spatial variation of the mass-balance rate.

Thus, limiting further considerations to the modelling
of comparatively small ice-sheet surface oscillations, we
first divide the glacial area into two parts: the central part
0 <7 <, and the marginal one r, < r <rg. Next, in
each of these regions we approximately substitute the
balance rate b by its spatially averaged values band b in
the central and terminal zones, respectively. Hereafter b
and b are considered to be functions of time ¢t and
represent a mean at fixed r, the same global mass balance
as b. In turn, 7, is determined to achieve the best mean-
square spatial fit to b. From the data collected by
Salamatin and others (1982) for East Antarctica, it is easy
to estimate 7, ~ 0.8-0.9. At the same time, being
normalized by the typical accumulation rate in the
central part of the ice sheet, the dimensionless value
b~ 1. As for b, it is much greater (about one order) than
b. This is exactly what makes the above-discussed
difference in the time-scales between the marginal and
central parts of a glacier and what we are going to use in
further considerations.

Within the marginal zone, the integration of Equation
(8), using the obvious boundary condition I|,_, =0,
leads to the following result:

2042

2042 " g
= (xa (8+2) f signa(po |¢‘|)'L‘ de, s SES g

where
foe(3-4) de+ [e(5-F) ae
¢ :

Let [ denote the mean surface elevation in the central
part of the ice sheet. In this domain, temporal variations
of the surface elevation are spatially uniform and, thus,
dl/dt may be substituted by dl/dt in the first integral of
the expression for ¢. Furthermore, the principal step is to
recognize that, due to the assumed non-dimensionaliza-
tion, Al/At ~ 1 (on Milankovich time-scales) over the
whole _ice sheet. Hence, it is small in comparison to the
large b and can be omitted in the second integral. The
latter approximation incorporates the guess about the
instantancous response of the terminal part to mass-
balance changes. Consequently, we come to the formula
determining the surface elevation I, at r = r.:

#(C) =
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li:"l 2(‘vf+ 2 [(/j 49 ,u”] / signo W’[ dg,
e dly -t s
é(¢) ~ 2C(b dt)+ 2 Y

Correspondingly, in the central region, instecad of
Equation (8), and assuming g =~ 1, we write approxi-
mately
alja-1 f)l 2 dl
A | H+ (bf-)r 00 # <y
ar a2 dt

The integration with respect to r gives
g 2ol ﬂ+2 o dift 'y, SEL atl
=17 +2xsi n( ——)(—) ‘b T =P
ST AN ail ¢ )
Since [ is close to L., when r < 7., the expression for [ is
straightforwardly obtained by averaging the second term
in the righthand side of the latter equation:

s s . d\NR2a+2v/B+ 2\i-  dljE an
=" +si (I __)( )(¥ ’ _ﬁ‘ J
0 TRE dt/\3a + 1 2 ) ; atl "

(10)

The above simultaneous Equations (9) and (10) model
the surface variations [ and I, in the central part of an ice
sheet, taking into account its interaction with the margin.

To take the next step and deduce an approximate
equation determining [ explicitly, we simplify Equation
(9) and eliminate [, from Equation (10). With this aim,
we linearize ¢(¢) in Equation (9), assuming

TE -= di =
T(|+T*(b7&)+(cﬁr*)b’ re <( <.

Then, the evaluation of the integral in Equation (9) vields
2022 e atl : atl
L 2B+ DFab] (o — 1) [(14+ )T = |y |
(11)
where v is a small value and

2

= A

Furthermore, for large ice sheets, the spatial distribu-
tions of the mass-balance rate at different times seem to be
similar. Thus, il the space scale ¥ in Equations (2) and
(3) is chosen so that {ry) = 1, then

T RS TG0 )
Let us also note that ice accumulation prevails in the
surface mass bhalance of large ice sheets, and in addition
precipitation is mainly and uniformly controlled by
temperature variation (Robin, 1977). Hence, in accor-
dance with Ritz (1989, 1992), the following relation
approximately holds:

o
el = all]
e,
o~
ol E=al
=

Using the latter assumptions and substituting Equation
20+2
(11) for l( Gl Equation (10}, we arrive at a non-

https://doi.org/10.3189/50260305500013227 Published online by Cambridge University Press

linear ordinary differential equation of the first order for [:

O o1 ) [0 - ]

[ (- ) ()

a0

To

Equation (12) can be converted into the form of
Equation (7). To do this, let us introduce the average

surface elevation (I} as a stationary solution of Equation
(12) at 7y = {rp}) = 1 and b = (b). Hence,

= 2(1 = (r)) (14 @)F - 7]

2042

@

Furthermore, replacing approximately r with () in
Equation (12), subtracting Equation (13) from Equation
(12), and expressing di/dt, we finally obtain

dl
dt—b—sngn‘l’liﬂ (14)
= D 2043 U
U= @)+ [( ) — } — [ @ — ()]
T
where

a4l

W[ f1=(r) @
) K (v +{1+<n>)<3>)

a+l
(1+ (rs)) (b)

It should be emphasized here that the introduced
parameters v and 7, have a clear physical meaning. The
first one is responsible for the feed-back between changed
interior elavation [ (reciprocally coupled with the lateral
ice-sheet extent ry) and the rate of its growth. The second

controls the hydrodynamic interaction (time lagging)
between the central region of the ice sheet and its active

I
o
=
+
—

o

b

=l

=
<

quasi-stationary coastal zone in the glacier response to
changed lateral accumulation rates (mass balance). The
influence of marginal effects such as changes in sea level,
grounding of large ice shelves and so on is prescribed by
corresponding variations of rg.

Equation (14) generalizes Equation (7). The latter

31
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one follows from Equation (14) at high-frequency
oscillations of b. when (?)2/1'“ is close to (Z)l and at
ba~b, when (r.) = 1 and vy — 0.

[t also seems true that {luctuations in the ice-sheet
radius rg. being controlled and restricted by sea level, are
comparatively small and can_be correlated with varia-
tions in the mass-balance rate b in the marginal zone (i.e.
with b) or with the ice thickness [. Writing, for instance,
such a relationship as

E il
ro=1 I f(—l))"%,(bl ;
{b)*

where € is a small parameter, we come 1o a certain e-order
correction of the coeflicient 7, in Equation (14) with
ro = 1. The same is evident with respect to the other
coellicient 7;. This does not lead to any loss of generality,
since Equation (14) is originally approximate. Therefore,
it is relevant (if rg is not simulated simultancously) to put
rg = 1 in Equation (14), considering the [actors v and v,
as tuning parameters and using the above formulas as
their plausible estimations.

4, DISCUSSION. COMPARISON WITH
TWO-DIMENSIONAL PREDICTIONS

Now, we are going to present results of a computational
test of Equation (14) and a comparison with the general
two-dimensional predictions by Ritz (1992]. But, first, let
us discuss some possible modifications of model (14).

[t is evident that the above identification of the ice-
sheet thickness | in Equations (1) and (4) with the surface

elevation F is not limiting and quasi-stationary effects of

the bed isostasy can also be considered. Actually, we are
studying relatively long-term variations of the glacier
surface with the time-scale 1 which is much larger than
the relaxation time t; of deformational response of the
underlying rock to changing loads: " is shown to be of the
order of 20-50kyears, whilst in accordance with the
review paper by Le Meur and Huybrechts (1996) ¢; is
estimated as 3kyears. Hence, at least in the central
regions, the ice-sheet bedrock interface is close to the
hydrostatic equilibrium and E can be directly expressed
via [

B & K, Ki=1— p:) 05 (15)

where p, is the density of rock.

As a result, replacing d1/0r in Equation (6) with the
surface-elevation gradient 9E/Or and using Fquation
(15), we eventually come to a correction of the coeflicient
~; in Equations (14) by the isostasy factor K.

Next. it should be remembered that the space scale [
in the vertical direction is defined by Equations (2) and
(%), i.e. " = K,r". Bud, il we choose another independent
tvpical magnitude of the ice-sheet thickness LY m
Equation (6) for normalization (assuming, for instance,
LY is its present-day value at a certain location) then the
principal Equation (14) remains unchanged. The only
exception is the value 5 which should additionally be
divided by I\',(Z”er”. By =1 L0,

Thus, introducing the accumulation-rate enhance-
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ment factor
K; = (b)/ )

and substituting [ for I, we finally rewrite Equations (14)
in the local form
dlil - o ,
—:bgsiguilll‘lll : (16)
dt
=<} 143 2042 =1 s L
U = B+ - ) - u[® - B

where
, 8o+ 1 9 g el
i fI\:(m) (H+ 2) (K (u)) 1

— 1

(2mg)" 3 + 1 C1—(r,)
= = I )

L ( a+ 1 ) .

W) )
(ro) 14

(ro) }°
L+ ()

- K,

It is important that still only two dimensionless
parameters 7y, and 7y account for the ice-sheet thickness
variations in the glacier centre. Moreover, if the basal-layer
temperature changes in time, this will induce correspond-
ing temporal perturbations of 7, Ty, and probably 3, and
as a consequence, again will manifest itself through v, and
~1. Henee, the latter coeflicients can also be used to describe
and to simulate the influence of non-stationary thermal
effects on glacier motion. Specific conditions of the ice-
sheet dynamics along a certain flowline can also be taken
into consideration in Equation (16).

In application to central Antarctica, Vostok Station is
one of the sites of primary scientific interest. So, we
concentrate further on the solution of Equation (16) with
regard to palacoreconstructions in this region. The Antarc-
tic ice-sheet dynamics along the flowline “Ridge B-Vostok-
Byrd Glacier” were studied thoroughly by Ritz (1992) on
the basis of a general thermomechanical model. Three-
dimensional effects, such as the deformation of the ice in a
transverse direction, were taken into account by introdu-
cing the relative width of the flow tube (the flowlines’
divergence). A comparison with the general predictions
allows validation of the above simplified model (16).

With this aim, let us estimate the tuning parameters 7y,
and ~;. Herealter, the space and mass-balance scales IR
and B are designated as the present-day ice-sheet
thickness (in ice equivalent) at Vostok and the mean
present-day accumulation rate in the central part of the
Vostok sector. After Kapitsa and Sorokhtin (1963, we
take

L" =~ 3690 m .

A plausible value of B can be deduced on the basis of
general information (Drewry, 1983) and on detailed
estimations ol the spatial variations ol the accumulation
rate along the Vostok flowline (Ritz, 1992; Jouzel and
othexrs; 1993):

W = 3emyear™!
Simultancously, it becomes evident that

(r,) = 0.85,

Ky=~=5.
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The isostasy factor K; at p; = 920kgm °
2700 kg m

and p, =
is equal to

I, = 0.66 .
For East Antarctica, in accordance with Salamatin
and others (1982, we get

and from Equation (3) it follows that 1Y = 2100m (i.e.
Kn~16x 107 at u° =3.7 x 1073 MPa® year and 7" =
1300 km). Hence,

K= 0.57.

The bedrock rise upstream from Vostok Station may
result in somewhat colder conditions at the bottom in the
central regions than in the coastal area (see also Ritz,
1992). Thus, the expected value of [ is less than 1, and
we assume 1t 1s given by

Tiy =~ 0.5.

The exponent 3 in Equation (5) was calculated after

Lliboutry (1981) by Ritz (1989, 1992):

A~=10-11.

Finally, we come to the following basic estimates of the

tuning parameters:
¥y = 0.56 y & 268

The next step is to set the temporal relative variations
of the ice-accumulation rate b. In accordance with Robin
(1977). precipitation is correlated to the water-vapour
equilibrium pressure at the top of the inversion layer and,
consequently, to the condensation (inversion) tempera-
ture in clouds. Thus, the mass-balance oscillations in the
past can be deduced from the Vostok ice-core isotopic
temperature record (Lorius and others, 1985; Jouzel and
others, 1993). The corresponding computational proce-
dure was elaborated and described by Ritz (1989, 1992).
Here we use the final result of such a reconstruction,
plotted in Figure la for the Vostok chronology developed
1994) on the
borehole temperature profile. It is close 1o the Extended
(BEGT)
1993) but it gives the ice age 10 20kyears yvounger for
depths below 1900m (after 130 kvearsBP). The mean
relative accumulation rate is determined as (b) = 0.72.
Spatial changes of accumulation rate (its upstream

by Salamatin and others basis ol the

Glaciological Time-scale (Jouzel and others,

icrease along the Vostok flowline) are taken into account
by the choice of B as 3emyear ', Even in the case of
doubt ol the validity of the above reconstruction, it still
could be used as a plausible example of climatic
perturbations [or model tests.

A comparison ol various approaches to simulating the
ice-sheet-thickness changes in the vicinity ol Vostok
Station is shown in Figure 1b. All computations were
undertaken for the range of dimensionless time ¢ (rom

1.63 to 0, i.e. from 200 kyears BP to the present time. The
solid line (curve 1) is taken from Ritz (1992) and presents
the predictons ol the general thermomechanical model.
The surface-clevation {luctuations were recalculated to
the glacier-thickness values using Equation (15). The thin
line [curve 2) corresponds to the simplified model (16
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Fig. 1. a. Past vaviations in the mean accumulation rate
(b) in central Antarctica deduced from the Vostok isotopic
temperature record and used n model computations ( the
present-day mean value b° = 3 cmyear " and the relative
time-averaged value < b >=0.72). b. Comparison of
diffevent palaeoclimatic predictions of the Antarctic ice-
sheet-thickness fluctuations (1) in the vicinity of the Vostok
Station: (1) general thermomechanical model by Rit:
(1992): (2) simplified model ( Equation (16) ), basic
variant with vy = 0.56, v, = 2.53 (b =3 cim year h):
(3) high-frequency limit, Equation (7) (0" = 2.4cm
year ') (4 and 3) sensitivity tests of the simplified model
at’ 1 =056, v =0 and 3 =0, =253, respec-
twely. The righthandside scales corvespond to the relative
thickness (b)

accumulation rate (a) and ice-sheel

novmalized by b and LY, respectively.

with 7, and 4 given above. The initial value of [ is
assumed to be equal to () which, in turn, is iteratively
computed so as to reach the present-day ice thickness at
t =20, ie {(t=0)=1. An evident similarity and good
agreement of the two curves convincingly justifies the
assumptions which were involved in deriving Equations
I4) and (16). The secondary discrepancies can be
different EGT
Jouzel and others, 1993) and by a slichtly diflerent
1992) as

well as by non-isothermal effects. In any case. Equation

explained by the somewhat time-scale

accumulation-rate parameterization of Riwz

16) 1s approximate; the two models are not identical and
this comparison is not aimed at fitting their predictions.
Furthermore, in order to highlieht the value of
16) as a uselul and predictive instrument, we

Q

also show by a dotted line (curve 3

Equation
in Figure b the ice-
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thickness variations which correspond to Equation (7),
i.e. to Equation (16) in the high-frequency approximation
with y, = 97 = 0. Curve 3 is a result of computations for a
plausible estimate (Lorius and others, 1985) of the local
present-day accumulation at Vostok Station: 8" =2.4cm
yeax"‘. Despite the comparable swings of the oscillations,
curves 2 and 3 are not similar and the significance of the
feed-back (of the coeflicient 7;) between the ice-sheet
elevation (thickness) and the rate of its growth (or decay),
neglected in Equation (7), becomes evident. The higher
the surface, the larger is the rate of the ice-mass transport
from the interior of the ice sheet to its margins which
counterbalances the increase in accumulation rate. The
same effect is clearly observed in the basic case (b’ =3 em
year l, ~, = 0.56) when v = 0 which is shown hy the dot-
dashed line (curve 4) in Figure 1b.

The coeflicient 7, accounts for the interaction of the
central part of the ice sheet with its quasi-stationary
terminal zone, Ice thickness at the edge of the glacier
instantaneously responds to climate changes. Thus, the
increase (decrease) in mass balance results in higher
(lower) margins and dams (unlocks) the interior. The
dashed line (curve 5) in Figure 1b, computed at y, =0
and v = 2.53, illustrates the importance of this interac-
tion, which definitely enhances the amplitudes of
fluctuations of the ice-sheet thickness (surface elevation)
in the central region.

5. CONCLUSION

The hydrodynamic interaction between a time-lagging
low-accumulation-rate interior of a large ice sheet and its
active quasi-stationary coastal zone is shown to have two
time-scales which control palaeoclimatic variations of the
ice thickness. Practically instantaneous adjustment of the
margins to changes in mass balance accordingly dams or
unlocks the ice-mass flow from the central part of the ice
sheet and amplifies the fluctuations of its surface
elevation. Another significant factor in the process of
the climatic response of the ice sheet is the feed-back
between the interior surface elevation and the rate of its
growth (decay) caused by the increase (decrease) in local
precipitation. This eflect counterbalances changes in
accumulation rate and ice-sheet elevation. As a primary
result, the simplified differential model of ice-sheet surface
evolution with two tuning parameters accounting for
these mechanisms has been deduced and verified through
intercomparison with a general two-dimensional model.
All computational tests have been undertaken and
applied to the Vostok sector of Antarctica. Quantitative-
ly, the highest values of the ice-sheet thickness at the
Vostok site, 20-50m greater than the present-day level,
occurred during the last interglacial, while the lowest ones
correspond to glacial periods and are 120-150 m less.
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