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Breaking spatial symmetry is an essential requirement for phoretic active particles to
swim at low Reynolds number. This fundamental prerequisite for swimming at the
micro scale is fulfilled either by chemical patterning of the surface of active particles
or alternatively by exploiting geometrical asymmetries to induce chemical gradients and
achieve self-propulsion. In the present paper, a far-field analytical model is employed to
quantify the leading-order contribution to the induced phoretic velocity of a chemically
homogeneous isotropic active colloid near a finite-sized disk of circular shape resting
on an interface separating two immiscible viscous incompressible Newtonian fluids. To
this aim, the solution of the phoretic problem is formulated as a mixed-boundary-value
problem that is subsequently transformed into a system of dual integral equations on the
inner and outer domains. Depending on the ratio of different involved viscosities and solute
solubilities, the sign of phoretic mobility and chemical activity, as well as the ratio of
particle—interface distance to the radius of the disk, the isotropic active particle is found to
be repelled from the interface, be attracted to it, or reach a stable hovering state and remain
immobile near the interface. Our results may prove useful in controlling and guiding the
motion of self-propelled phoretic active particles near aqueous interfaces.
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1. Introduction

The emerging field of active soft matter physics has gained considerable attention in
the biophysics and bioengineering communities recently (Lauga & Powers 2009; Elgeti,
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Winkler & Gompper 2015; Bechinger et al. 2016; Gompper et al. 2020). Over the past
few years, there has been a mounting research interest in designing and developing
self-propelling microswimmers as they are set forth as model systems for understanding
the fundamentals of out-of-equilibrium phenomena in physiology and cellular biology.
Synthetic man-made self-propelled active swimmers are capable of propelling themselves
autonomously through a liquid by converting the energy extracted from their surrounding
host environment into useful mechanical work. They are thought to hold great promise
for future biomedical and clinical applications such as drug delivery, biopsy, precision
nanosurgery, diagnostic histopathology, and transport of curative substances to tumour
cells and inflammation sites (Gao & Wang 2014). Suspensions of active components have
been shown to lead to the emergence of a wealth of intriguing collective phenomena and
fascinating spatiotemporal patterns. Prime examples include the motility-induced phase
separation (Tailleur & Cates 2008; Speck et al. 2014), propagating density waves and
swarms (Grégoire & Chaté 2004; Menzel 2012), and the emergence of active meso-scale
turbulence (Wensink ef al. 2012; Dunkel et al. 2013; Doostmohammadi et al. 2018).

Phoretic self-propulsion is a well-established mechanism of choice in active matter
research (Illien, Golestanian & Sen 2017). Unlike most of the remotely actuated swimmers
that rely fully on an external field to propel themselves through aqueous media (Dreyfus
et al. 2005; Wang et al. 2014; Han, Shields IV & Velev 2018; Driscoll & Delmotte 2019),
self-phoretic swimmers stand apart since they can achieve intrinsic self-propulsion solely
by exploiting local physico-chemical interactions with the surrounding fluid medium,
while inherently fulfilling the force- and torque-free constraints required for swimming
at the micron scale (Golestanian, Liverpool & Ajdari 2005, 2007). Phoretic active
colloids can be set to motion through an effective slip velocity resulting from local
concentration gradients induced via surface chemical reactions (Sharifi-Mood, Koplik
& Maldarelli 2013; Michelin & Lauga 2014; Ibrahim, Golestanian & Liverpool 2017).
Various theoretical works have been devoted to uncovering the effect of particle shape
(Popescu et al. 2010; Nourhani & Lammert 2016; Michelin & Lauga 2017; Ibrahim,
Golestanian & Liverpool 2018) and geometric confinement (Uspal e al. 2016; Mozaffari
et al. 2016; Choudhary et al. 2021) on the behaviour and dynamics of self-phoretic
particles. The collective behaviour of multiple phoretic particles has been studied in a
number of different contexts (Golestanian 2012; Gelimson et al. 2016; Saha, Ramaswamy
& Golestanian 2019).

Breaking the spatial symmetry is a main prerequisite to achieve phoretic self-propulsion
at the low Reynolds numbers (Golestanian et al. 2005). From an experimental standpoint,
the most commonly followed approach to fulfil this physical requirement consists of
chemically patterning the surface of active colloidal particles (Howse et al. 2007; Walther
& Miiller 2013; Ebbens et al. 2014; Das et al. 2015; Simmchen et al. 2016; Ebbens &
Gregory 2018; Zhou et al. 2019; Campbell et al. 2019; Popescu 2020). An alternative
route to accomplishing self-phoretic locomotion without the need for micro-patterning is
based on exploiting geometrical asymmetries to induce chemical gradients (Michelin &
Lauga 2015). Indeed, isotropic self-phoretic particles can swim by means of phoretic and
hydrodynamic interactions with other inert (non-motile) particles by forming dynamical
clusters of anisotropic geometry (Soto & Golestanian 2014; Varma, Montenegro-Johnson
& Michelin 2018; Agudo-Canalejo & Golestanian 2019; Nasouri & Golestanian 2020).
Meanwhile, Lisicki, Michelin & Lauga (2016) demonstrated that internal phoretic flows
can be induced solely by geometric asymmetries of chemically homogeneous surfaces.

In the present contribution, we employ a far-field approach to examine the
diffusiophoretic motion of an isotropic active colloidal particle of spherical shape
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positioned near a finite-sized disk resting on a planar interface separating two immiscible
fluid media. Even though several previous studies have examined in great detail the case
of diffusiophoresis near a no-slip wall or a fluid—fluid interface of infinite extent, to the
best of our knowledge, none of these works has addressed the question of how finite-size
effects could alter the swimming dynamics of active colloids near confining boundaries.
In a large variety of biologically relevant applications, accounting for finite-sized effects
is of crucial importance to achieve a reliable and accurate description of different
transport mechanisms at the micron scale. The present contribution is a first step towards
characterizing such finite-size effects, paving the way for future theoretical investigations.

Here, we consider the situation in which the system preserves its axial symmetry.
Despite its apparent simplicity, we will show that the point-particle approximation
employed throughout this work, which has been used widely in the context of particle
motion under confinement (Spagnolie & Lauga 2012), has again proven to capture the
system behaviour in a surprisingly accurate way. More elaborate analytical models that
describe the behaviour of a truly extended particle of finite size could be the subject of
future works in this topic.

We formulate the phoretic problem as a classical mixed-boundary-value problem, which
we subsequently transform into a system of dual integral equations on the inner and outer
domain boundaries. We perform an explicit calculation of the hydrodynamic flow field by
making use of the Lorentz reciprocal theorem in fluid mechanics (Masoud & Stone 2019)
to yield an analytical expression of the induced phoretic velocity normal to the interface.
Moreover, we compare favourably our analytical predictions with fully resolved numerical
boundary integral solutions. More importantly, we find that the active particle can be
repelled from or attracted to the interface depending on the particle—interface distance
relative to the disk size, the ratios of fluid viscosities, and solubilities of species in the
two media bounded by the interface, in addition to the sign of the phoretic mobility and
chemical activity. Consequently, the self-phoretic swimming behaviour can be controlled
by tuning the physical and geometrical properties of the system adequately.

2. Problem formulation

We examine the axisymmetric motion of a spherical active colloidal particle near a thin
impermeable circular disk, resting on a flat fluid—fluid interface. The interface extends
infinitely in the plane z = 0. The active particle is coated with a catalyst that promotes a
chemical reaction converting fuel molecules to products. We denote by the subscript + the
parameters and variables in the upper fluid domain above the interface, for which z > 0,
and by the subscript — the parameters and variables in the region occupied by the fluid
underneath the interface, for which z < 0. Here, we consider a general situation in which
the interface separates two immiscible fluids with different properties such as alkane/water
interfaces. We assume that the fluids in both domains are Newtonian and incompressible,
with uniform dynamic viscosities 174. An infinitely-thin disk of radius R is positioned
within the plane z = 0 separating the two immiscible fluids. In addition, we suppose that
the disk is chemically inert and is rigidly anchored at the interface. Accordingly, the disk
remains motionless. The active particle of radius a is immersed fully in the upper fluid
medium at position /4 on the symmetry axis of the disk. We denote by D the diffusion
coefficients of the fuel molecules in each fluid compartment; see Figure 1 for a schematic
illustration of the system under investigation. In the following, we employ a far-field
approach to describe the induced hydrodynamic and concentration fields. We note that
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Figure 1. Schematic illustration of the system set-up. An active isotropic particle of radius a is located at
position / on the axis of an impermeable no-slip disk of radius R. The disk is embedded in an interface between
two mutually immiscible fluids with dynamic viscosities n4+. We denote by D the diffusion coefficient of the
chemical, and by ¢%° the equilibrium far-field concentration of the solute in each fluid domain.

the effect of thermal noise as well as number fluctuations in the chemical field have been
ignored throughout our calculations (Golestanian 2009).

2.1. Equations for the concentration field

We suppose that the surface of the active particle emits or absorbs the solute with a uniform
flux density Q such that

-D, —~ =0, (2.1)
r=a
wherein Q can be positive or negative depending on whether the catalytic reaction is
associated with a production (emission) or annihilation (absorption) of the solute.

At low Péclet numbers, the advection of the solute by the flow is negligible in relation
to diffusion. Under these conditions, the evaluation of the solute distribution can be
decoupled from that of the fluid flow. Accordingly, the stationary concentrations in the
upper and lower domains are described by the Laplace equation

VZei(r) = 0. (2.2)

Equation (2.2) is subject to the boundary conditions of fixed concentration ¢3° far away
from the active particle as |r| — 00. The surface of the finite-sized disk imposes a no-flux
boundary condition

oc+
— =0 (p<R. (2.3)
0z z=0
Outside the disk, the fluid—fluid interface requires a continuous chemical flux,
0 dc_
p, Xt _p %= (p > R). (2.4)
9z dz z=0
We define the dimensionless number
D_
1===I 2.5)
D+ 1’]_

assuming that the Stokes—Einstein relation is valid for diffusion in both domains.
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In addition, we allow different solubilities of the chemical in the two liquid media
(Dominguez et al. 2016; Malgaretti & Harting 2021), leading to a discontinuity in
concentration at the interface

tey=c_ley (p>R). (2.6)

where ¢ is the partition constant. In an unperturbed fluid, it determines the ratio between
equilibrium concentrations as £ = ¢ /c%.

Equation (2.6) describes the discontinuity at the interface of the concentration field of
the solute as a result of the difference in solubilities of species (Malgaretti, Popescu &
Dietrich 2018). Accordingly, we consider that the role of the interface is simply to permit
a jump in the concentration field as a result of their distinct solvation energies.

2.2. Phoretic propulsion

We consider the frequently employed assumption of a short-range potential between the
particle and solute molecules such that mutual interactions are limited to a thin boundary
layer surrounding the active particle (Golestanian et al. 2005, 2007). Accordingly, the
slip velocity at the surface of the active colloid, Sp, can be obtained from the tangential
gradient of the concentration field as

vs = MV\|C+|SP , (2.7

with w denoting the phoretic mobility that is defined from the profile of the
local interaction potential between the particle and solute molecules. In addition,
Vi) = (r~19() /00) ey stands for the tangential gradient along the surface of the sphere.

3. Solution for the concentration field

In the far-field limit, the active particle can be approximated conveniently as a point source.
We express the solution of the Laplace equations for the concentration field in both fluid
domains as a sum of a direct contribution C and the contributions of the boundary or the
flux across the boundary c7 :

cr=c+CHcl, o=+t (3.1a,b)

Here, C is the solution of (2.2) in an unbounded fluid medium subject to the constant flux
boundary condition at the surface of the active particle stated by (2.1). Specifically,

“12
C(p,z):[((,o2+(z—h)2> vz 3.2)

where we have defined the length scale K = a*Q/Dy..

In addition, c¢% are the complementary (also often referred to as the image) solutions
that are required to satisfy the boundary conditions prescribed at the fluid—fluid interface
as well as at the surface of the finite-sized disk. Being harmonic functions, we express the
image solutions in terms of Fourier—Bessel integrals of the form

0,2 = /0 A(q) Jo(gp) e dg, (33)

with Jo denoting the zeroth-order Bessel function of the first kind. Moreover, the
wavenumber-dependent functions A4 (g) will be determined subsequently from the
underlying boundary conditions.
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3.1. Formulation of the dual integral equations

The equations for the inner problem (p < R) can be obtained readily by inserting (3.1a,b)
into (2.3), prescribing the no-flux boundary condition at the surface of the finite-sized
disk, to obtain

o aC
/0 qA+(q)Jo(gp)dg = —— (p <R), (3.4a)

9z z=0

/0 qA—(q)Jo(gp)dg =0 (p <R). (3.4b)

On the other hand, the equations for the outer problem (p > R) follow from applying
the boundary conditions imposed at the fluid—fluid interface given by (2.4) and (2.6):

o0 aC
/0 qg(AL(q) +21A_(9)) Jo(gp)dg = P (0 > R), (3.5a)
z=0
/0 (A_(g) — LA+ (@) To(gp)dg = €Cl._g (o > R). (3.55)

Equations (3.4) and (3.5) form a system of dual integral equations for Ai(g) on
the inner and outer domain boundaries. Analytical solutions of such types of integral
equations with Bessel function kernels can often be obtained by employing the theory
of Mellin transforms (Titchmarsh 1948; Tranter 1951). However, we choose to follow an
alternative strategy using the well-established solution approach described by Sneddon
(1960) and Copson (1961). In particular, we will show that the present system of dual
integral equations can be reduced eventually to classical Abel integral equations, amenable
to inversion in explicit form. We note that previously, this solution approach has been
utilised frequently to solve diverse flow problems involving finite-sized boundaries.
These include the determination of the viscous flow field induced by various types of
singularities acting near an elastic disk possessing shear and bending deformation modes
(Daddi-Moussa-Ider, Kaoui & Léwen 2019; Daddi-Moussa-Ider 2020), near a no-slip disk
(Kim 1983; Daddi-Moussa-Ider et al. 2020a, 2021), or between two coaxially positioned
rigid disks of the same size (Daddi-Moussa-Ider et al. 2020b; Daddi-Moussa-Ider 2022).
The present approach has also been employed to determine the electrostatic potential in a
circular plate capacitor with disks of different radii (Paffuti et al. 2016).

3.2. Solution of the dual integral equations
By combining the equations for the inner problem given by (3.4) and invoking (3.5a), it
follows that

22 (3.6)

applies for all values of p. Accordingly, the Hankel transform can be applied on both sides
of the equation to obtain

00 aC
/O qA(q) +1A_(q)Jo(gp)dg = —

z=0

Jo(gp) pdp, 3.7)
z=0

© 5C
Ai(g)+AA_(g) = / ’
0 Z

which, upon inserting the expression for C(p, z) given by (3.2), leads us to
AL(q) +1A_(q) = Ke™ 9", (3.8)
940 A12-6
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To satisfy the equations for the outer domain, we choose a solution of the integral form

R
A_(g) — LA (q) = tKe " +/ f@)sin(gr)dr (p > R), (3.9)
0
where we have defined the integral functions
o0 T
o, 1) = /0 Tnap)sin (gt +m > ) dg. (3.10)

for m, n € {0, 1}. It can be checked readily that (3.5b) is satisfied because £8 (p,t) = 0for
t <R < p (see (A1)in Appendix A.) Solving (3.8) and (3.9) for A+ (g) yields

Ar(q) = KA +aM(g), (3.11a)
A—(q) = KAz ™ — M(g), (3.11b)
where we have defined Ay = (1 — A0)/(1 4+ A€) and Ay = 2¢/(1 4+ AL). Moreover,
1 R
M(q) = Ty /0 £ () sin(qt) dt. (3.12)

Substituting the expressions for AL (¢g) given by (3.11) into either integral equation for the
inner problem given by (3.4) yields

Ao Kh

G O o

o0
/O qM(q) Jo(gp) dg =
To proceed further, we employ integration by parts to obtain

R R
/O qf () sin(gt) dl:(ﬂ(é])+/0 f'(#) cos(gr) dt, (3.14)

wherein ¢(g) = f(0) — f(R) cos(gR). Correspondingly, (3.13) can be expressed

R
/0 L0, 00 dr = G(p) (< R, (3.15)

where we have interchanged the order of integration with respect to ¢ and ¢, and defined
for convenience

2¢Kh
G(p) = NP —f(0) L(p, 0) +f(R) LY (p, B). (3.16)

(0? +h

It follows from (A 1) that E(l) (p,0) =1/pand L(p, R) = 0 (because p < R holds in the
inner domain). Then (3.15) simplifies to

//’ flndt 2¢Kh f(@)
0 (,02 . [2)1/2 (,02 + h2)3/2 0 .

Since f(0) is required to vanish for (3.17) to be defined at p = 0, the resulting equation
for f(¢) reduces to a classical Abel integral equation. The latter represents a special form of

the Volterra equation of the first kind possessing a weakly singular kernel (Carleman 1921;
Smithies 1958; Anderssen, De Hoog & Lukas 1980). It admits a unique solution if and
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only if the radial function on the right-hand side is a continuously differentiable function
(Carleman 1922; Tamarkin 1930; Whittaker & Watson 1996). Its solution is obtained as

== & (3.18)
w2+ h )
By inserting the latter expression for f(¢) into (3.12), we obtain
M(q) = A K/R 2 1sin(a0) . (3.19)
D=0 0o T E+h '

In particular, in the limit R — oo corresponding to an infinitely extended impermeable
wall, we get M(q) = A,Ke 9", leading to A4 (g) = Ke~9" and A_(g) = 0.

Finally, by inserting the expression for M(gq) into (3.11) and substituting the resulting
expressions of A4 (g) into (3.3), the solutions for the concentration field are obtained as

ci(p,2)=A1C(p, —2) + A¢(p, 2), (3.20a)
ct(p,2) = A2 C(p, +2) — E(p, 2). (3.20b)

The first term in each expression is a simple image C(p, £z) that describes the effect of the
fluid—fluid interface. The second term, ¢(p, z), can be interpreted as the field induced by
an effective source dipole distribution in the boundary that compensates the flux across
the interface, such that the superposition of both terms obeys the zero-flux boundary
condition. Here, the contribution resulting from the presence of the impermeable disk
can be written in the form of a definite integral as

R 9 tU(p,z, 1)
c(p.7) = MK | = =222 gy, 3.21
&p, 2) z/()n[2+h2 (3.21)
where we have defined
o0
Up,z,1) = / Jo(gp) sin(gr) e~ dg. (3.22)
0

We will show below that an analytical evaluation of the latter improper integral is
possible by invoking concepts from complex analysis. Using the substitution u = gp, we
obtain

U(p,z,0) = p ' Im {fmJo(u) e du} , (3.23)
0

with s = (|z| — if)/p. By recalling the Laplace transform of Jo (), which is given by (1 +
s2)~1/2 we obtain

U(p,z,t) =Im {(pz + (Iz] — it)z)_l/z} . (3.24)
Further, by evaluating the imaginary part, (3.24) can be expressed in the form
Ulp,z,1) = ((U-V) /2" U, (3.25)
where we have defined
U= ((p2 + 22+ — (2pt)2>1/2, V=p2+72 -7~ (3.26a,b)

In the special case R — oo, representing an infinitely extended impermeable wall,
the image solution ¢* (p, z) = C(p, —2), ¢* (p,2) = 0 is recovered by noting that (see
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Figure 2. Contour plots of the scaled concentration field around an active particle positioned at (@) h/R = 0.25

and (b) h/R = 1 on the axis of a finite-sized impermeable disk of radius R (shown in red) resting on a fluid—fluid
interface with viscosity ratio A = 1 and solubility ratio £ = 1.
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Appendix B for the proof)

*tUp,z, 1) T/, N\ —1/2
Pl == h . 327
/0 e > (7 + G+ 1?) (3.27)

Exemplary contour plots illustrating the lines of equal concentration, also sometimes
called isopleths, are shown in figure 2 for two different singularity positions above the
interface while keeping the viscosity and solubility ratios equal to 1. The presence of the
disk introduces an asymmetry in the form assumed by the lines of equal concentration
owing to the no-flux boundary condition imposed at the surface of the disk. Analogous
contour plots are shown in figure 3 upon varying the ratio of solubility between the two
media.

4. Phoretic velocity
Al low Reynolds numbers, the dynamics of the viscous Newtonian fluids in the two fluid
domains is governed by the steady Stokes equations (Kim & Karrila 2013)
V.vy =0, (4.1a)
—VpitniVioe =0, (4.1b)

where v denotes the flow velocity, and p1 denotes the pressure.

4.1. Lorentz reciprocal theorem

In lieu of solving directly the governing equations for fluid motion for the prescribed
boundary conditions, we follow an alternative route based on the Lorentz reciprocal
theorem (Stone & Samuel 1996; Happel & Brenner 2012). This approach has been used
extensively in the context of phoretic swimming to determine the propulsion velocity of
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Figure 3. Contour plots of the scaled concentration field around an active particle positioned at #/R = 0.5 for
A =1 and solubility ratios (a) £ = 0.1 and (b) £ = 10.
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chemically active colloids suspended in an unbounded fluid medium (Popescu, Uspal &
Dietrich 2016; Oshanin, Popescu & Dietrich 2017), close to a planar no-slip wall (Crowdy
2013; Uspal et al. 2015; Yariv 2016), and near a chemically patterned surface (Uspal et al.
2018; Popescu, Uspal & Dietrich 2017), or to compute the stresslet field induced by active
swimmers (Lauga & Michelin 2016). Further, the reciprocal theorem has been adapted to
describe the phoretic interaction of two active Janus particles (Sharifi-Mood, Mozaffari &
Cérdova-Figueroa 2016; Nasouri & Golestanian 2020), or to investigate the behaviour of
a self-propelled active particle in a complex fluid (Lauga 2014; Elfring 2017).

According to the reciprocal theorem, two distinct solutions of the Stokes equations
(v,0) and (v, 6) within the same fluid domain D bounded by a surface S are related

to each other via
/n-a-ﬁdS:/n-&-vdS, 4.2)
S S

with 7 denoting the unit vector normal to the surface S pointing into the fluid domain. In
the following, unhatted and hatted quantities will be used to refer to the flow properties in
the main and model (also sometimes called auxiliary and dual) problems, respectively.

The reciprocal theorem can be extended easily to multiple fluid domains with continuity
of velocity and stress at their interfaces. We will demonstrate in the following that the
underlying boundary conditions imply a vanishing contribution to the surface integral
over the fluid—fluid interface (Sellier & Pasol 2011). By decomposing the fluid domain
on both sides of the fluid—fluid interface, the reciprocal theorem in the upper domain is
expressed as

/ (v+-6+—ﬁ+-a+)-ndS+/ (v4-64—Vy-04)-€dS=0. (43)
Sp

N
In the lower fluid domain, the reciprocal theorem yields
/ (vo-6_—b_-0_)-e.dS=0, (4.4)
Sy
940 A12-10
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with &; denoting the surface of the fluid—fluid interface located at z = 0. Here, surface
integrals both at infinity and at the surface of the no-slip disk necessarily vanish because
the fluid velocities in both problems tend to zero there.

In both the main and model problems, the flow velocities at the fluid—fluid interface
satisfy the natural continuity vy = v_ in addition to the no-permeability boundary
conditions vy - e; = v_ - e; = 0. Moreover, the in-plane components of the traction vector
vanish at the interface such that e - (61 —d_) - e; =0, where ¢ L e;. Accordingly,
it follows that at the fluid-fluid interface, (v4 -6 —v_-6_)-e,=v4 - (64 —6_) -
e;=0and V404 —V_-0_)-e, =04 (04 —0_)-e,=0. Then, by subtracting
terms on both sides of (4.3) and (4.4), it can be shown readily that the surface integral at
the fluid—fluid interface vanishes. Consequentially, the reciprocal theorem takes precisely
a form analogous to that expressed for a colloidal particle in an unbounded fluid medium.

As a model problem, we consider the axisymmetric motion of a chemically inert
(passive) spherical particle dragged through the upper fluid with velocity 14 by a steady
externally applied force F=F e.. Correspondingly, ¥|s, = V is constant over the surface
of the particle and can thus be taken out of the surface integral. Further, because the
active particle is force-free, the resulting integral on the left-hand side of (4.2) vanishes
identically. At the surface of the active colloid, the fluid velocity can be decomposed as
v|ls, = V + vg, where V' = V e, stands for the net drift velocity of the active particle, and
the slip velocity vg is given by (2.7). Therefore, the translational phoretic velocity of the
chemically active particle can be obtained from

V-ﬁ':—u?g £+ Vjcyds, (4.5)
Sp

with f" = n -6 denoting the traction at the surface of a sphere in the model problem.
Defining the small parameter € = a/h, the surface traction is given up to O(e2) by
f' = (4na®)~'F. By employing the transformations p = rsiné and z = 4 + rcos 9, and
noting that e; - g = — sin 6, the induced phoretic velocity can be expressed eventually up
to O(e3) in terms of an integral over the polar angle as

m 1
V:—g/1§c+(r:a,§)d§, 4.6)

where we have used integration by parts and introduced the change of variable ¢ =
cos 0. Correspondingly, the induced phoretic velocity is given by the first moment of
concentration (Michelin, Lauga & Bartolo 2013).

It is worth noting that an analytical approach bypassing the need for solving explicitly
the Laplace equation to determine the phoretic speed has been proposed (Lammert, Crespi
& Nourhani 2016). The method permits determination of the induced phoretic speed for
an arbitrary distribution of surface activity, provided that the solution of the auxiliary
problem for a passive particle is known. However, to the best of our knowledge, the
solution to the auxiliary problem for a sphere translating near a no-slip disk embedded
in a planar interface separating two fluid media has not been derived so far, even in
the simplest point-particle limit. It would be of interest to probe the applicability and
pertinency in a subsequent work in which the solution of the auxiliary problem will be
derived systematically.

940 A12-11


https://doi.org/10.1017/jfm.2022.232

https://doi.org/10.1017/jfm.2022.232 Published online by Cambridge University Press

A. Daddi-Moussa-Ider, A. Vilfan and R. Golestanian

4.2. Leading-order contribution to the phoretic velocity

At this point, we have derived the solution of the diffusion equation for a point-source
singularity acting on the symmetry axis of a finite-sized disk resting on a fluid—fluid
interface. We will next make use of this solution to determine the induced phoretic velocity
of an active colloidal particle with isotropic surface activity. To calculate the leading-order
contribution, we restrict ourselves to the point-particle approximation, which is valid when
a << h.

The image solutions derived above and given by (3.20) satisfy exactly the boundary
conditions prescribed at the surface of the disk and at the fluid—fluid interface. However,
they disturb the constant flux condition imposed at the surface of the active particle. To
overcome this shortcoming, a series of images needs to be incorporated so as to satisfy
the boundary conditions in an alternative manner up to a desired accuracy. The next-order
contribution to the concentration field consists of an axisymmetric source dipole

9 N\-1/2

L=t (0 + =) " 7)
with

(13

A=—

ac*
im +,
2 (p.9)—(0,h) 0z

(4.8)

In this way, the boundary conditions are satisfied up to O(e>) at both the particle surface
and the interface. Specifically,

~ _ o 9Ccé€
c+:c++C+A1C+/lc+aa—2§(A1+/lA2F), (4.9a)
- . acé
c_:c_+A2C—c+a8—§A2(l+F), (4.90)
Z

where we have defined C(p, z) = C(p, —z). Furthermore, I" is obtained so as to fulfil the

constant flux boundary condition imposed at the surface of the active particle to O(e3). It
is given explicitly by

2 (Rh(R*—1h?) R
I =— —————5 tarctan | — . (4.10)
T (R2 + hZ) h
Then, by making use of (4.6) providing the induced phoretic velocity, we obtain
uQ  €? 11— 3
= — Al O(e”), 4.11
D, 110 ( R (S)) + 0(€”) (4.11)
wherein £ = h/R and
1 —
J@)=-—(§( é)+-arcta,n(s 5) (4.12)
T\ (14&2)°

is a monotonically decreasing function of & varying between 1/2 and 0. In the limit§ < 1,
we obtain

e 21— 16 3 5
V= 4D+ <1 i AAE ) +0(&). (4.13)

This result is valid in the far-field limit such that € < 1. In particular, we recover the
leading-order far-field contribution to the induced phoretic velocity in the limit of an
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Figure 4. Variation of the scaled induced phoretic velocity near a finite-sized disk resting on a fluid—fluid
interface as given by (4.11) versus the dimensionless number & = //R for various values of A¢. The horizontal
dashed line corresponds to the situation of an infinite wall such that ¢ — 0.

infinitely extended no-slip wall as obtained originally by Ibrahim & Liverpool (2015).
This result has later been generalised by Yariv (2016) for both remote and near-contact
configurations using a first-order kinetic model of solute absorption.

Figure 4 shows in a semi-logarithmic scale the evolution of the scaled phoretic velocity
as given by (4.11) as a function of & = h/R. Results are presented for six different values
of A = (ny/n-)/(c¥/c>) that span the most likely values for fluid—fluid interfaces to be
expected for a wide range of practical situations. The limiting case A¢ — 0 corresponds
to the situation of a liquid—solid interface where the solid phase acts as a stiff medium
(n— — o00) with vanishing solubility (¢ = 0). The case of a liquid—gas interface without
evaporation of the solute (active particle immersed in the liquid phase) would correspond
to 4> 1, yet A — 0 because of vanishing solubility. For instance, for an air—water
interface, it is estimated that 2 ~ 50 and ¢ ~ 1072-107! (Battino, Rettich & Tominaga
1983) such that A¢ ~ 0.5-5. For a liquid-liquid interface, such as water—decane, values of
the order A ~ 1 and £ ~ 1 are expected (Ju & Ho 1989).

The scaled velocity amounts to its maximum value as & — 0, and decreases
monotonically with £ to reach the value corresponding to a fluid—fluid interface given by
(1 —A0)/(1 + A¢€) in the limit §¢ — oo. The active particle is found to be repelled from the
interface or attracted to it, depending on the sign of the phoretic mobility u and the flux Q,
as well as the values of the dimensionless parameters A€ and &. Under some circumstances,
the particle remains in a stationary hovering state in which it acts as a micropump.

The phoretic speed keeps the same sign over the whole range of values of & when A¢ <
1. Correspondingly, the particle is repelled from the interface for ©Q > 0 and attracted for
1@ < 0. This behaviour is analogous to what has been reported earlier for diffusiophoresis
near an infinite no-slip wall (Ibrahim & Liverpool 2015; Yariv 2016). In contrast to that, the
induced speed can vanish eventually, and changes sign when A¢ > 1. By equating (4.11) to
zero and solving for &, we find that the phoretic velocity vanishes at a unique value & = &

940 A12-13


https://doi.org/10.1017/jfm.2022.232

https://doi.org/10.1017/jfm.2022.232 Published online by Cambridge University Press

A. Daddi-Moussa-Ider, A. Vilfan and R. Golestanian

2.0

10°

T/(420)

)

0 5 10 15 20
AL

Figure 5. Variation of &y defined by (4.14) corresponding to a vanishing induced phoretic velocity versus A¢.
The inset shows the scaling behaviour around A¢ — oo as given by (4.15).

given by the solution of

)
1 tan(3<1 . i) — M) ae > 1). (4.14)
£ 4 )  A+&)?

Accordingly, for A¢ > 1, the active particle is repelled from the interface if uQ(§ — &p) <
0 and attracted to it if nQ(& — &y) > 0.
For A¢ >> 1, we obtain the scaling relation

=1+ % A0~ + 0((10)72). (4.15)

In particular, it follows from (4.6) that the induced phoretic velocity near a fluid—fluid
interface is obtained as

e ) (4.16)
4Dy 14 AL

In many physically relevant situations of liquid—liquid interfaces, A€ remains of the order
of or less than 1, suggesting that the sign of the induced phoretic speed is determined
solely by the product ;£ Q as discussed above. In contrast to that, for gas—liquid interfaces,
A€ might under most circumstances exceed 1, so that that the sign of the phoretic mobility
is additionally dependent on the ratio &.

In figure 5 we present the variation of &y by solving numerically (4.14) using standard
computational techniques. We remark that &y approaches infinity asymptotically as A¢ —
1, and decreases monotonically before reaching a minimum value of 1 as A¢ — oo. The
linear scaling behaviour predicted by (4.15) is shown by using a log-log scale in the inset.

Up to now, we have obtained the leading-order contribution to the phoretic velocity
of an active isotropic colloid suspended near a circular disk of finite size settling on a
surface separating two fluids. A power series solution for the induced phoretic velocity
can in principle be obtained perturbatively by considering additional singular fields in the
concentration field. However, due to their complexity and the intricate form of the image
solution, accounting for additional singularities is rather delicate and laborious.
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Figure 6. Scaled induced phoretic velocity near an infinitely extended fluid—fluid interface (in the absence
of the disk) as a function of the dimensionless particle size € = a/h for two different values of A¢. Symbols
represent the exact results obtained using bipolar coordinates (Malgaretti er al. 2018), and solid lines indicate

the far-field solution derived in the present work given by (4.16). Here, the viscosity ratio between the two
media is £ = 1. The inset shows the relative percentage error, which is of the order o €.

Figure 6 shows a comparison of the scaled phoretic velocity near a fluid—fluid interface
as obtained by means of bipolar coordinates (symbols) reported recently by Malgaretti
et al. (2018) and the far-field expression given by (4.16). Results are plotted versus the
dimensionless ratio € of particle radius to distance from the interface for A = 0.2 (blue)
and A =5 (red), while the viscosity ratio is kept £ = 1. Good agreement is obtained
between the exact analytical solution and the simplistic far-field expression derived in
the present work. In particular, both approaches capture the same underlying physical
behaviour on whether the particle moves towards the interface or away from it. As shown
in the inset, the far-field approach leads to a relative percentage error smaller than 10 %
when € < 0.5. The error increases monotonically as the particle gets closer to the interface,
for € = 0.9 reaching approximately 20 % for A¢ = 5 and 40 % for A¢ = 0.2.

To validate our analytical approximation that is carried out in the limit of small sphere
sizes, € < 1, we solved the diffusion problem numerically for a wide range of sizes of a
truly extended sphere near a finite-sized no-slip disk resting on an interface between two
fluids. We solve the diffusion equation with an axisymmetric boundary element method
using the Green functions from BEMLIB (Pozrikidis 2002). We discretised the sphere,
the disk and the boundary with 800 collocation points each, and verified consistently that
halving the number of discretisation points led to errors < 1 %. For each set of parameters,
we evaluated the first moment of concentration that appears in (4.6). The results for the
scaled induced phoretic velocity are shown in figure 7 for the case A¢ = 1 and a range of
values for the dimensionless ratio & = h/R. Excellent agreement between analytical results
and boundary element calculations is found for small values of €. The relative errors are
below 3 % for € < 0.5 and grow monotonically as € increases, reaching approximately
30 % for € = 0.9; see inset of figure 7. On that account, the point-particle approximation
employed in the present work, despite its simplicity, shows its robustness in predicting the
overall behaviour of the system under investigation.

Finally, it is worth noting that due to the gradient of the chemical species at the interface,
the induced Marangoni stresses may drive a fluid flow, resulting in a hydrodynamic drift
that pushes the active colloid towards or away from the interface, depending on how the
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Figure 7. Scaled induced phoretic velocity near a finite-sized no-slip disk embedded in a fluid—fluid interface
separating two fluid media of the same dynamic viscosity and solubility such that ¢ = 1. Results are plotted
against the dimensionless ratio € = a/h for various values of dimensionless parameter £ = h/R. Symbols
represent the numerical results obtained using the boundary element method, and solid lines show the
approximate analytical solution derived in the present work given by (4.11).

activity is modified by surface tension (Dominguez et al. 2016). We now assume that that
the surface tension of the fluid—fluid interface depends linearly on the local concentration
of solute species via

y() =y —x(c(r=0,2) =), (4.17)

with yp denoting the equilibrium surface tension and « of dimension [M][L’[T]~2. On the
one hand, the hydrodynamic drift velocity resulting from Marangoni stresses is expected
to scale as Viarangoni ~ KQa2 /(Dnh) (Dominguez et al. 2016). On the other hand, the
self-induced phoretic velocity derived in the present work is Vpporesis ~ wQa? / (Dh?). By
assuming that k1/(un) < 1 so that Visarangoni K VPhoresis» the Marangoni effect becomes
subdominant to phoretic effects. The contribution to the drift velocity due to Marangoni
stresses could be quantified in terms of the system properties and is worth investigating in
a future work.

5. Conclusions

To summarise, we have presented a far-field analytical theory addressing the axisymmetric
autophoretic motion of an isotropic active particle suspended in a viscous Newtonian
fluid medium near a rigid disk embedded in a planar fluid—fluid interface. We have
formulated the solution for the concentration field induced by a point-source singularity
as a standard mixed-boundary-value problem, which we have then reduced to a classical
Abel integral equation amenable to analytical inversion. By making use of the Lorentz
reciprocal theorem, we have obtained an analytical expression for the leading-order
far-field contribution to the induced phoretic velocity, thereby elevating the need to solve
for the hydrodynamic flow field explicitly.

On the one hand, we have shown that for 4¢ < 1, the induced velocity normal to the
interface depends solely on the phoretic mobility and chemical activity, and is found
to be independent of the system geometrical properties. Specifically, the case uQ > 0
corresponds to repulsion from the interface, while uQ < 0 corresponds to attraction. On
the other hand, we have shown that for A¢ > 1, there exists a size ratio &y for which the
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active particle reaches a steady motionless hovering state above the interface. Beyond this
state, the active particle is found to be repelled from (attracted to) the interface, depending
on whether uQ(& — &) is negative (positive).

From an experimental standpoint, we believe that potentially, our theoretical predictions
could be verified in real-space experiments on active colloids. In the present work, we
focused our attention on the situation in which the disk is physically adhered to the
interface such that its motion is fully restricted. It is well known that at fluid—fluid
interfaces with very large surface tension, contact-line pinning typically constrains the
motion of embedded objects pronouncedly (Chisholm & Stebe 2021). With the possibility
of exploiting this effect, an experimental realisation of our set-up for a rigid disk resting
on an interface can be achieved. On the other hand, the isotropic active colloid is assumed
to be wholly immersed in one of the two fluids without establishing physical contact
with the interface. Under controlled experimental conditions, the self-induced swimming
velocity can then be measured and quantified in terms of the set-up geometry and the
chemophysical properties of the interface.

The present analytical developments are based on a far-field description of the phoretic
and hydrodynamic fields. They rely on the assumption that the active particle is small
relative to its distance from the interface. As a perspective, it would be of interest to assess
the appropriateness and accuracy of the point-particle approximation employed in this
work by direct comparison with a fully resolved numerical boundary integral equation
for the hydrodynamic field. In addition, it would be worthwhile to extend our analytical
approach to address the behaviour of an active Janus particle partially coated with a
catalytic cap promoting a chemical reaction on only a portion of its surface.

For an accurate representation of an extended active particle of finite radius,
higher-order reflections in the phoretic and hydrodynamic fields should be accounted
for further. This can be achieved by including additional singularities so as to satisfy
the boundary conditions imposed at the particle and at the interfaces iteratively using
the classical method of successive images. Also, an exact solution of the phoretic
and hydrodynamic problems can be obtained alternatively based on the eigensolution
expansion of the Laplace equation using the system of bipolar coordinates. These aspects
constitute an interesting extension of the present problem for future investigations.
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Appendix A. Expressions of integrals L7,

The (improper) integrals given by (3.10) in the main body of the paper are convergent and
can be evaluated analytically. It can be shown that for n = 0 (Abramowitz & Stegun 1972;
Gradshteyn & Ryzhik 2014),

Ot —p) O —1)

0 0
Ly(p, 1) = m, Li(p, 1) = m, (Ala,b)
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with @ (-) denoting Heaviside’s step function. Using the fact that J6 (x) = =J1(x) (where a
prime denotes a derivative with respect to the argument) together with the differentiation
and integration properties of trigonometric functions, it can be shown further that

tL%p, t 1—1L9%p, ¢
Cho.n= "1 o1y = L2 02D (A2a,b)
o o
Appendix B. Evaluation of the indefinite integral in (3.27)
In this appendix, we show using the residue theorem in complex analysis that
Oo T o2 2y—1/2
Im{/ f(z)dz} =@+ G+ 2, (B1)
0
where
@ =22+ AN + b —in?H) V2 (B2)

is a complex analytical function defined in the upper half-plane. In addition, (a, b, c¢) €

Ri. Since f(—z) = —f(z), where the bar denotes the complex conjugate, and Im{z} =
(z — 2)/(2i), it follows that

Im {/ f(2) dz} = l/ f(z)dz. (B3)
0 21 —0

To evaluate the improper integral on the right-hand side of (B3), we employ the usual
approach by choosing a closed integration contour y = y1 + y», with y; denoting the
linear path along the real axis in the interval [—R, R], and y» the circular path of radius R.
Accordingly,

f f@)dz=2in Y Res(f.z). (B4)
v

By setting z = Re'® with 6 = [0, ], it follows that dz = iRe!” df. Then the integral
along the circular path y» can be evaluated asymptotically as

f()dz=2R"'"+O0R?H — 0. (B5)

» R—o00

Thus the contour integration reduces to that along yj, leading when taking the limit
R — ocoto

/oo f(2) dz = 2imt Res(f, ic) = in(a® + (b + ¢)>) /2, (B6)

Equation (B1) results by combining (B3) and (B6).
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