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A NOTE ON THE GAUSSIAN CARDINAL-INTERPOLATION
OPERATOR

by N. SIVAKUMAR*

(Received 4th May 1995)

Suppose ). is a positive number, and let (p[f(x) := exp(—A||x||2), x e R', denote the d-dimensional Gaussian.
Basic theory of cardinal interpolation asserts the existence of a unique function x[?(x) = Hjez'CjV^ix ~J)<
x e R', satisfying the interpolatory conditions )/?{k) = <5O4, k e 7,', and decaying exponentially for
large argument. In particular, the Gaussian cardinal-interpolation operator C[f, given by (Clfy)(x) :=
T,lez' yjX^(.x - j), x e R', y = (yj))eZi, is a well-defined linear map from t2(Z') into L2(R*). It is
shown here that its associated operator-norm is [(H,6Zexp(-27:2/VA))/(£i£Zexp(-K2'2/-;-))2]''. implying,
in particular, that l2f} is contractive. Some sidelights are also presented.

Mathematics subject classification: 41A05.

1. Introduction

Suppose k is a positive constant, and let q>x denote the univariate Gaussian

<px{x):=e->*\ x e R . (1.1)

The symbol a, associated with the Gaussian is the even, continuous, 2?r-periodic
function defined by the equation

which, according to Poisson's summation formula, can also be written as follows:

-(u+2ltll)2/(4;.) , , r- r> /i "}\
, u c fv. \\.j)

keZ

The latter equation reveals that ox(ii) is positive for every real number u, so standard
cardinal-interpolation theory (see, for example, [10,4]) guarantees the existence of a
unique cardinal function

* For SDR - teacher and friend.
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138 N. SIVAKUMAR

keZ

where

••!-«

The cardinal function / , enjoys the interpolatory property

= Sn, fceZ, (1.6)

and decays exponentially at infinity. Two consequences of the exponential decay of x>.
are of moment to us: firstly, x>. is absolutely integrable on R, and has a Fourier
transform given by

Secondly, the linear operator

called the Gaussian cardinal-interpolation operator, is well defined as a map from
£2(Z) to L2(R). The primary objective of this note is to determine its norm

||A| | :=sup{| |Ay| |L 2 ( R ) : | |y | |< 2 ( Z )<l}. (1.9)

The symbol ax given by (1.2) is linked closely with Jacobi's Theta function

V , zeC\(0), qeC, \q\<\. (1.10)
fceZ

This connection between a, and the Theta function of (1.10) has been put to good
use in [1] and [2], and will be exploited here as well. Specifically, we shall rely on the
following product formula (see [11, Section 21.3], [3, Section 32]):

9(z)=nq)f\0+q2k+lz)(l+q2k+lz-ll z e C\{0}, T(q) := f[(l - q21). (1.11)

Impetus for the work reported in this article came from a reading of [8] and [5],
where the 2-norm of the cardinal-spline-interpolation operator was explicitly com-
puted. Detailed analysis of other p-norms of these spline-interpolation operators

https://doi.org/10.1017/S0013091500023506 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023506


A NOTE ON THE GAUSSIAN CARDINAL-INTERPOLATION OPERATOR 139

followed in [9] and [6,7], but we are yet to begin such general studies for the
Gaussian.

The paper is laid out in three sections, including the introduction. Section 2 describes
the main results (all univariate), and their multivariate analogues round out the final
section.

2. Main results: univariate

As stated in the introduction, our main goal in this section is to compute the 2-norm
(1.9) of the linear operator £, : £2(Z) -+ L2(R) defined by (1.8). The following result is
a first step towards that goal.

Theorem 2.1. The norm of C, is given by the equation

\\C)]\ = max H){x), (2.1)

where

Proof. The Parseval-Plancherel theorem and equation (1.8) provide the relations

'-<*> I jeZ
2

' ~ : + 2nk)\')dx,= (2ji)"' f IEy>e'iix f E \
whereas (1.7), the periodicity of a;, and (1.3) combine to give the equation

|£(x + 2nk)\2 = tf,(x), -n < x < n. (2.4)

The required result follows. •

Use of (1.3) in (2.2) leads to the identity

' x e [-". «]• (2-5)
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Since

| y e-(x+2>I(c)2/(4;.) j _ y ^ e-((x+2n/)2+(x+27it)2)/(4;.) > V ^

MeZ / j.keZ kzZj.keZ

we have the estimate

0 < H,(x) < 1, x e [-71,7t], A > 0; (2.8)

in particular,

|| £;. || < 1 for all k > 0. (2.8)

Thus C) is a contraction, and we contrast this with the case of the cardinal-spline-
interpolation operator, whose 2-norm is unity [8,5].

The uniform bound (2.8) notwithstanding, Theorem 2.1 is of limited interest unless
the maximum value of H; can be identified. Our main finding is that this maximum is
attained at x = 0, and this is the content of Theorem 2.4 (vide infra). Its proof will
require some preludial work which we take up first.

Remark 2.2. (i) If B > 2A > 0, then the quadratic polynomial At2 - Bt + A has
two real zeroes, one of which lies in the interval (0,1) and the other in the interval
(l.oo).

(ii) Let p,(t) := t4 - 2t3 - 2t2 - It + 1. Then Pl(t) > 1 - 2[(0.3)3 + (0.3)2 + (0.3)] > 0
for every t in the interval [0,0.3].

Lemma 2.3. Let r(t) be defined as follows:

d-t2)2-
^ ^ ) ' '/°<^0-3' (2.9)

0, if t = 0.

Then the following hold:
(i) r is well defined and continuous on the interval [0,0.3];

(ii) 0 < r(t) < 1 for every 0 < t < 0.3;
(iii) r increases monotonically with t in [0, 0.3];
(iv) r(l3) < tfor 0 < t < 0.1.

Proof. The first three statements are quite easy to verify, with the aid of Remark
2.2 and the fact that
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- t 2 ) 2 -
=

t2)2]

2t2(l
0 < t < 0 3

(iv) The assertion being clearly true for t — 0, we assume 0 < t < 0.1. Since

K0=:

we have

2t(l+t2)

t6)

/ 4t2(l + t 2 ) 2 ]

V (i - f2)4 J'1 - . 1 -

1 - . 1 -
t6)2

(1 - t«)«

(2.10)

(2.11)

4t6(l +t6)2

The function 11—*• —— —— increases on the interval [0, 1), so

4( 6 ( l+ t 6 ) 2 4840

(1 — O.I)4 6561
=: y0, 0 < r < 0.1. (2.12)

Consider the function <j>{y) := y/\ — y, 0 < y < y0, where y0 is the number defined in
(2.12). By the Mean Value Theorem,

1 - / I - y = 4>(0) - cj>{y) <
82 •

(2.13)

where the last inequality follows from observing that 1 — y0 > (41/81)2. Putting
4t6(l +16)2

and using (2.13) in (2.11) provides the inequality

81t3(l

2t\\ 41(1 -1 6 ) 2 '
(2.14)

and hence the estimate

<
t ~ 41(1 - t6)2 0 < t<0.1 . (2.15)

Q1 *2/i , ^6\

Since the function tt-^-rrr. TTT increases with t in [0, 1), we find from (2.15) that
41(1 -t6)2

41(1-(O.I)6)2 < 1, 0 < t < 0.1. (2.16)

•
With our preparations now completed, we proceed to the focal result, already

advertised prior to Remark 2.2.
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142 N. SIVAKUMAR

Theorem 2.4. Let H, be defined by (2.2) (equivalently, (2.5)). Then

max H)[x) = #,(0).
-n<x<n

Proof. Since H} is an even function, it suffices to consider the interval [0, n]. We
divide the proof into two cases: "large" A and "small" A.

Case I: Assume

A > - 2 log (0.3), and let q := e~x. (2.17)

Let H) be given by (2.2), and define H>{x) := v/(2A/7t)//A(x). It is enough to show that
the maximum value of H;(x) on the interval [0, n] is attained at x = 0. According to
(1.10) and (1.11),

[(1

1 cos x + q*k+2\2

<x<n. (2.18)

We shall show that each fk decreases on the interval [0, n]. Define

o.k:=q{2M)/2, and note that at < Jq < 0.3, k > 0, (2.19)

by (2.17). A straightforward computation shows that

0 < x < ; r . (2.20)

The denominator of (2.20) is bounded below by the positive quantity (1 — a2.)6, whilst
2afe sin x > 0 for 0 < x < it. Further, the remaining term in (2.20) satisfies the in-
equalities

1 - 2ak - 2(xl + <xl- 2z\cosx > 1 - 2at - 2aJ + o\ - 2a2. > 0, (2.21)

where the final bound obtains from Remark 2.2(ii), via (2.19). Thus fk\x) < 0 for
0 < x < n, that isfk decreases on [0, n].

Case II: Assume

0 < A < - 2 log (0.3) < 5/2, (2.22)
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where the last inequality stems from the following:

3 CM 3 f. 5 25 1251 1289
1280

> 1.

We use (2.5) to write

H,(x) =

where

q := e^"2'* > 0 and t := e-<**/;>.

The assumption that x belongs to the interval [0, n] is tantamount to

q < t < 1;

in addition, we also note that

because A < 5/2 and

T2 2;r4 18 1621 277 ,

Use of (1.10) and (1.11) in equation (2.24) yields

(\+q<Mt2)(\+q*k+2r2)

t _ e -

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

so it is sufficient to show that

9k(t)<gk0), q<t<\, k>0. (2.30)

Set

0<Pk:=q2k+\ and observe that Pk < 0Q = q < 0.1, k > 0. (2.31)
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An elementary, albeit somewhat tedious, computation leads to the expression

2/wt2 -1) too+p2y - (i - Pift+pk(\+PD)
(pkt2+(\+p2)t+pky

= . _ _ _ _ l i ^ W _ , 0 < t < l . (2.32)

Plainly

2 0 k ( t 2 - 1) < 0 < (Pkt
2+(\ + P l ) t + pkf f o r O < t < l . (2.33)

Moreover, by virtue of (2.27) and Remark 2.2, there exist positive numbers rk and rk

such that Pk(rk) = 0 = Pk(fk) and

0 < rk = r(Pk) < l < f k , (2.34)

where r is the function defined by equation (2.9). It follows that Pk is positive on the
interval [0, rk) and negative on (rk, 1]. This fact, taken in conjunction with (2.33) and
(2.32), proves that gk decreases on [0, rk] and increases on [rk, 1].

Now if k > 1, then Pk = q2k+l < q\ so from (2.27) and parts (iii) and (iv) of Lemma
2.3,

rk = r{Pk) < rtf) < q. (2.35)

Since gk increases on the interval [rk, 1], equation (2.35) ensures that

ff*(0 <&(!) . q<t<\, k>\. (2.36)

The foregoing argument fails for k = 0 because r0 = r{q) may exceed q. Nevertheless,
the general analysis (carried out in the last paragraph but one) still applies, allowing
the estimate

go(t) < m a x {go(q), g o ( \ ) ) , q < t < \ . (2.37)

But it is a simple matter to check that

-4q + 2q2 - 4q3 + \0q4 - 4q5 + 2q6 - Aq1 + q*
tfoO) - 2(\+qy(l+q2)2

1 - 4[(0.1) + (O.I)3 + (O.I)5 + (O.I)7]

2(1 + <j) (1 + q )

where the first inequality above is consequent upon the fact that 0 < q < 0.1. Ergo,

ffo(O<ffoO). <l<t<\, (2.38)
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A NOTE ON THE GAUSSIAN CARDINAL-INTERPOLATION OPERATOR 145

and the proof is complete. •

An immediate consequence of Theorems 2.1 and 2.4 is the following:

Corollary 2.5. Suppose £ ; is the linear operator defined by (1.8), and let | |£ ; || be
its norm defined via (1.9). Then

EexP(-2^y;o

Proof. Put x = 0 in (2.5). •

We close this section with a supplementary line of enquiry which was prompted by
some studies undertaken in [6,7]. Let W denote the Whittaker operator (or, perhaps
more properly, the Whittaker-Shannon-KotePnikov (WSK) operator - see [12, p. 4])
given by

- ^ , x e R, y = (><.kz e £2(Z). (2.40)

For every y e 12(Z), Wy can be realized as the L2-Fourier transform of the square-
integrable function

5 £ > / > , ueR, (2.41)

where / is the characteristic (indicator) function of the interval (—n, n). Therefore the
linear operator W maps 12(Z) into L2(R). Furthermore, from Parseval's theorem and
the Parseval-Plancherel theorem, one deduces that

IIyIIem Vy € £^Z)' in P a r t i c u l a r - II wII = ]• ( 2 4 2 )
Some connections between the cardinal-interpolation operators C, and the WSK

operator W will be brought out in the pair of results below (cf. [6, Theorems 3.3 and
3.4] and [7]):

Theorem 2.6. Let £, and W be the linear operators defined by (1.8) and (2.40),
respectively. The following hold:

(i) | | £ ; | - • ||W|| ask - * 0 + ;
(ii) l i n w || (£, - W)y || L2(R)= Ofor every y 6 l\Z).

Proof, (i) This follows from (2.39), (2.42), and the fact that l i m , ^ £ t £ Z e^"* = 1.
(ii) Since C>- W is linear, and ||£;. - W|| < 2 by (2.8) and (2.42), it suffices to

prove the assertion for sequences y(v), v e Z, given by
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146 N. SIVAKUMAR

yW := (y])jeZ, where y) = 5vj. (2.54)

But

i II , , sin»t(.-v)||

I Z-2(R) Tt(-)
(2-43)

and the last term in (2.43) approaches zero as k -*• 0+, by the "if" part of [2, Theorem
3.7]. •

We remark that the validity of assertion (ii) in the theorem above may also be
gleaned from [2], for the uniform boundedness of the quantities || £ ; || was already
observed in Proposition 3.5 of that paper.

Theorem 2.7. The following classes of functions are equivalent:
(i) {/ e L2(R) : f(x) = £ eixldm, P e Q-n, n]}.

(ii) j / : / ( x ) = (Wy)(x),ye£2(Z)}.
(iii) {/ : lim^0+ | | / - £,y || l2(R)= 0, y e £2(Z)}.

Proof. The equivalence of (i) and (ii) is known (see [7]), whereas Theorem 2.6(ii)
supplies the equivalence of (ii) and (iii). •

3. Multivariate analogues

We turn now to multidimensional analogues of results given previously. Proofs will
be withheld for the most part, because they derive from predictable tensor-product
arguments.

Suppose k is a positive number. Let cplf] and o{f] denote the d-dimensional Gaussian
and its symbol, respectively:

<pf{x) := e -*» 2 = f l t p f a ) , x = ( X l , . . . , x d ) e R d , (3.1)

and

(3.2)

where q>, and ax are the univariate functions defined in (1.1) and (1.2), respectively,
and mi denotes the Euclidean norm in R1*. Denote by %lf the corresponding cardinal
function, to wit,
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A NOTE ON THE GAUSSIAN CARDINAL-INTERPOLATION OPERATOR 147

X). \X) / yPk V). \ x ~ K)< X fc K , {.->•->}

where

ikTu

p[d] = 1 I ~\I\—du, and x'rfl(fc) = Sok, k e Zd. (3.4)

We note that

kj a n a / ; . W -
i=\ j=\

(3.5)

with (p,),eZ being given by equation (1.5) and x>. t n e univariate cardinal function of
(1.4). Define the linear operator C[d] : l2(Zd) -+ L2(Rd) by

( £ f y ) ( x ) : = £ 3 ^ 1 ( x - / c ) , x e R", y = (y,)^ e t\Zd\ (3.6)

and denote by || C[dl || its norm

The following result is the multidimensional version of Theorem 2.4/Corollary 2.5.

Theorem 3.1. Let £[d] and \\Clf\\ be given as above, and let Hx be the univariate
function defined via (2.2) (equivalently, (2.5)). Then

f || = max [ J Hk(x,) : x = (x,,..., x,) e [-n, n]d

In analogy with the second part of Section 2, we define the linear operator
Ww : t\Zd) -»• L2(Rd) by the equation

j f SinfX'_~~,kA x = (x .x , ) 6R' , k = (*„ ..., *,) € Zd

(3.9)
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(According to [12, p. 56], the operator Ww was first used in the context of sampling
theory by E. Parzen.)

For every y e l2(Zd), Wwy is realizable as the L2-Fourier transform of the square-
integrable function

* £ \ UeR\ (3.10)

where Iw is the characteristic (indicator) function of the cube {-n, n)d. Furthermore

II ^ ' y II *<•' ,= II y II mz") V y e ^ ( Z ' )= in Particular, || W[d] \\ = 1. (3.11)

We conclude with the following multivariate extensions of Theorems 2.6 and 2.7.

Theorem 3.2. Let C[d] and W{d] be the linear operators defined by (3.6) and (3.9),
respectively. The following hold:

(i) | | ^ i | | ^ | | ^ | | a s A ^ 0 + ;
(ii) l i n w 11(4" - Ww)y || L2(Rj)= 0 for every y e l\Zd).

Theorem 3.3. The following classes of functions are equivalent:
(i) {feL2(Rd):suppfc [-n,nf\.
(ii) {/ : l i n w | | / - Cid]y\\LHRj = 0, y e i\Zd)}.
(iii) {/ : f(x) = (Wwy)(x), y e t\Zd)\.

Proof. The equivalence of (i) and (ii) is a special case of [2, Theorem 3.7], whilst
that of (ii) and (iii) follows from Theorem 3.2(ii). •

Acknowledgement. I thank the referee whose comments led to an effective pruning
of this paper.
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