UNIQUE CONTINUATION PROPERTY OF NON-POSITIVE WEAK SUBSOLUTIONS FOR PARABOLIC EQUATIONS OF HIGHER ORDER

KAZUNARI HAYASHIDA

1. When L is a parabolic differential operator of second order, Nirenberg [6] proved the maximum principle for the function u which has second order continuous derivatives and satisfies $Lu \ge 0$. Recently Friedman [2] has proved the maximum principle for the measurable function satisfying $Lu \ge 0$ in the wide sense. This function is named a weakly L-subparabolic function. On the other hand, Littman [5] earlier than Friedman, has defined a weakly Asubharmonic function for an elliptic differential operator A of second order and has showed the maximum principle for it. When A is an elliptic operator of higher order, we defined a weak A-subsolution which coincides with a weakly A-subharmonic function if A is of second order and we proved in [4] that if a weak A-subsolution u assumes its essential supremum M over a domain \mathfrak{D} almost everywhere in an open set in \mathfrak{D} then u = M almost everywhere in \mathfrak{D} . That is, unique continuation property holds for the non-positive weak Asubsolution. In this note, we define similarly a weak L-subsolution for a parabolic differential operator L of higher order and prove a unique continuation property for a non-positive weak L-subsolution under an assumption weaker than that of [4].

Up to now the following assumption was necessary for such a unique continuation property (see [1], [3] and [7]): Both u and its derivatives tend to 0 at the origin (in general, at a fixed point) faster than the finite power of the distance from the origin. However, in the present case, such an assumption of the local behavior at the origin is superfluous for derivatives of u, that is, it is sufficient to assume only for u.

2. Let \mathfrak{D} be a domain in (n + 1)-dimensional Euclidean space with coordinates (x_1, \ldots, x_n, t) . For simplicity, we assume that the origin O is in \mathfrak{D} . Denoting $(x_1, \ldots, x_n) = x$ and $(x_1, \ldots, x_n, t) = (x, t)$, we consider the follow-

Received December 1, 1963.

ing parabolic differential operator L,

$$L = A - \frac{\partial}{\partial t}, \quad A = \sum_{\substack{\mathfrak{o} < |\alpha| \equiv 2s}} a_{\alpha}(\mathbf{x}, t) D_{\mathbf{x}_{1}}^{\alpha}$$
$$\left(D_{\mathbf{x}}^{\alpha} = \frac{\partial^{|\alpha|}}{\partial \mathbf{x}_{1}^{\alpha_{1}} \cdots \partial \mathbf{x}_{n}^{\alpha_{n}}} \right)$$

where A is an elliptic operator with coefficients $a_{\alpha}(\mathbf{x}, t) \in C^{|\alpha|}(\mathfrak{D})$. If a measurable function u is essentially bounded above in \mathfrak{D} and satisfies the inequality

$$\iint_{\mathfrak{D}} u(x, t) L^* v(x, t) dx dt \ge 0$$

for all non-negative functions $v \in C^{2s}(\mathfrak{D})$ with compact support in \mathfrak{D} , where L^* is the adjoint operator of L, then we say that u is a weak L-subsolution in \mathfrak{D} . In the case when L is of second order, a weak L-subsolution is a weakly subparabolic function in the sense of Friedman [2]. We denote by $S_{\mathfrak{D}}(O)$ the set of points $(x, t) (\in \mathfrak{D})$ which can be joined with the origin O by a curve Λ in \mathfrak{D} such that the *t*-coordinate of a point on Λ is not decreasing when the point varies from the point (x, t) to the origin along Λ . We shall prove the following

THEOREM. If u is a weak L-subsolution and non-positive in \mathfrak{D} , then there exists a number N depending only on L such that u vanishes identically in $S_{\mathfrak{D}}(O)$ provided that $u/(r^{2s} + t^2)^N(r^2 = x_1^2 + \cdots + x_n^2)$ is essentially bounded in \mathfrak{D} .

From this theorem follows immediately

COROLLARY. Let u be a weak L-subsolution in \mathfrak{D} and essentially bounded below in \mathfrak{D} . If u assumes its essential supremum M (over $S_{\mathfrak{D}}(O)$) in the intersection of the half-space t < 0 and a neighborhood of the origin, then u = Malmost everywhere in $S_{\mathfrak{D}}(O)$.

3. We denote be Ω_{δ} the domain surrounded by the hyperplane $t = -\delta$ $(\delta > 0)$ and the hypersurface $-r^{2s} - t = 0$, where δ is taken sufficiently small so that the closure of Ω_{δ} is contained in \mathfrak{D} . Consider the function

$$G(\mathbf{x},t) = \begin{cases} (t+\delta)^2 (r^{2s}-kt)^{-k_1} (-t-r^{2s})^{2s+1}, & \text{if } (x,t) \in \mathcal{Q}_{\delta}, \\ 0, & \text{if } (x,t) \in \mathcal{Q}_{\delta}, \end{cases}$$

where $k, k_1 > 0$.

Clearly $D_x^{\alpha}G(|\alpha| \leq 2s)$ and $\partial G/\partial t$ are continuous except at the origin and they have compact supports in \mathfrak{D} . In addition we easily see

(1)
$$|(D_t^l D_x^{\alpha} G)(r^{2s} - kt)^{k_1 + l + |\alpha|}| < \infty \qquad (l \leq 1, |\alpha| \leq 2s).$$

We can prove the following lemma.

LEMMA. If δ is sufficiently small and if k, k_1 , and k_1/k are sufficiently large, then it holds

$$L^*G(x, t) > 0$$
 in Ω_δ .

We shall give the proof of this in the next section and here, using this lemma, we prove our theorem. Let $\phi(\alpha)$ be an infinitely differentiable function such that

$$\phi(\alpha) \ge 0, \quad \text{if } 0 \le \alpha \le 1,$$

$$\phi(\alpha) = 0, \quad \text{if } \alpha \ge 1 \text{ or } \alpha \le 0,$$

$$\int_{-\infty}^{\infty} \phi(\alpha) d\alpha = 1$$

and

$$\phi(\alpha) = O(e^{-1/\alpha}) \qquad (\alpha \to 0).$$

If we put $\phi_{\varepsilon}(\alpha) = \frac{1}{\varepsilon} \phi\left(\frac{\alpha}{\varepsilon}\right)$, it is obvious that $\int_{-\infty}^{\infty} \phi_{\varepsilon}(\alpha) d\alpha = 1$. Setting $\rho = r^2$ and $\tilde{\rho} = \rho^3 - kt$, we define

(2)
$$G_{\varepsilon}(x, t) = G(x, t) \int_{0}^{\widetilde{\rho}} \phi_{\varepsilon}(\alpha) d\alpha.$$

Then we see that $G_{\varepsilon}(x, t) = G(x, t)$ in $\tilde{\rho} \ge \varepsilon$ and that $D_x^{\alpha}G_{\varepsilon}(|\alpha| \le 2s)$ and $\partial G_{\varepsilon}/\partial t$ are continuous in \mathfrak{D} . Hereafter, let the numbers δ , k and k_1 in G(x, t) satisfy the condition of the lemma. By virtue of the form (2), it is clear that $L^*G_{\varepsilon}(x, t)$ is the sum of the terms $A_{\alpha,l,h}(x, t) D_x^{\alpha} D_t^l G \Big[\frac{d^h}{d\alpha^h} \phi_{\varepsilon}(\alpha) \Big]_{\alpha = \tilde{\rho}} (|\alpha| + l)$ $\le 2s, -1 \le h \le 2s - 1$, where $A_{\alpha,l,h}(x, t)$ are bounded functions and we use the notation $\frac{d^{-1}}{d\alpha^{-1}} \phi_{\varepsilon}(\alpha) = \int_{0}^{\tilde{\rho}} \phi_{\varepsilon}(\alpha) d\alpha$. Noting that

$$\frac{d^{h}}{d\alpha^{h}}\phi_{\varepsilon}(\alpha)=\frac{1}{\varepsilon^{h+1}}\left[\frac{d^{h}}{d\beta^{h}}\phi(\beta)\right]_{\beta=\alpha/\varepsilon}$$

and $\frac{1}{\beta^{h+1}} \leq \frac{1}{\tilde{\rho}^{2s}}$ for $\tilde{\rho} \leq \epsilon$, we get from (1)

KAZUNARI HAYASHIDA

(3)
$$\lim_{\varepsilon \to 0} \iint_{\rho \leq \varepsilon} uL^* G_{\varepsilon}(x, t) dx dt = 0,$$

if we take N in our theorem such that $N = k_1 + 4s$. Since u is a weak L-subsolution, it holds

$$\begin{split} \iint_{\widetilde{\rho} \cong \varepsilon} uL^* G dx dt &= \iint_{\widetilde{\rho} \cong \varepsilon} uL^* G_{\varepsilon} dx dt = \iint_{\mathfrak{D}} uL^* G_{\varepsilon} dx dt \\ &- \iint_{\widetilde{\rho} \cong \varepsilon} uL^* G_{\varepsilon} dx dt \geqq - \iint_{\widetilde{\rho} \cong \varepsilon} uL^* G_{\varepsilon} dx dt. \end{split}$$

Let ε tend to 0 in this inequality. Then we have from (3)

$$\iint_{\mathfrak{D}} uL^* G dx dt \ge 0.$$

Thus, our lemma implies that u = 0 in Ω_{δ} . By the standard method in proving unique continuation theorems (for example, see [2]), we arrive at the desired.

4. Now we prove our lemma. Let us put $f = (\rho^s - kt)^{-k_1}$ and $g = (-t - \rho^s)^{2s+1}$ Then, similarly as in [3], we have

(4)
$$D_x^{\alpha} f = \sum_{q=1}^{|\alpha|} \alpha_1! \cdots \alpha_n! \left\{ \frac{d^q}{d\rho^q} (\rho^s - kt)^{-k_1} \right\} \\ \times \left(\sum_{\substack{|\beta+T|=q\\\beta+2|T=\alpha}} \frac{2^{|\beta|}}{\beta_1! \cdots \beta_n! \tau_1! \cdots \tau_n!} x_1^{\beta_1} \cdots x_n^{\beta_n} \right).$$

Further, setting $F(\tilde{\rho}) = \tilde{\rho}^{-k_1}$, we see

(5)
$$\frac{1}{q!} \frac{d^{q}}{d\rho^{q}} (\rho^{s} - kt)^{-k_{1}}$$

$$= \sum_{h=1}^{q} \sum_{(i)} \frac{1}{i_{1}! \cdots i_{q}!} \frac{d^{h}F}{d\tilde{\rho}^{h}} \left(\frac{s\rho^{s-1}}{1!}\right)^{i_{1}} \left(\frac{s(s-1)\rho^{s-2}}{2!}\right)^{i_{2}}$$

$$\cdots \left(\frac{s(s-1) \cdots (s-q+1)\rho^{s-q}}{q!}\right)^{i_{q}},$$

where (i) means an arbitrary real vector (i_1, \ldots, i_q) such that $i_1 + \cdots + i_q = h$ and $i_1 + 2i_2 + \cdots + qi_q = q$. In addition, it is easily seen that

(6)
$$\frac{d^{n}F}{d\tilde{\rho}^{h}} = (-1)^{h}k_{1}(k_{1}+1) \cdot \cdot \cdot (k_{1}+h-1)(\rho^{s}-k_{1}t)^{-k_{1}-h} \cdot$$

From (4), (5) and (6), we obtain

(7)
$$D_{x}^{\alpha}f = \alpha_{1}! \cdots \alpha_{n}! \sum_{q=1}^{|\alpha|} (\sum_{h=1}^{q} A_{q,h}(-1)^{h} k_{1}(k_{1}+1) \cdots (k_{1}+h-1)(\rho^{s}-kt)^{-k_{1}-h} \rho^{sh-q}) P_{\alpha,q},$$

244

where $P_{\alpha,q} = \sum_{\substack{|\beta+\gamma|=q\\ \beta+2\gamma=\alpha}} \frac{2^{|\beta|}}{\beta_1! \cdots \beta_n! \gamma_1! \cdots \gamma_n!} x_1^{\beta_1} \cdots x_n^{\beta_n}$ and $A_{q,h}$ is a positive constant independent of k and k_1 . Hereafter, if there is no explanation, we promise that the letters A, B, \ldots and these with indices are all positive constants independent of k and k_1 .

On $P_{\alpha,q}$, we see, in general,

$$|P_{a,q}| \leq C_{a,q} \rho^{q-(|\alpha|/2)},$$

and when $|\alpha| = q = 2s$,

(9)
$$P_{\alpha,q} = \frac{2^{2s}}{\alpha_1! \cdots \alpha_n!} x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$$

If q + q' = 2s, we have

(10)
$$P_{\beta,q}P_{\alpha-\beta,q}' = \frac{2^{2s}}{\beta_1!\cdots\beta_n!(\alpha_1-\beta_1)!\cdots(\alpha_n-\beta_n)!}x_1^{\alpha_1}\cdots x_n^{\alpha_n}.$$

In the same manner as in the computation of $D_x^{\alpha} f$, we get

(11)
$$D_{x}^{a}g = \alpha_{1}! \cdots \alpha_{n}! \sum_{q=1}^{|\alpha|} (\sum_{h=1}^{q} B_{q,h}(-1)^{h}(-t-\rho^{s})^{2s+1-h}\rho^{sh-q}) P_{\alpha,q}.$$

The Leibniz formula yields

(12)
$$D_x^{\alpha}(f \cdot g) = \sum_{\beta} c_{\alpha,\beta} D_x^{\beta} f D_x^{\alpha-\beta} g$$

where

(13)
$$c_{\alpha,\beta} = \frac{1}{\beta_1! \cdots \beta_n!} \left\{ \alpha_1(\alpha_1 - 1) \cdots (\alpha_1 - \beta_1 + 1) \right\} \\ \cdots \left\{ \alpha_n(\alpha_n - 1) \cdots (\alpha_n - \beta_n + 1) \right\}$$

Since the operator A is elliptic, there is a positive number c such that in Ω_{δ}

(14)
$$\sum_{|\alpha|=2S} a_{\alpha}(x, t) x_1^{\alpha_1} \cdots x_n^{\alpha_n} \ge c \rho^s.$$

We denote by L_1 the principal part of A^* which is identical with that of A and by L_2 the other part. First we estimate $L_1(f \cdot g)$ from below. Applying (12), we can write

$$L_1(f \cdot g) = \sum_{|\alpha|=2s} a_{\alpha}(x, t) D_x^{\alpha} f \cdot g + \sum_{|\alpha|=2s} a_{\alpha}(x, t) (\sum_{\beta \neq \alpha} c_{\alpha, \beta} D_x^{\beta} f D_x^{\alpha-\beta} g).$$

For the right hand side of this equality, let us denote by I_1 the first sum and by I_2 the second sum. Substituting (7) into I_1 , we have KAZUNARI HAYASHIDA

$$I_{1} = \sum_{|\alpha|=2s} a_{\alpha}(\alpha, t) \alpha_{1}! \cdots \alpha_{n}! \sum_{q=1}^{2s} (\sum_{h=1}^{q} A_{q,h}(-1)^{h} k_{1}(k_{1}+1))$$

$$\cdots (k_{1}+h-1) (\rho^{s}-kt)^{-k_{1}-h} \rho^{sh-q}) P_{\alpha,q}(-t-\rho^{s})^{2s+1}.$$

We use (8), (9) and (14) to find

(15)
$$I_{1} \ge \left(\sum_{|\alpha|=2s} a_{\alpha}(x, t) 2^{2s} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right) \left(A_{2s, 2s} k_{1}(k_{1}+1) + \sum_{|\alpha|=2s} a_{\alpha}(x, t) \alpha_{1}! \cdots \alpha_{n}! \sum_{q=1}^{2s} \left(\sum_{\substack{h=1,\dots,q\\h\neq 2s}} A_{q,h}(-1)^{h} k_{1} \cdot (k_{1}+1) \cdots (k_{1}+h-1) \left(\rho^{s}-kt\right)^{-k_{1}-h} \rho^{sh-q}\right) P_{\alpha,q}(-t-\rho^{s})^{2s+1}$$

$$\ge M k_{1}^{2s} \left(\rho^{s}-kt\right)^{-k_{1}-2s} \rho^{s(2s-1)} \left(-t-\rho^{s}\right)^{2s+1}$$

$$= \frac{2s-1}{h-1} M' k_{1}^{h} \left(\rho^{s}-kt\right)^{-k_{1}-h} \rho^{s(h-1)} \left(-t-\rho^{s}\right)^{2s+1}.$$

Next we estimate I_2 . From (7) and (11), we can see

(16)
$$I_{2} = \sum_{|\alpha|=2s} a_{\alpha}(x, t) (\sum_{\beta\neq\alpha} c_{\alpha,\beta} D_{x}^{\beta} f D_{x}^{\alpha-\beta} g)$$

$$= \sum_{|\alpha|=2s} a_{\alpha}(x, t) \sum_{\beta\neq\alpha,0} c_{\alpha,\beta} (\sum_{q=1}^{|\beta|} \sum_{q'=1}^{|\alpha-\beta|} \sum_{h'=1}^{q'} (-1)^{h+h'} A_{q,h} B_{q',h'} k_{1}(k_{1}+1) \cdots (k_{1}+h-1)(\rho^{s}-kt)^{-k_{1}-h}$$

$$\rho^{s(h+h')-(q+q')}(-t-\rho^{s})^{2s+1-h'} \beta_{1}! \cdots \beta_{n}!.$$

$$(\alpha_{1}-\beta_{1})! \cdots (\alpha_{n}-\beta_{n})! P_{\beta,q} P_{\alpha-\beta,q'})$$

$$+ \sum_{|\alpha|=2s} a_{\alpha}(x, t) (\sum_{q=1}^{2s} \sum_{h=1}^{q} B_{q,h}(-1)^{h}(-t-\rho^{s})^{2s+1-h}$$

$$\rho^{sh-q} \alpha_{1}! \cdots \alpha_{n}! P_{\alpha,q}) (\rho^{s}-kt)^{-k_{1}}.$$

If h + h' = 2s, then $h = q = |\beta|$ and $h' = q' = |\alpha - \beta|$. Hence, from (10), (13) and (14), we obtain

(17)
$$\sum_{\alpha|=2s} \sum_{|\beta|=h} a_{\alpha}(x, t) C_{\alpha, \beta} \beta_{1}! \cdots \beta_{n}! (\alpha_{1} - \beta_{1})! \cdots (\alpha_{n} - \beta_{n})! P_{\beta, q} \cdot P_{\alpha - \beta, q'}$$
$$\geq \frac{2s(2s-1)\cdots(2s-h+1)}{h!} 2^{2s} c \rho^{s}.$$

On the other hand, we see, in general,

(18)
$$|P_{\beta,q}P_{\alpha-\beta,q'}| \leq C_{\beta,q}C_{\alpha-\beta,q'}\rho^{q+q'-(|\alpha|/2)}.$$

In the right hand side of (16), we collect all the terms satisfying h + h' = 2s into a part and the remaining terms into the other part. Inequalities (17) and (18) give the following:

246

PARABOLIC EQUATIONS OF HIGHER ORDER

(19)
$$I_{2} \geq \sum_{h+h'=2S} Bk_{1}^{h} (\rho^{s} - kt)^{-k_{1}-h} (-t - \rho^{s})^{2s+1-h'} \rho^{s(2s-1)} - \sum_{j+j'\neq2S} B'k_{1}^{j} (\rho^{s} - kt)^{-k_{1}-j} (-t - \rho^{s})^{2s+1-j'} \rho^{s(j+j'-1)},$$

where $0 \le h \le 2s$, $0 \le j \le 2s$, $1 \le h' \le 2s$ and $1 \le j' \le 2s$ respectively. It is easy to see that $\rho^s \le -kt$ in Ω_δ for $k \ge 1$. Hence it holds in Ω_δ

(20)
$$\rho^{s} - kt \leq 2k\rho^{s} + 2k(-t-\rho^{s}).$$

We represent each term of the right hand side of (19) by the next symbol

$$I(j, j') = K_{j,j'} k_1^j (\rho^s - kt)^{-k_1 - j} (-t - \rho^s)^{2s + 1 - j'} \rho^{s(j+j'-1)}$$

where $K_{j,j'} = B$ for j+j'=2s and $K_{j,j'} = B'$ for $j+j' \neq 2s$. When $j+j' \neq 2s$, we apply this inequality (20) to I(j, j') repeatedly. Then I(j, j') is finally absorbed in $I(j_1, j'_1)$ $(j_1+j'_1=2s)$ or $I(j_2, 0)$ $(j_2 \leq 2s)$ provided that k/k_1 is sufficiently small. That is, the second sum in the right hand side of (19) is absorbed in the first sum or in the right hand side of (15). In the same manner as above, we have

$$|L_2(f \cdot g)| \leq \sum_{j+j' \equiv |\alpha|, |\alpha| < 2S} K_{\alpha, j, j'} k_1^j (\rho^s - kt)^{-k_1 - j} (-t - \rho^s)^{2s + 1 - j'} \rho^{s(j+j') - |\alpha|}$$

from (7), (8), (11) and (12). Let us take δ sufficiently small. Then $\rho^{s(j+j')-|\alpha|}$ $\div \rho^{s(j+j')-2s}$ is sufficiently small. Thus, from (15) and (19), we see that $L_2(f \cdot g)$ is absorbed in $L_1(f \cdot g)$. Computing $\frac{\partial}{\partial t}G(x, t)$, we have

$$\frac{\partial}{\partial t}G(\mathbf{x},t) = 2(t+\delta)(\rho^s - kt)^{-k_1}(-t-\rho^s)^{2s+1} + k_1k(t+\delta)^2(\rho^s - kt)^{-k_1-1}(-t-\rho^s)^{2s+1} - (2s+1)(t+\delta)^2(\rho^s - kt)^{-k_1}(-t-\rho^s)^{2s}.$$

If we apply (20) to the last term of the right hand side of this expression, this term is again absorbed in the second term and the right hand side of (19). Since $L^* = L_1 + L_2 + \frac{\partial}{\partial t}$, we finally obtain

$$\begin{split} L^*G &\geq \langle M_1 k_1^{2s} (\rho^s - kt)^{-k_1 - 2s} \rho^{s(2s-1)} (-t - \rho^s)^{2s+1} \\ &- \sum_{h=1}^{2s-1} M_1' k_1^h (\rho^s - kt)^{-k_1 - h} \rho^{s(h-1)} (-t - \rho^s)^{2s+1} \rangle \\ &\quad (t+\delta)^2 + k_1 k (t+\delta)^2 (\rho^s - kt)^{-k_1 - 1} (-t - \rho^s)^{2s+1} \rho^{s(j+j') - |\mathfrak{a}|} \end{split}$$

If we set $X = k_1 \rho^s (\rho^s - kt)^{-1}$, the above inequality becomes

https://doi.org/10.1017/S0027763000011429 Published online by Cambridge University Press

KAZUNARI HAYASHIDA

$$L^*G \ge k_1(t+\delta)^2(\rho^s-kt)^{-k_1-1}(-t-\rho^s)^{2s+1}\{M_1X^{2s-1}-\sum_{k=1}^{2s-1}M_1'X^{k-1}+k\}.$$

This shows that $L^*G > 0$ in Ω_{δ} for sufficiently large k.

References

- A. Friedman, Uniqueness properties in the theory of differential operators of elliptic type, Jour. Math. Mech., 7 (1958), 61-67.
- [2] A. Friedman, A strong maximum principle for weakly subparabolic functions, Pacific Jour. Math., 11 (1960), 175-184.
- [3] K. Hayashida, Unique continuation theorem of elliptic systems of partial differential equations, Proc. Japan Acad., 38 (1962), 630-635.
- [4] K. Hayashida, A note on a weak subsolution, Proc. Japan Acad., 39 (1963), 203-207.
- [5] W. Littman, A strong maximum principle for weakly L-subharmonic functions, Jour. Math. Mech., 8 (1959), 761-770.
- [6] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177.
- [7] R. N. Pederson, On the order of zeros of one-signed solutions of elliptic equations, Jour. Math. Mech., 8 (1959), 193-196.

Research Institute for Mathematical Sciences Kyoto University