Ample Vector Bundles of Curve Genus One

Antonio Lanteri and Hidetoshi Maeda

Abstract. We investigate the pairs (X,\mathcal{E}) consisting of a smooth complex projective variety X of dimension n and an ample vector bundle \mathcal{E} of rank n-1 on X such that \mathcal{E} has a section whose zero locus is a smooth elliptic curve.

0 Introduction

Let \mathcal{E} be an ample vector bundle of rank n-1 on a complex projective manifold X of dimension n. Following [LMS], we define the *curve genus* $g(X, \mathcal{E})$ of (X, \mathcal{E}) by setting

$$2g(X, \mathcal{E}) - 2 = (K_X + c_1(\mathcal{E}))c_{n-1}(\mathcal{E}),$$

where K_X is the canonical bundle of X. This number was first introduced by Ballico [B], who called it the sectional genus. Needless to say, $g(X, \mathcal{E})$ is nothing but the usual sectional genus in case n = 2.

In this paper we consider the following set-up.

0.1

 \mathcal{E} is an ample vector bundle of rank n-1 on a complex projective manifold X of dimension $n \geq 3$ and there exists a section $s \in \Gamma(\mathcal{E})$ whose zero locus $Z = (s)_0$ is a smooth curve in X.

Note that if \mathcal{E} is ample and spanned, then the last condition in (0.1) is satisfied with any general section $s \in \Gamma(\mathcal{E})$. Under the assumption (0.1) the smooth curve Z represents the top Chern class $c_{n-1}(\mathcal{E})$, and then the adjunction formula combined with the fact that $N_{Z/X} \cong \mathcal{E}_Z$ shows that $g(X,\mathcal{E})$ coincides with g(Z), the genus of the smooth curve Z. In particular this implies that $g(X,\mathcal{E}) \geq 0$. The classification of pairs (X,\mathcal{E}) as in (0.1) with $g(X,\mathcal{E}) = 0$ follows from more general results proven in [LM] and is given by the following

Theorem 0 Let (X, \mathcal{E}) be as in (0.1) with $g(X, \mathcal{E}) = 0$. Then (X, \mathcal{E}) is one of the following:

- 1. $(P^n, \mathcal{O}_P(1)^{\oplus (n-1)})$,
- 2. $(P^n, \mathcal{O}_P(2) \oplus \mathcal{O}_P(1)^{\oplus (n-2)})$,
- 3. $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}}(1)^{\oplus (n-1)})$, where \mathbb{Q}^n is a smooth hyperquadric in \mathbb{P}^{n+1} ,
- 4. X is a \mathbb{P}^{n-1} -bundle over \mathbb{P}^1 and $\mathcal{E}_F = \mathfrak{O}_{\mathbb{P}}(1)^{\oplus (n-1)}$ for every fibre F of the bundle projection.

Received by the editors July 16, 1997; revised February 4, 1998. AMS subject classification: Primary: 14J60; secondary: 14F05, 14J40. ©Canadian Mathematical Society 1999.

210 A. Lanteri and H. Maeda

The aim of this paper is to provide the classification of pairs (X, \mathcal{E}) as in (0.1) with $g(X, \mathcal{E}) = 1$. Our result is the following

Theorem 1 Let (X, \mathcal{E}) be as in (0.1) with $g(X, \mathcal{E}) = 1$. Then (X, \mathcal{E}) is one of the following:

- *X* is a \mathbb{P}^{n-1} -bundle over an elliptic curve (isomorphic to *Z*) and $\mathcal{E}_F = \mathcal{O}_{\mathbb{P}}(1)^{\oplus (n-1)}$ for every fibre F of the bundle projection,
- $(\mathsf{P}^n, \mathsf{O}_\mathsf{P}(2)^{\oplus 2} \oplus \mathsf{O}_\mathsf{P}(1)^{\oplus (n-3)}),$
- $(P^n, \mathcal{O}_P(3) \oplus \mathcal{O}_P(1)^{\oplus (n-2)}).$
- $(\mathbb{Q}^n, \mathbb{O}_{\mathbb{Q}}(2) \oplus \mathbb{O}_{\mathbb{Q}}(1)^{\oplus (n-2)}),$
- X is a Del Pezzo manifold with $-K_X=(n-1)\mathcal{H}$ and $\mathcal{E}=\mathcal{H}^{\oplus (n-1)}$,
- $(\mathbb{P}^3, N(2))$, where N is the null correlation bundle on \mathbb{P}^3 (see [OSS, p. 76]),
- $(\mathbb{Q}^3, S(2))$, where S is the spinor bundle on \mathbb{Q}^3 (see [Ot, Definition 1.3]),
- 8. $(\mathbb{P}^2 \times \mathbb{P}^1, p^*T_{\mathbb{P}^2} \otimes \mathcal{O}(0, 1))$, where p denotes the first projection, 9. $(\mathbb{P}^2 \times \mathbb{P}^1, \mathcal{O}(2, 1) \oplus \mathcal{O}(1, 1))$,
- 10. $(Q^4, S(2) \oplus O_Q(1))$, where S is a spinor bundle on Q^4 ,
- 11. $\hat{n} = 4$ and $P(\mathcal{E})$ has two projective \hat{P}^2 -bundle structures over smooth Fano 4-folds of index 1 with $b_2 = 1$ and pseudoindex ≥ 3 .
- **Remark** (i) Any of the pairs listed above except (1) and (11) satisfies the condition (0.1). Indeed, if (X, \mathcal{E}) is one of those listed as (2), (3), (4), (6), (7), (8), (9) or (10), then \mathcal{E} is ample and spanned on X, hence (0.1) automatically holds. Now let (X, \mathcal{E}) be as in case (5). If $\mathcal{H}^n > 2$, then \mathcal{H} is ample and spanned on X by [F1, I, (1.5)]. Thus so is \mathcal{E} . If $\mathcal{H}^n = 1$, then it follows from [F1, I, (1.4)] that (X, \mathcal{H}) has a smooth ladder. Therefore (0.1) holds for $\mathcal{E} = \mathcal{H}^{\oplus (n-1)}$.
- (ii) There exists a pair (X, \mathcal{E}) of type (1) satisfying the condition (0.1). To see this, let X be a \mathbb{P}^{n-1} -bundle over a smooth projective (not necessarily elliptic) curve C. Then we can write $X = P_C(\mathfrak{F})$ for some vector bundle \mathfrak{F} of rank n on C. Take an arbitrary ample line bundle L on C. Then $\mathfrak{F} \otimes tL$ is ample and spanned for $t \gg 0$. Let H be the tautological line bundle on X and let π be the projection $X \to C$. Then $H + \pi^*(tL)$ is ample and spanned on X. If we set $\mathcal{E} = (H + \pi^*(tL))^{\oplus (n-1)}$, then \mathcal{E} satisfies (0.1) and $\mathcal{E}_F = \mathcal{O}_P(1)^{\oplus (n-1)}$ for every fibre F of π .
- (iii) We do not know whether a pair (X, \mathcal{E}) of type (11), which comes from [PSW, (7.4)], exists or not.

The classification of pairs (X, \mathcal{H}) as in (5) is due to Fujita [F1] (see also [F2, Ch. I, Section 8]). For n = 3 the same situation as in Theorem 1 was considered by Ballico [B, Theorem 0] on the assumption that \mathcal{E} is spanned in addition. However, (8) and (9) are missing in his list.

Here is the idea of the proof. Since Z is smooth of the expected dimension, we can identify \mathcal{E}_Z with the normal bundle to Z in X; by the adjunction formula, we get $(K_X +$ $\det \mathcal{E})_Z = K_Z$, which is trivial, Z being an elliptic curve. Therefore K_X + $\det \mathcal{E}$ cannot be ample. This allows us to use results of Ye and Zhang [YZ] and of Andreatta, Ballico and Wiśniewski [ABW] providing a list of possibilities for our pairs (X, \mathcal{E}) , which we have to examine through a case-by-case analysis.

In Section 1 we present a slightly improved version of the result in [ABW], including

some descriptions of \mathcal{E} , which we need for our purpose. Section 2 is devoted to the proof of Theorem 1.

1 Background Material

In this paper varieties are always assumed to be defined over the complex number field \mathbb{C} . We use the standard notation from algebraic geometry. The words "vector bundles" and "locally free sheaves" are used interchangeably. The tensor products of line bundles are denoted additively. The pullback $i^*\mathcal{E}$ of a vector bundle \mathcal{E} on X by an embedding $i\colon Y\hookrightarrow X$ is denoted by \mathcal{E}_X . The canonical bundle of a smooth variety X is denoted by K_X .

Now we state the basic result which we will use to prove our Theorem 1.

Theorem 1.1 Let \mathcal{E} be an ample vector bundle of rank n-1 on a projective manifold X of dimension $n \geq 3$. Then the adjoint bundle $A := K_X + \det \mathcal{E}$ has the following properties:

- A) ([YZ, Theorem 3]) A is nef unless (X, \mathcal{E}) is one of the following pairs:
 - (a) $(P^n, \mathcal{O}_P(1)^{\oplus (n-1)})$,
 - (b) $(P^n, \mathcal{O}_P(2) \oplus \mathcal{O}_P(1)^{\oplus (n-2)})$,
 - (c) $(\mathbb{Q}^n, \mathcal{O}_{\mathbb{Q}}(1)^{\oplus (n-1)})$,
 - (d) X is a \mathbb{P}^{n-1} -bundle over a smooth curve and $\mathcal{E}_F = \mathcal{O}_{\mathbb{P}}(1)^{\oplus (n-1)}$ for every fibre F of the bundle projection.
- B) ([ABW, Theorem, B] for $n \ge 4$) Assume that A is nef. Let φ be the morphism defined by tA for $t \gg 0$ and let $\pi \colon X \to W$ be the fibration obtained through its Stein factorization. Then A is big except the following cases:
 - (a) X is a Fano manifold and det $\mathcal{E} = -K_X$,
 - (b) π gives X the structure of a \mathbb{P}^{n-1} -bundle over a smooth curve W and either $\mathcal{E}_F = \mathcal{O}_{\mathbb{P}}(2) \oplus \mathcal{O}_{\mathbb{P}}(1)^{\oplus (n-2)}$ or $\mathcal{E}_F = T_{\mathbb{P}}$ for every fibre F of π ,
 - (c) π gives X the structure of a hyperquadric fibration over a smooth curve W and $\mathcal{E}_F = \mathfrak{O}_{\mathbb{Q}}(1)^{\oplus (n-1)}$ for a general fibre $F(\cong \mathbb{Q}^{n-1})$ of π ,
 - (d) π gives X the structure of a \mathbb{P}^{n-2} -fibration over a smooth surface W, locally trivial in the complex topology and $\mathcal{E}_F = \mathcal{O}_{\mathbb{P}}(1)^{\oplus (n-1)}$ for every fibre $F \cong \mathbb{P}^{n-2}$ of π .
- C) ([BeS, Theorem 1.3] for n=3 and [ABW, Theorem, C] for $n \ge 4$) Assume that A is nef and big but not ample. Then there exist a birational morphism $f \colon X \to X'$ expressing X as a projective manifold X' blown up at a finite set B and an ample vector bundle \mathcal{E}' of rank n-1 on X' such that $\mathcal{E}=f^*\mathcal{E}'\otimes [-f^{-1}(B)]$ and that $K_{X'}+\det\mathcal{E}'$ is ample.

Remark 1.2 (1) For n = 3, case B is not covered by [ABW]. However, the same result as above follows from the argument in [BeS, Proof of Theorem 3.1, starting from line 12 on p. 67].

(2) As to cases (b), (c) and (d) of B, we included in the statement the descriptions of \mathcal{E}_F , which do not appear in [ABW, Theorem]. So we give here a proof for the convenience of the reader.

Proof Let F be an arbitrary fibre of π in cases (b) and (d), and a general fibre of π in case (c). Then its canonical bundle is the restriction of K_X . Since $K_X + \det \mathcal{E} = \pi^* H$ for some ample line bundle H on W by virtue of the fibration theorem (see for example [F3, (1.1)]), we have

$$\mathcal{O}_F = (K_X + \det \mathcal{E})_F = K_F + \det \mathcal{E}_F$$

i.e., K_F + det \mathcal{E}_F is trivial. Since rank $\mathcal{E}_F \geq \dim F$, [F3, Main Theorem] tells us that the descriptions of \mathcal{E}_F are as follows according to cases:

- (b) \mathcal{E}_F is either $\mathcal{O}_{\mathbb{P}}(2) \oplus \mathcal{O}_{\mathbb{P}}(1)^{\oplus (n-2)}$ or $T_{\mathbb{P}}$.
- (c) $\mathcal{E}_F = \mathcal{O}_{\mathbb{Q}}(1)^{\oplus (n-1)}$.
- (d) $\mathcal{E}_F = \mathcal{O}_P(1)^{\oplus (n-1)}$.

As mentioned above, K_X + det \mathcal{E} is the pullback of an ample line bundle on W. This trivially implies the following

Lemma 1.3 With things as in (b), (c), or (d) in case B, let C be a curve on X such that $(K_X + \det \mathcal{E})C = 0$. Then $\pi(C)$ is a point on W.

2 Curve Genus One

Let us prove Theorem 1. Let (X, \mathcal{E}) be as in (0.1) with $g(X, \mathcal{E}) = 1$. Then, as explained in the Introduction, the adjoint bundle

(2.0)
$$K_X + \det \mathcal{E}$$
 is not ample,

so that Theorem 1.1 applies.

2.1

First, let (X, \mathcal{E}) be as in (1.1, A). Then cases (a), (b) and (c) cannot occur, since a simple computation shows that $g(X, \mathcal{E}) = 0$ in each case. In case (d), since the restriction s_F of our section s to F is an element of $\Gamma\left(\mathcal{O}_{\mathbb{P}}(1)^{\oplus (n-1)}\right)$ for every fibre F of the bundle projection and Z is irreducible, $Z \cap F = (s_F)_0$ is a single point. Then the \mathbb{P} -bundle projection restricted to Z is an isomorphism. This gives case (1) of Theorem 1.

2.2

Now let (X, \mathcal{E}) be as in (1.1, B). In case (a), applying [PSW, (0.3), (0.4) and (7.4)] to (X, \mathcal{E}) , we get cases (2) through (11).

Claim Cases (b), (c) and (d) do not occur.

Proof Suppose to the contrary that they occur. We begin with (b) and (c). With the same notation as in (1.1, B), for a general fibre F of π , \mathcal{E}_F is either $\mathcal{O}_P(2) \oplus \mathcal{O}_P(1)^{\oplus (n-2)}$ or T_P in case (b), while $\mathcal{E}_F = \mathcal{O}_Q(1)^{\oplus (n-1)}$ in case (c). Hence in either event $Z \cap F = (s_F)_0 \neq \emptyset$ for a general fibre F. This contradicts Lemma 1.3.

Now we consider case (d). Since $s_F \in \Gamma(\mathfrak{O}_{\mathbb{P}}(1)^{\oplus (n-1)})$ for any fibre F of π , $Z \cap F = (s_F)_0$ is either empty or a single point. Thus $\pi_{|Z} \colon Z \to W$ is an injection, which is also contrary to Lemma 1.3.

2.3

Finally, let (X, \mathcal{E}) be as in $(1.1, \mathbb{C})$. Then for every exceptional divisor $E \cong \mathbb{P}^{n-1} \subset X$ of f we have $s_E \in \Gamma (\mathfrak{O}_{\mathbb{P}}(1)^{\oplus (n-1)})$. Since Z cannot contain linear spaces of positive dimension, we thus conclude that $Z \cap E = (s_E)_0$ is a single point. Let Z' := f(Z); then Z' is a smooth elliptic curve on X', which is the zero locus of the section $s' \in \Gamma(\mathcal{E}')$ corresponding to s. So (X', \mathcal{E}') also satisfies the assumption in Theorem 1, but this contradicts (2.0), since $K_{X'} + \det \mathcal{E}'$ is ample. We have completed the proof of Theorem 1.

References

- [ABW] M. Andreatta, E. Ballico and J. A. Wiśniewski, Vector bundles and adjunction. Internat. J. Math. 3(1992), 331–340.
- [B] E. Ballico, On vector bundles on 3-folds with sectional genus 1. Trans. Amer. Math. Soc. 324(1991), 135–147.
- [BeS] M. C. Beltrametti and A. J. Sommese, Comparing the classical and the adjunction theoretic definition of scrolls. In: Geometry of Complex Projective Varieties, Cetraro, 1990 (Eds. A. Lanteri, M. Palleschi and D. C. Struppa), Sem. Conf. 9, Mediterranean, Rende, 1993, 55–74.
- [F1] T. Fujita, On the structure of polarized manifolds with total deficiency one, I. J. Math. Soc. Japan 32(1980), 709–725; II. ibid. 33(1981), 415–434; III. ibid. 36(1984), 75–89.
- [F2] ______, Classification Theories of Polarized Varieties. London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, Cambridge, 1990.
- [F3] _____, On adjoint bundles of ample vector bundles. In: Complex Algebraic Varieties, Bayreuth, 1990 (Eds. K. Hulek, Th. Peternell, M. Schneider and F.-O. Schreyer), Lecture Notes in Math. 1507, Springer-Verlag, Berlin-Heidelberg-New York, 1992, 105–112.
- [LM] A. Lanteri and H. Maeda, Ample vector bundles with sections vanishing on projective spaces or quadrics. Internat. J. Math. 6(1995), 587–600.
- [LMS] A. Lanteri, H. Maeda and A. J. Sommese, Ample and spanned vector bundles of minimal curve genus. Arch. Math. (Basel) 66(1996), 141–149.
- [OSS] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces. Progr. Math. 3, Birkhäuser, Boston-Basel-Stuttgart, 1980.
- [Ot] G. Ottaviani, Spinor bundles on quadrics. Trans. Amer. Math. Soc. 307(1988), 301–316.
- [PSW] Th. Peternell, M. Szurek and J. A. Wiśniewski, *Fano manifolds and vector bundles*. Math. Ann. **294**(1992), 151–165.
- [YZ] Y.-G. Ye and Q. Zhang, On ample vector bundles whose adjunction bundles are not numerically effective. Duke Math. J. 60(1990), 671–687.

Dipartimento di Matematica "F. Enriques" Università Via C. Saldini, 50 I-20133 Milano

Italy

email: lanteri@vmimat.mat.unimi.it

Department of Mathematical Sciences School of Science and Engineering Waseda University 3-4-1 Ohkubo, Shinjuku Tokyo 169-8555 Japan

email: hmaeda@mse.waseda.ac.jp