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RESUMEN 
El concepto de tiempo caracteristico de una poblacion de estrellas binarias se aplica 

solamente a aquellas de poca energia de amarre, esto es, a binarias separadas. Se encontro 
que de entre varios posibles metodos para estimar el tiempo caracteristico, el mejor es el que 
se basa en el cambio promedio de la energia de amarre debido a encuentros que no rompen 
el sistema. 

ABSTRACT 

The concept of the "lifetime" of a population of binaries is applicable only to those 
of low binding energy, i.e. wide pairs. Of several possible methods of estimating a lifetime, 
that based on the average change in binding energy due to non-disruptive encounters appears 
to be the best. 

I. INTRODUCTION 

The observed abundance of wide binary stars in 
the solar neighbourhood has frequently led to a 
consideration of their lifetimes, since they must 
occasionally be subject to encounters with other 
stars. The question of lifetimes is also relevant to 
the study of stellar perturbations on the orbits of 
comets. 
The problem can be thought of in the following 
terms. Let f de be the number-density of binaries 
with binding energy 6 and components with masses 
mlt m2.f Then as a result of encounters with stars 
of mass ms, f changes according to 

3f ' ' 
— = [lunansQJe)] - n 3 Q ( e , - oo) f + 

+ n3 f"de' {f(*') Q(«', « - « ' ) - f(e)Q(e,e'- e) 
Jo 

* Now at the Department of Mathematics, University 
of Edinburgh, Edinburgh, U. K. 

t In the cometary case m2 = 0 and a slightly different 
formulation is needed. 

(Heggie 1975a), where nt is the number-density of 
single stars of mass mi, the first term (in square 
brackets) on the right-hand side corresponds to 
formation of new binaries, the second corresponds 
to direct destruction, the first part of the integral to 
encounters leading from energy e' to e, and the 
second part to those in the opposite direction. 

If the velocities of single stars and of the centres 
of mass of binaries have appropriate Maxwellian 
distributions, an equilibrium solution of (1), i.e. 
satisfying dl/dt = 0, is given by the Boltzmann dis
tribution, which we denote by f0 (Heggie 1975&). 
However, since f ^ f0 for wide binaries in the solar 
neighbourhood (Ambartsumian 1937), the "forma
tion" term on the right-hand side of (1) may be 
ignored. Alternatively, we can regard f as the excess 
above the Boltzmann distribution. 

In the problem of lifetimes we are concerned with 
casses in which 

f(e) = 8(e - eo) (2) 

initially, i.e. all pairs have energy e0. There are 
two aspects to the problem: 
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Fio. 1. Schematic dependence of the number-density, n, of binaries on time, t, where 
when t = 0. The three curves are described in the text, and t, is the half-life 

for curve I. 

a) What is meant by "lifetime"? 
b) How may it be calculated? 

Neither of these is straightforward, and we shall 
consider them in turn. 

II. THE MEANING OF LIFETIME 

Let 
" J . " 

f (e) de be the total number-density of 

all binaries. Its dependence on time may take a 
form decreasing asymptotically to zero, like curve 
I in Figure 1. 

We might then define lifetime as a kind of "half-
life", i.e. tj in the Figure, but this definition is of 
no use for very energetic (i.e. very "hard") binaries, 
which follow a curve like I I : initially a few of 
these may be destroyed, but the remainder become 
still more energetic (Heggie 1975a) and survive 
indefinitely. Even for "soft" binaries the concept of 
"half-life" is of somewhat restricted significance, 
since a few of them may become very hard and thus 
no longer subject to disruption; they follow a curve 
like III . 

An alternative which overcomes these difficulties 
is the definition ' 

( d l n n 1 ' 
dt /1=» 

(3) 

derived from the initial slope of the curve of n 
against t. This definition of lifetime is based entirely 
on direct disruption from energy e0, and ignores the 
role of intermediate encounters which, cumulatively, 
may lead to disruption at a much higher rate. The 
following example illustrates this difficulty. Let 

Q ( E , - M ) = A / e (4) 

r B/e2 for 0 ^ e' < e 
Q(e, « ' - « ) = J (5) 

|_ 0 otherwise. 

Though this choice might seem artificial, in fact (4) 
is the correct form for soft binaries (Heggie 1975a) 
and (5) has the correct form for e' J, 0, i.e., near 
the disruption barrier, where one might consider the 
role of intermediate encounters to be of special 
importance. Then it is shown in the Appendix that 
the solution of (1) and (2) yields 

n = ( ! - « ) £ ( l - ! ) - « e x p ( - p 0 n 3 t / | ) (6) 

{ ( 2 ' - a ) * + pon,t}dfc 
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where « s B / ( A + B), p<, e= (A + B) /e0. Con
sidering the limit a J, 1 at fixed t we find that 

n - » (1 — p0n3t) exp (p0n3t)'. Hence tj <^> and 
Pon3 

so tj <̂  t0 when B >̂ A, i.e., t0 is a very poor measure 
of lifetimes in this limit. 

In conclusion it seems best to use t$ as our measure 
of lifetime, but to restrict the concept to soft binaries 
only. Thus we remove the problem posed by curves 
like II in Figure 1. Equivalently, following Cruz-
Gonzalez and Poveda (1971), we may adopt ti/e, 
the e-folding time for the number-density of binaries. 

III. GENERAL CONSIDERATIONS IN THE 
CALCULATION OF LIFETIMES 

Fresh difficulties arise when we come to calculate 
the lifetime theoretically. An exception is the quan
tity to, which is very easy to calculate, since t0 = 
l/(n3Q(e0, — oo)), by (1). Although a formula of 
this type was used by Opik (1973) and by Heggie 
(1975a), we have already seen that it can yield 
a severe overestimate of t$. 

The type of estimate which appears most fre
quently in the literature (e.g. Ambartsumjan 1937) 
is of the form 

t i - p . (7) 
n3 I (e •— c0) Q(e0, £ — Co) de 

J -00 

which is based on the average rate at which energy 
is transferred to the binary by encounters. As Cruz-
Gonzalez and Poveda (1971) rightly pointed out, 
however, this formula may underestimate tj if en
counters lead to a small number of very large, 
disruptive changes in energy, for in such cases the 
average binding energy of an evolved population 
of binaries could be close to zero even though almost 
all are still bound. For this reason one might con
sider a third possibility, namely 

«s I (s — e0) Q(e0l e — e0) de 

which differs from tt in that we only consider 
encounters which leave the binary still bound. 

Note that we have offered little justification for 
the use of either ti or t2 as an estimate of tj, beyond 
the general understanding that the mean rate of 
change of the binding energy of a binary must be 
connected with its lifetime, in some sense. In prin
ciple it is necessary to solve (1) to find a formula 
for the lifetime, but even when we know approxi
mate forms for the functions Q (Heggie 1975a), 
equation (1) is too difficult to solve. One potentially 
hopeful avenue for progress might be offered by a 
Fokker-Planck treatment of (1), the right-hand side 
being expanded in the form 

n 3 - | f ( : e ) J ^ ( x , - y ) y d y j + i n 3 — 

| f ( E ) j M
M Q ( x , - y ) f d y } + ••• 

However, from the approximate expressions for Q 
already referred to, or else by methods similar to 
those of the following section in the present paper, 
it is easy to estimate that successive terms of this 
expansion are in the ratio 

- (/Je)-1 In (/?s),(/?e)-2,(/?e)-*,... 

where f f}*1 is the mean kinetic energy of the single 
stars, and we have estimated d/de by 1/e. If j8e <̂  1, 
as is the case for very soft pairs, successive terms 
of this expansion increase rapidly, and neglect of 
the higher terms, which is necessary for the Fokker-
Planck treatment, is not even justified in order of 
magnitude. 

The reason for the failure of the direct Fokker-
Planck treatment is related to that for preferring 
t2 to ti, and this offers some hope that a Fokker-
Planck treatment restricted to non-disruptive en
counters only may be justifiable. However, until 
this is demonstrated, if it can be, it seems unwar
ranted to supplement t t or t2 by the effects of 
"diffusion", corresponding to the second term in 
the Fokker-Planck expansion of (1). 

IV. CALCULATION OF LIFETIMES TO 
ORDER OF MAGNITUDE 

Expressions for the three estimates of lifetime 
may be obtained from results of calculations of the 
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functions Q (Heggie 1975a). However, since the 
latter results are only asymptotic expressions in cer
tain limits, the estimates of tj and t2 so obtained 
will be correct in order of magnitude only, certainly 
as far as non-dominant terms are concerned. If 
one is interested only in the integrals which appear 
in the denominators in the definitions of tx and t2 

then more refined results may be obtained. In this 
paper we shall confine ourselves to showing how 
the lifetimes may be estimated to order of magnitude. 

Consider a binary with components of mass mi, 
m2, such that its initial semi-major axis is a, its 
initial binding energy is c, and the initial relative 
velccity of its components is v. Let a third body 
of mass m3 approach with velocity V relative to 
the centre of mass of the binary, in such a way 
that its impact parameters to the components and 
to the centre of mass of the binary are pi, p2 and 
p, respectively. Since we consider only very soft 
binaries we have v <̂  V, and if we also assume that 

-<4-
a p + a 

:(9) 

then the encounter may be treated as impulsive. 
First we consider the case in which 

G(mi -I- m3) 
y~2 < Pi < a. (10) 

Then the motion of the third body is approximately 
rectilinear, and we readily estimate the impulsive 
change in v to be 

Av. 
Gm 3 Pi 
pi v 

( i i ) 

The binary will be frequently disrupted if Av J>, v, 
i.e., if 

Gm3 
p i < 

Vv 
(12) 

It is not difficult to see that the right-hand side 
here lies within the range for pi specified by (10). 
Using the estimate 

m t ' + m3 

mim2 
(13) 

we find that the destruction cross-section is 

whence 

to-

G'n^nyn^ 

V 2 ( m i + ma)e' 

(mi + ma) Ve 

n G2m m m2 

3 2 1 3 
Now the change in energy of the binary is 

Ae » - i mim2 

mx + m2 

((Av)2 + 2 y Ay). (14) 

On the impulse approximation Av is independent of 
y, and so the average of the second term on the 
right vanishes. Hence from (8) one obtains 

<Ae> " f mjiiij G2m| 

mi.+. m2 PiV2 Pidpi. 

The range of pi for which this expression is ap
proximately valid is given by (10), and so 

mjiiij G m3 , aV2 

(AE) I~> — In . 
mi + m2 V2 G(mi + m3) 

(15) 

If, however, we consider only encounters which do 
not disrupt the binary, i.e. when (12) is reversed, 
our estimate becomes 

mim2 G2m3 a*V(mi + m2)* 
<AE> "-' ~ ... , _ ^S-ln T^T. > (16) mx + m2 V2 G»ma 

which is of the same order as (15) if the masses are 
not too different. This means that (Ae) for all close 
encounters is approximately twice that for non-
disruptive close encounters only. Note, however, that 
in both cases there is another contribution from 
encounters close to the second component. 

Now we consider the remaining more distant 
encounters with a <̂  p <̂  Va/v, the upper limit 
being inserted for consistency with (9). Since forces 
are now tidal we have Av ^ Gm3a/ (p2V) and so 

< Ae > ~< "I mim2 
CPmla' , * • > * 

mi+m 2 p*V2 
p d p . 

mam2 G2mS 

mi + m2 V2 
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Thus the contribution from close encounters dom
inates by a logarithmic factor, whence 

(nu + m2)Vs 

F = 

G2m m m2ln (mV2/e) n 
1 2 3 v ' ' 3 

and t2 -— 2ta since (15) and (16) are comparable. 
Here we have ignored different mass-factors in the 
logarithms. 

These rough estimates of t0, tj and t2 have most 
of the important properties of the more refined 
estimates already referred to, differing from these 
only in numerical factors or non-dominant terms. In 
particular we see for very soft binaries that tx is 
considerably less than to, and we had anticipated 
that these woull be, respectively, an underestimate 
and an overestimate. They straddle the value of t2, 
which might be regarded as the most satisfactory 
means of estimating t$. However, the differences 
between the formulae, being logarithmic, are not 
great in practical cases. A numerical evaluation of 
t0 will be found in Heggie 1975a. 

I am indebted to Dr. S. J. Aarseth for reading 
this paper at the conference, and to him and to Prof. 
King, Prof. Poveda and Mrs. C. Allen for their 
interesting comments. 

APPENDIX 

Solution of equation (1) for a model problem. 
In this appendix we shall sketch the solution of 

(1), with the creation term omitted, using (4) and 
(5) for the functions Q. However, we shall not 
proceed beyond the calculation of n, the total number-
density of all binaries. 

Taking the Laplace transform of (1) with respect 
to the time-variable TE==n3t, we find that 

A = £„ + F(e) 
(Al) 

p + (A + B)/e 

where f0 is the initial form of f, a* denotes the 

de' f(e')€/-*. 

Turning (Al) into a differential equation for F, this 
may be solved if we take (2) for f0, whence 

'_ ( eo \ t -t 
= U + (A + B)/pJ 

x ( 7 T ( A + B)/p) 

J3 
pe A+B X 

e < «o 

e > e0 

Integrating (Al) over E we now find that 

n = _ i _ + ^ r - ^ - Y t a r ( - i - - r a d i . 
P + Po P3 \P + Po/ JO \l+U 

Despite appearances there is no singularity at p = 0, 
and the contour for the inversion of n can be taken 
into Re(p) < 0. By splitting up the £ — integration 
into two parts: 

fp/Po f-1 (*P/Po 

Jo Jo J -l 

we find that n becomes the sum of two functions, 
one of which is regular in Rc(p) < 0 and contributes 
nothing to the inversion, while the other, denoted by 
n2, has a branch point at p = — p0. We find that 

TTd (1 — a) p0 / — p 
n2 

/ - p v + " 
\p + pj esc va, 

where we have used the result 

J d£ ( i - T ) = ^ ~ '^ csc"!ra-

Deforming the inversion contour round the branch 
point and on either side of a cut from there to — oo 
along the real axis, we integrate by parts once to 
obtain the factor (p + po)"" in the integrand; i.e., 

f-p 
n = «_1 I 

V -0C 

dg 
( - p - P o ) ^ - d p , 

dp 

where g(p) e=a ( l — «) p2 (— p)-2+" exp (pr). Then 
(6) follows immediately. 
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DISCUSSION 

King: I believe that Heggie and I are very much in agreement, point by point. (Naturally, 
I hope that this means that we are both right.) To label the correspondences: Heggie's tt 
corresponds to what I have called Ambartzumian's break-up time; his t0 corresponds to 
what I referred to as the smaller probability that a single encounter will break up a binary; 
and his t2 corresponds to the total tidal effect, to which I referred earlier in answering 
Huang's question. The place where Heggie and I differ is that for smaller changes in energy 
he retains the rather intractable Boltzmann integral, whereas I prefer the more workable 
Fokker-Planck equation, even in the face of the fact that it is not a very close approximation. 
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