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Geometric Invariants of Cuspidal Edges
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on the occasion of her sixtieth birthday

Luciana de Fátima Martins and Kentaro Saji

Abstract. We give a normal form of the cuspidal edge that uses only diffeomorphisms on the source
and isometries on the target. Using this normal form, we study differential geometric invariants of
cuspidal edges that determine them up to order three. We also clarify relations between these invari-
ants.

1 Introduction

A generic classification of singularities of wave fronts was given by Arnol’d and Za-
kalyukin (see [1], for example). They showed that the generic singularities of wave
fronts in R3 are cuspidal edges and swallowtails. Recently, there have been numer-
ous studies of wave fronts from the viewpoint of differential geometry, for example,
[7, 11, 12, 15, 17]. Cuspidal edges are fundamental singularities of wave fronts in
R3. The singular curvature and the limiting normal curvature for cuspidal edges are
defined in [15] by a limit of geodesic curvatures and a limit of normal curvatures,
respectively. On the other hand, the umbilic curvature is defined in [9] for surfaces
in Euclidean 3-space with corank 1 singularities by using the first and second funda-
mental forms. So the umbilic curvature is defined for cuspidal edges. It is shown in
[9] that if the umbilic curvature κu is non-zero at a singular point, then there exists
a unique sphere having contact not of type An (for example, D4, E6, etc.) with the
surface in that point: the sphere with center in the normal plane of the surface at the
point, with radius equal to 1/κu, and in a well-defined direction of the normal plane
(see Section 4).

Therefore, the singular, the limiting normal, and the umbilic curvatures are in-
variants defined by using fundamental tools of differential geometry of surfaces and
singularity theory, and they are fundamental invariants of cuspidal edges. Needless
to say, the curvature and torsion of a cuspidal edge locus as a space curve in R3 are
also fundamental invariants.

In this paper we clarify the relations amongst these invariants and also make a list
of invariants that determine cuspidal edges up to order three. We show that, in the
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case of cuspidal edges, the umbilic curvature κu coincides with the absolute value of
limiting normal curvature κn (Theorem 4.3). In this sense, the umbilic curvature is
a generalization of the normal curvature for surfaces with corank 1 singularities. It
should be remarked that the umbilic curvature does not require a well-defined unit
normal vector, and it is meaningful as a geometric invariant of surfaces with corank 1
singularities in general. We show that the singular curvature κs and the limiting nor-
mal curvature κn at a singular point of a surface M in R3 with singularities consisting
of cuspidal edges are equivalent to the principal curvatures of a regular surface in the
following sense. When M is a regular surface in R3 given in the Monge form, that is,
by the equation z = f (x, y) for some smooth function f having first derivatives with
respect to x and y vanishing at (0, 0) (or, equivalently, its tangent plane at the origin
is given by z = 0), then, taking the x and y axes to be in principal directions at the
origin, the surface M assumes the local form

f (u, v) =
1

2
(α1u2 + α2v2) + h.o.t.,

where α1, α2 are the principal curvatures at the origin and h.o.t. represents terms
whose degrees are greater than two.

Now, if M is a surface in R3 with singularities consisting of cuspidal edges, we
show that M can be parametrized by an equation of Monge type (just using changes
of coordinates in the source and isometries in the target, which do not change the
geometry of the surface) that we call normal form, given by

f (u, v) =
1

2
(2u, κsu

2 + v2 + h.o.t., κnu2 + h.o.t.)

(see Section 3 and Theorem 4.4). Therefore, κs and κn can be considered as the prin-
cipal curvatures of M at singular points. But we can say even more about these two
invariants. While for a regular curve in a regular surface, it holds that κ2 = κ2

n + κ2
g ,

where κn and κg are the normal and geodesic curvatures of the curve, respectively,
and κ is the curvature of the curve as a space curve, for the singular curve consists of
cuspidal edges, the relation

κ2 = κ2
n + κ2

s

holds (see Corollary 4.5).
Furthermore, using the normal form, we detect (Section 5) invariants up to order

three, and show (Section 6) that the torsion of the curve consisting of cuspidal edges
as a space curve, κs, κn and these three invariants determine the cuspidal edge up
to order three (see Theorem 6.1). In a joint work of M. Umehara, K. Yamada and
the authors [10], we consider intrinsic properties of these invariants and the relation
between boundedness of Gaussian curvature near cuspidal edges.

The Whitney umbrella (or cross-cap) is the only singularity of a generic map
from a surface to R3 ([21]). Its normal form was given by J. M. West in [20], and
it was shown to be useful for considering the differential geometry of surfaces near
the singular point; see also [2]. For instance, using this normal form, the authors in
[6] showed that there are three fundamental intrinsic invariants for cross-caps and
proved the existence of extrinsic invariants. Some other works where this normal
form was important are [3–6, 9, 13, 14, 19]. The normal form for cuspidal edges is
fundamental in this paper for finding geometric invariants of cuspidal edges, and the
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authors believe that this normal form can be used for other problems similar to those
considered in the references mentioned just above.

2 Preliminaries

The unit cotangent bundle T∗1 R3 of R3 has the canonical contact structure and can
be identified with the unit tangent bundle T1R3. Let α denote the canonical contact
form on it. A map i : M → T1R3 is said to be isotropic if dim M = 2 and the pull-back
i∗α vanishes identically. An isotropic immersion is called a Legendrian immersion.
We call the image of π ◦ i the wave front set of i, where π : T1R3 → R3 is the canonical
projection, and we denote it by W (i). Moreover, i is called the Legendrian lift of
W (i). With this framework, we define the notion of fronts as follows. A map-germ
f : (R2, 0) → (R3, 0) is called a wave front or a front if there exists a unit vector field
ν of R3 along f such that L = ( f , ν) : (R2, 0)→ (T1R3, 0) is a Legendrian immersion
by an identification T1R3 = R3×S2, where S2 is the unit sphere in R3 (cf. [1]; see also
[8]). A point q ∈ (R2, 0) is a singular point if f is not an immersion at q.

A singular point p of a map f is called a cuspidal edge if the map-germ f at p
is A-equivalent to (u, v) 7→ (u, v2, v3) at 0. (Two map-germs f1, f2 : (Rn, 0) →
(Rm, 0) are A-equivalent if there exist diffeomorphisms S : (Rn, 0) → (Rn, 0) and
T : (Rm, 0)→ (Rm, 0) such that f2 ◦ S = T ◦ f1.) Therefore, if the singular point p of
f is a cuspidal edge, then f at p is a front, and furthermore, they are one of two types
of generic singularities of fronts (the other one is a swallowtail, which is a singular
point p of f satisfying that f at p is A-equivalent to (u, v) 7→ (u, u2v+3u4, 2uv+4u3)
at 0). So we establish notation and a fundamental property of singularities of fronts,
which are used in the sequel.

Let f : (R2, 0) → (R3, 0) be a front and ν a unit normal vector field along f , and
take (u, v) as a coordinate system of the source. The function

λ = det( fu, fv, ν)

is called the signed area density, where fu = ∂ f /∂u and fv = ∂ f /∂v. A singular
point q of f is called non-degenerate if dλ(q) 6= 0. If q is a non-degenerate singular
point of f , then the set of singular points S( f ) is a regular curve, which we shall call
the singular curve at q, and we shall denote by γ a parametrization for this curve.
The tangential 1-dimensional vector space of the singular curve γ is called the singu-
lar direction. Furthermore, if q is a non-degenerate singular point, then a non-zero
smooth vector field η on (R2, 0) such that d f (η) = 0 on S( f ) is defined. We call η a
null vector field and its direction the null direction; for details, see [15].

Lemma 2.1 ([16, Corollary 2.5, p. 735], [8]) Let 0 be a singular point of a front
f : (R2, 0)→ (R3, 0). Then 0 is a cuspidal edge if and only if dλ(η) 6= 0 at 0. In partic-
ular, at a cuspidal edge, the null direction and the singular direction are transversal.

In this paper we shall use the first and second fundamental forms defined in [9]
for surfaces in R3 with corank 1 singularities and given as follows. Let q ∈ R2 be a
corank 1 singular point of f : R2 → R3 and p = f (q). The Euclidean metric 〈 · , · 〉
of R3 induces a pseudometric on TqR2 given by the first fundamental form I : TqR2 ×
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TqR2 → R defined by I (X,Y ) =
〈

d fq(X), d fq(Y )
〉

, where d fq is the differential map
of f at q. The coefficients of I at q are

E(q) = 〈 fu, fu〉 (q), F(q) = 〈 fu, fv〉 (q), and G(q) = 〈 fv, fv〉 (q),

and, given X = x∂u + y∂v ∈ TqR2, then I (X,X) = x2E(q) + 2xyF(q) + y2G(q), where
(u, v) is a coordinate system on the source and ∂u = (∂/∂u)q and ∂v = (∂/∂v)q.

Let us denote the image of f by M and the tangent line to M at p by TpM =

Im d fq. So there is a plane NpM satisfying TpR3 = TpM ⊕ NpM. Consider the
orthogonal projection

⊥ : TpR3 −→ NpM

w −→ w⊥.

The second fundamental form II : TqR2 × TqR2 → NqM is defined by II (∂u, ∂u) =

f⊥uu (q), II (∂u, ∂v) = f⊥uv (q) and II (∂v, ∂v) = f⊥vv (q), and we extend it in the unique
way as a symmetric bilinear map. The second fundamental form along a normal
vector ν ∈ NpM is the function II ν : TqR2 × TqR2 → R defined by II ν(X,Y ) =
〈II (X,Y ), ν〉, and its coefficients at q are

lν(q) =
〈

f⊥uu (q), ν
〉
, mν(q) =

〈
f⊥uv (q), ν

〉
, nν(q) =

〈
f⊥vv (q), ν

〉
.

It was shown in [9] that ∆p = {II (X,X)| I (X,X)1/2 = 1} is a parabola in NpM,
which can degenerate in a half-line, line or a point. (∆p is called the curvature
parabola of M at p.) If p is a cuspidal edge, ∆p is a half-line in NpM; for details,
see [9].

3 Normal Form of Cuspidal Edges

In this section we give a normal form of cuspidal edges by using only coordinate
transformations on the source and isometries on the target. These changes of coor-
dinates preserve the geometry of the image.

Let f : (R2, 0) → (R3, 0) be a map-germ and let 0 be a cuspidal edge with f =
( f1, f2, f3). Let ν = (ν1, ν2, ν3) be a unit normal vector field along f and let (u, v)
be the usual Cartesian coordinate system of R2. So rank d f0 = 1 and then we may
assume that fu(0) =

(
( f1)u(0), 0, 0

)
, where ( f1)u(0) 6= 0, by a rotation of R3 if nec-

essary. The map on the source (ũ, ṽ) = ( f1(u, v), v) is a coordinate transformation.
In fact,

det

(
ũu ũv

ṽu ṽv

)
= det

(
ũu ũv

0 1

)
= ũu = ( f1)u 6= 0 at 0.

By coordinates (ũ, ṽ), f is written f (ũ, ṽ) = (ũ, f̃2(ũ, ṽ), f̃3(ũ, ṽ)) for some func-

tions f̃2, f̃3. Needless to say, ( f̃2)u = ( f̃3)u = ( f̃2)v = ( f̃3)v = 0 at 0.
Since 0 is a cuspidal edge and η = ∂v at 0 is a null vector field, λv 6= 0. Rewriting

f (u, v) = (u, f2(u, v), f3(u, v)), we have

λ = det

 1 ( f2)u ( f3)u

0 ( f2)v ( f3)v

ν1 ν2 ν3

,
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and therefore (0, ( f2)vv, ( f3)vv) 6= 0. Since S( f ) is a regular curve, S( f ) is transverse to
the v-axis. Thus, S( f ) can be parametrized by (u, g(u)). Considering the coordinate
transformation on the source

ũ = u, ṽ = v − g(u),

we may assume that f (u, v) = (u, f2(u, v), f3(u, v)) and S( f ) = {v = 0}.
On the other hand, there exist functions a2, a3, b2, b3 such that

fi(u, v) = ai(u) + vbi(u, v), i = 2, 3.

Since fv = 0 on {v = 0}, it holds that bi(u, v) = 0 on {v = 0}, i = 1, 2. Then by
the Malgrange preparation theorem, there exist functions b̄2, b̄3 such that bi(u, v) =
vb̄i(u, v), i = 1, 2.

Rewriting b̄ as b, we may assume that f is of the form

f (u, v) =
(

u, a2(u) + v2b2(u, v), a3(u) + v2b3(u, v)
)
.

By the above arguments, fvv(0) 6= 0; that is, (b2, b3) = (( f2)vv, ( f3)vv) 6= (0, 0)
at 0.

Now, using the rotation of R3 given by the matrix

(3.1) Aθ =

(
1 0
0 Ãθ

)
, Ãθ =

(
cos θ − sin θ
sin θ cos θ

)
,

we get

Aθ f =
(

u, cos θa2(u)− sin θa3(u) + v2[cos θb2(u, v)− sin θb3(u, v)],

sin θa2(u) + cos θa3(u) + v2[sin θb2(u, v) + cos θb3(u, v)]
)
.

Since (b2, b3) 6= (0, 0) at 0, there exists some number θ such that

(3.2) cos θb2(0)− sin θb3(0) > 0 and sin θb2(0) + cos θb3(0) = 0.

Setting

ā2(u) = cos θa2(u)− sin θa3(u), b̄2(u, v) = cos θb2(u, v)− sin θb3(u, v),

ā3(u) = sin θa2(u) + cos θa3(u), b̄3(u, v) = sin θb2(u, v) + cos θb3(u, v),

f is rewritten as

f (u, v) =
(

u, ā2(u) + v2b̄2(u, v), ā3(u) + v2b̄3(u, v)
)
,

with ā2(0) = ā′2(0) = ā3(0) = ā′3(0) = 0, b̄2(0) 6= 0 and b̄3(0) = 0, where ā′2 =
dā2/du, for example. We remark that b̄2(0) > 0 holds.

Next, using the coordinate transformation on the source

ũ = u, ṽ = v
√

2b̄2(u, v),

one can rewrite f as

f (ũ, ṽ) =
(

ũ, ā2(ũ) +
v2

2
, ā3(ũ) + ṽ2b̃3(ũ, ṽ)

)
,

for some function b̃3 satisfying b̃3(0) = 0.
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Rewriting ũ as u, ā as a and b̃ as b, we may assume that f is of the form

f (u, v) =
(

u, a2(u) +
v2

2
, a3(u) + v2b3(u, v)

)
.

Since b3(0) = 0, there exist functions a4(u) and b4(u, v) such that b3(u, v) = a4(u) +
vb4(u, v), with a4(0) = 0. We remark that, as 0 is a cuspidal edge, dλ(η) 6= 0. This is
equivalent to (b3)v(0) 6= 0. Thus, b4(0) 6= 0.

Hence, f can be written as

f (u, v) =
(

u, a2(u) +
v2

2
, a3(u) + v2a4(u) + v3b4(u, v)

)
.

Changing the numbering, we get

(3.3) f (u, v) =
(

u, a1(u) +
v2

2
, b2(u) + v2b3(u) + v3b4(u, v)

)
,

where a1(0) = a′1(0) = b2(0) = b′2(0) = b3(0) = 0, b4(0) 6= 0. By rotations
(u, v) 7→ (−u,−v) on R2 and (x, y, z) 7→ (−x, y,−z) on R3, we may assume that
b′′2 (0) ≥ 0. Summarizing the above arguments, we have the following theorem.

Theorem 3.1 Let f : (R2, 0) → (R3, 0) be a map-germ and let 0 be a cuspidal edge.
Then there exist a diffeomorphism-germ ϕ : (R2, 0) → (R2, 0) and an isometry-germ
Φ : (R3, 0)→ (R3, 0) satisfying

Φ ◦ f ◦ ϕ(u, v) =(3.4) (
u,

a20

2
u2 +

a30

6
u3 +

1

2
v2,

b20

2
u2 +

b30

6
u3 +

b12

2
uv2 +

b03

6
v3
)

+ h(u, v),

(b03 6= 0, b20 ≥ 0), where

h(u, v) =
(

0, u4h1(u), u4h2(u) + u2v2h3(u) + uv3h4(u) + v4h5(u, v)
)
,

with h1(u), h2(u), h3(u), h4(u), h5(u, v) smooth functions.

We call this parametrization the normal form of cuspidal edges. One can easily
verify that all coefficients of (3.4) are uniquely determined, since the rotation (3.2)
means that ηη f (0) = (0, 1, 0), where η f means the directional derivative d f (η).
This unique expansion of a cuspidal edge implies that the above coefficients can be
considered as geometric invariants of the cuspidal edge. It means that any cuspidal
edge has this form using only coordinate changes on the source and isometries of R3.

We shall deal with the six geometric invariants of cuspidal edges given by the for-
mula (3.4) in the following sections.

4 Singular Curvature, Normal Curvature, and Umbilic Curvature

In this section, we review the singular curvature κs, the limiting normal curvature
κn ([15]), and the umbilic curvature κu ([9]). We show κn = κu and compute the
curvature κ and the torsion τ , as well as κs and κn, of the cuspidal edge given by
(3.4). As an immediate consequence we obtain an expression relating the singular
and limiting normal curvatures with the curvature of the cuspidal curve as a space
curve.
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Let f : (R2, 0) → (R3, 0) be a map-germ and let 0 be a cuspidal edge. Let γ(t) be
the singular curve, γ̂ = f ◦ γ, and choose the null vector η(t) such that (γ′(t), η(t))
is a positively oriented frame field along γ. The singular curvature κs and the limiting
normal curvature κν at t are the functions ([15])

κs(t) = sgn(dλ(η))
det(γ̂′(t), γ̂′′(t), ν(γ(t)))

|γ̂′(t)|3
= sgn(dλ(η))

〈γ̂′′(t), n(t)〉
|γ̂′(t)|2

,(4.1)

κν(t) =
〈γ̂′′(t), ν(γ(t))〉
|γ̂′(t)|2

, n(t) = ν(γ(t))× γ̂′(t)

|γ̂′(t)|
,

where × denotes the vector product in R3. Then κs(t) can be considered as the lim-
iting geodesic curvature of curves with the singular curve on their right-hand sides.
The definitions given in (4.1) do not depend on the parametrization for the singular
curve, nor the orientation of R2. Furthermore, κs does not depend on the choice of
ν, and κν depends on the choice of ν. For more details see [15]. We consider the
absolute value of κν and set κn = |κν |. We call κn the absolute normal curvature or
just the normal curvature of the cuspidal edge.

The umbilic curvature κu is a function defined in [9] for corank 1 singular points
of surfaces in R3, unless for Whitney umbrellas (i.e., surfaces image of any map germ
(R2, 0)→ (R3, 0), which is A-equivalent to (x, y2, xy)), and so κu is well defined for
the cuspidal edge f at γ̂(t). Its definition is given in terms of the first and second
fundamental forms of M = Im f defined in Section 2.

Under the above setting, let α : R → NpM be a parametrization for ∆p, where
p = γ̂(t). Since ∆p is a half-line, |α(s) × α′(s)|/|α′(s)| does not depend on the
parametrization α(s) for ∆p, nor on the value s satisfying α′(s) 6= 0. Set κu(t) =
|α(s)× α′(s)|/|α′(s)|. Since NpM is a normal plane of γ̂′(t),

κu(t) =
|α(s)× α′(s)|
|α′(s)|

=
∣∣∣〈 |α(s)× α′(s)|

|α′(s)|
,
γ̂′(t)

|γ̂′(t)|

〉∣∣∣
=
| det(α(s), α′(s), γ̂′(t))|
|α′(s)× γ̂′(t)|

(4.2)

holds for any s such that α′(s) 6= 0. Notice that κu(t) is the distance between p and
the line ` containing ∆p.

For later computation, it is convenient to take an adapted pair of vector fields and
an adapted coordinate system. If a singular point of the map-germ f is a cuspidal
edge, then S( f ) is a regular curve on the source and the null vector field is transverse
to S( f ). Thus ,we can take a pair of vector fields and a coordinate system as follows:
A pair of vector field (ξ, η) on (R2, 0) is called adapted if it satisfies the following:

(a) ξ is tangent to S( f ) on S( f );
(b) η is a null vector on S( f );
(c) (ξ, η) is positively oriented.

A coordinate system (u, v) on (R2, 0) is called adapted if it satisfies the following:

(a) the u-axis is the singular curve,
(b) ∂v gives a null vector field on the u-axis, and
(c) there are no singular points except the u-axis.
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We remark that the coordinate system (u, v) in the formula (3.4) is adapted. Con-
dition (a) for adapted vector field (ξ, η) is characterized by ξλ = 0 on S( f ), where
λ is the signed area density, and Condition (b) is characterized by η f = 0 on S( f ).
Formulas for coefficients in (3.3) by using adapted coordinate systems are stated in
the sequel. In [10], we also define adapted coordinate system. In that definition, a
condition | fu| = 1 is imposed in addition to the above, but we do not assume it here.

Remark 4.1 If (ξ, η) is an adapted pair of vector fields, then ξη f = 0 holds on
S( f ), since η f = 0 on S( f ). Furthermore, {ξ f , ηη f , ν} is linearly independent, since
det(ξ f , ηη f , ν) = ηλ 6= 0 at 0. For the same reason, if (u, v) is an adapted coordinate
system, then fuv = 0 holds on S( f ) and { fu, fvv, ν} is linearly independent.

Taking an adapted coordinate system, it holds that

(4.3) κs(u, 0) = sgn(λv)
det( fu, fuu, ν)

| fu|3
(u, 0).

See [15] for details.
For an adapted pair of vector fields (ξ, η) on (R2, 0), it can be easily seen that

κs(u, v) = sgn(ηλ)
det(ξ f , ξξ f , ν)

|ξ f |3
(u, v),

and

κn(u, v) =
| det(ξ f , ηη f , ξξ f )|
|ξ f |2|ξ f × ηη f |

(u, v)(4.4)

=
sgn(ηλ 〈ν, ξξ f 〉) det(ξ f , ηη f , ξξ f )

|ξ f |2|ξ f × ηη f |
(u, v),

where (u, v) ∈ S( f ).

Lemma 4.2 Formula (4.4) of κn(u, v) does not depend on the choice of pairs of
adapted vector fields.

Proof Let us take another pair of adapted vector fields (ξ̃, η̃) such that

(4.5) ξ̃ = aξ + bη, η̃ = cξ + dη,

where a, b, c, d are smooth functions of (u, v) satisfying ad − bc 6= 0, and on S( f ),

satisfying b = c = 0. Moreover, as (ξ̃, η̃) is positively oriented on S( f ), ad > 0 holds
on S( f ). Then we have

ξ̃ f = aξ f + bη f = aξ f (on S( f )),(4.6)

ξ̃ξ̃ f = a(ξaξ f + aξξ f + ξbη f + bξη f ) + b(ηaξ f + aηξ f + ηbη f + bηη f )

= aξaξ f + a2ξξ f (on S( f )),

η̃ f = cξ f + dη f

η̃η̃ f = c(ξcξ f + cξξ f + ξd η f + dξη f ) + d(ηcξ f + cηξ f + ηd η f + dηη f )

= dηcξ f + d2ηη f (on S( f )).
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Then it holds that

det(ξ̃ f , η̃η̃ f , ξ̃ξ̃ f )

|ξ̃ f |2|ξ̃ f × η̃η̃ f |
=

a3d2 det(ξ f , ηη f , ξξ f )

|a3||d2||ξ f |2|ξ f × ηη f |
= sgn(a)

det(ξ f , ηη f , ξξ f )

|ξ f |2|ξ f × ηη f |
,

and the lemma follows.

Since formula (4.4) does not depend on the choice of pairs of adapted vector fields,
one can choose ξ = ∂u, η = ∂v and an adapted coordinate system, getting

(4.7) κn(u, 0) =
1

E

| det( fu, fvv, fuu)|
| fu × fvv|

(u, 0) .

We can state properties of the umbilic curvature and singular curvature in terms
of the second fundamental form and also relate the umbilic and normal curvatures.

Theorem 4.3 Let f : (R2, q) → (R3, p) be a map-germ, q a cuspidal edge, and ν a
unit normal vector field along f . Then the following hold:

(i) ν(q) is orthogonal to the line ` which contains ∆p . Therefore, κu(q) = |II ν (X,X)|
I (X,X) ,

for any X ∈ TqR2.
(ii) κu(q) = κn(q).
(iii) κs(q) = 0 if and only if II (X,X) is parallel to ν at p, where X is a non-zero

tangent vector to S( f ) at q.
(iv) κu(q) = κs(q) = 0 if and only if II (X,X) = 0, where X is a non-zero tangent

vector to S( f ) at q.

Proof Let M be the image of f . It was shown in [9, Lemma 1.1] that the second
fundamental form does not depend on the choice of the local system of coordinates
on (R2, 0). So we can take an adapted coordinate system (u, v).

Writing γ(t) = (u(t), 0) and γ̂(t) = f ◦ γ(t), we have γ̂′(t) = u′(t) fu(u(t), 0).
Since fv(u(t), 0) = 0, X = x∂u + y∂v is a unit vector in Tγ(t)R

2 (with relation the
pseudometric given by I ) if and only if x = ±1/

√
E(u(t), 0). As fuv(u(t), 0) = 0, a

parametrization for ∆γ̂(t) at γ̂(t) is

α(s) =
1

E(u(t), 0)
f⊥uu (u(t), 0) + s2 f⊥vv (u(t), 0),

and so α′(s) = 2s f⊥vv (u(t), 0).
Then, to conclude (i), it is enough to verify that ν(q) is orthogonal to f⊥vv (q). On

S( f ) = {(u, v); v = 0} it also holds that fv = 0, and by Remark 4.1, fvv 6= 0 holds.
Therefore, we can write fv = vh, where h(u, v) 6= 0 on (R2, 0), which implies that

ν = ε
fu × h

| fu × h|
= ε

fu × fvv

| fu × fvv|
= ε

fu × f⊥vv

| fu × fvv|
on the singular set, where ε = 1 or−1, and therefore ν is orthogonal to f⊥vv on S( f ),
as we claimed. So, it follows from [9, Remark 2.10(3)] that

κu(q) =
|II ν(X,X)|
I (X,X)

holds for any X ∈ TqR2.
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Denoting κu(t) by κu(u, 0), it holds from (4.2) that

κu(u, 0) =
| det( 1

E f⊥uu + s2 f⊥vv , 2s f⊥vv , fu)|
|2s f⊥u × fvv|

(u, 0) =
| det( fuu, 2s fvv, fu)|

E|2s fu × fvv|
(u, 0).

Therefore, from (4.7), we get that κu(u, 0) = κn(u, 0), concluding (ii).
Hence,

κu(u, 0) =
| det( fu, fvv, fuu)|

E| fu × fvv|
=

1

E

∣∣∣〈 fu × fvv

| fu × fvv|
, fuu

〉∣∣∣
=
| 〈ν, fuu〉 |

E
=
|
〈
ν, f⊥uu

〉
|

E
,

(4.8)

at q = (u, 0).
Now, consider the orthonormal frame {ν(q), ν(q) × fu(q)/| fu(q)|} for NpM.

Noticing that det( fu, fuu, ν) = det( fu, f⊥uu , ν) at q, then, from (4.3) and (4.8), it holds
that

1

E
II (∂u, ∂u) =

1

E
f⊥uu = κuν + sgn(λv)κs ν ×

fu

| fu|
,

at q, which implies that | II (∂u, ∂u)/E(q)|2 = κ2
u(q) + κ2

s (q), and consequently we
conclude (iii) and (iv) of the theorem.

A standard approach to getting information about the geometry of surfaces is
analyzing their generic contacts with planes and spheres. Such contacts are measured
by composing the implicit equation of the plane or sphere with the parametrisation
of the surface and seeing what types of singularities arise. Then we label the contact
according with the type of singularity. In [9] Nuño-Ballesteros and the first author
deal with such study for surfaces in R3 with corank 1 singularities. We recall that a
singular point of a function is said to be of type Σ2,2 if all of the partial derivatives of
the function up to order 2 at the singular point are equal to zero. With the conditions
of Theorem 4.3 and by [9, Theorems 2.11 and 2.15], it follows that (a) if κn(q) = 0,
then the plane at p orthogonal to ν(q) is the only plane in R3 having contact of type
Σ2,2 with f ; (b) if κn(q) 6= 0, then the sphere with center at

u = p + ε
1

κn(q)
ν(q)

is the only sphere in R3 having contact of type Σ2,2 with f , where ε = sgn(II ν(X,X)),
for any unit vector X ∈ TqR2.

When f is of normal form, the relations between the singular curvature, the lim-
iting normal curvature (so, the umbilic curvature), and curvature and torsion of the
space curve f |S( f ) are given in the following result.

Theorem 4.4 Let f (u, v) be a map-germ of the form (3.4). For the space curve f |S( f )

at the origin, it holds that

κs = a20, κ′s = a30 + b12b20, κn = κu = b20, κ′n = b30 − a20b12,

κ =
√

a2
20 + b2

20, κ′ =
a20a30 + b20b30√

a2
20 + b2

20

, τ =
a20a30 − b20a30

a2
20 + b2

20

.
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Proof The curvature and the torsion of the curve γ̂ = f ◦ γ are calculated as usual
and we shall omit that here. Using the parametrization f (u, v) given by (3.3), we
have:

fu =
(

1, a′1, b
′
2 + v2b′3 + v3(b4)u

)
and fv =

(
0, v, 2vb3 + 3v2b4 + v3(b4)v

)
,

where a′1 = da1/du and b′i = dbi/du for i = 2, 3. This implies that the u-axis is the
singular curve and the v-direction is the null direction. So (u, v) is an adapted system
of coordinates. Since fu(0) = (1, 0, 0), fuu(0) = (0, a′′1 (0), b′′2 (0)), fvv(0) = (0, 1, 0), a
unit normal vector at 0 is ν = (0, 0, 1) and the signed area density satisfies λv(0) = 1.
Then, using (4.3) and (4.8), we get

κs(0) = a′′1 (0) = a20 and κn(0) = b′′2 (0) = b20.

As a consequence, we have the following corollary.

Corollary 4.5 Let f : (R2, 0) → (R3, 0) be a map-germ, let 0 be a cuspidal edge,
and let γ(t) be a parametrization of S( f ), and γ̂(t) = f ◦ γ(t). Let κ(t) be the curva-
ture of γ̂(t) as a curve in R3, κs(t) its singular curvature and κn(t) its limiting normal
curvature. Then

κ(t)2 = κs(t)2 + κn(t)2.

5 Other Geometric Invariants up to Order Three

Comparing (3.4) and Theorem 4.4, there are three other independent invariants of
cuspidal edges up to order three.

5.1 Cuspidal Curvature

The cuspidal curvature κc for cuspidal edges is defined in [10] as

κc(u, v) =
|ξ f |3/2 det(ξ f , ηη f , ηηη f )

|ξ f × ηη f |5/2
(u, v), (u, v) ∈ S( f ),

where (ξ, η) is an adapted pair of vector fields on (R2, 0). If f (u, v) is a map-germ of
the form (3.4), then it holds that κc(0, 0) = b03. See [10] for detailed description and
geometric meanings.

5.2 Cusp-directional Torsion

Let f = ( f1, f2, f3) : (R2, 0) → (R3, 0) be a map-germ, 0 a cuspidal edge, and γ(t)
a parametrization of S( f ). Take a pair of adapted vector fields (ξ, η) on (R2, 0). We
define the cusp-directional torsion (or cuspidal torsion for short) on singular points
consisting of cuspidal edges as follows:

(5.1) κt (u, v) =
det(ξ f , ηη f , ξηη f )

|ξ f × ηη f |2
(u, v)

− det(ξ f , ηη f , ξξ f ) 〈ξ f , ηη f 〉
|ξ f |2|ξ f × ηη f |2

(u, v), (u, v) ∈ S( f ).
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By Remark 4.1, the denominator of κt (u, v) does not vanish, and therefore κt is a
bounded function on cuspidal edges. The following proposition shows that the cusp-
directional torsion is well defined.

Proposition 5.1 The definition of cusp-directional torsion does not depend on the
choice of the pair (ξ, η) of adapted vector fields on (R2, 0).

Proof Define a new pair (ξ̃, η̃) of adapted vector fields as in (4.5). By (4.6), we have

ξ̃η̃η̃ f = x1ξ f + x2ηη f + adηcξξ f + ad2ξηη f

holds on S( f ), where x1, x2 are some functions. Thus, again by (4.6), it holds that

det(ξ̃ f , η̃η̃ f , ξ̃η̃η̃ f )

|ξ̃ f × η̃η̃ f |2
−

det(ξ̃ f , η̃η̃ f , ξ̃ξ̃ f )
〈
ξ̃ f , η̃η̃ f

〉
|ξ̃ f |2|ξ̃ f × η̃η̃ f |2

=
det(ξ f , ηη f , ηcξξ f + dξηη f )

d|ξ f × ηη f |2
− 〈ξ f , ηcξ f + dηη f 〉 |ξ f , ηη f , ξξ f |

d|ξ f |2|ξ f × ηη f |2

=
det(ξ f , ηη f , ξηη f )

|ξ f × ηη f |2
− det(ξ f , ηη f , ξξ f ) 〈ξ f , ηη f 〉

|ξ f |2|ξ f × ηη f |2
.

Thus, the proposition follows.

In the following equation we give the expression of the cusp-directional torsion
for an adapted coordinate system:

κt (u, 0) =
det( fu, fvv, fuvv)

| fu × fvv|2
(u, v)− det( fu, fvv, fuu) 〈 fu, fvv〉

| fu|2| fu × fv|2
(u, 0).

Moreover, if (u, v) satisfies 〈 fu, fvv〉 (u, 0) = 0, then we have the following simple
expression:

κt (u, 0) =
det( fu, fvv, fuvv)

| fu × fvv|2
(u, 0).

The next result gives κt (0) for the normal form of cuspidal edges, and we omit its
proof, as it is a straightforward calculation.

Proposition 5.2 Let f be a map-germ of the form (3.4). Then κt (0) = b12 holds.

Let us state the geometric meaning of the invariant κt .

Proposition 5.3 Let f : (R2, 0)→ (R3, 0) be a map-germ, 0 a cuspidal edge, ν a unit
normal vector field along f , γ(t) a parametrization of S( f ), and q ∈ S( f ). If prv ◦ f is
locally a bijection, then κt = 0 on S( f ) near q. Here, prv is the orthogonal projection to
the orthogonal plane to v = Im d f0(T0R2)× ν(0).

Proof We may assume that f is given by (3.3). Then

prν(0) ◦ f (u, v) =
(

u, a2(u) + v2a3(u) + v3b(u, v)
)
.

For a sufficiently small u0, (u0, a2(u0) + a3(u0)v2 + v3b(u0, v)) is located on the line
u = u0. If u0 6= u1, then these lines do not have a crossing. Hence, prv ◦ f is locally
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bijective if and only if gu(v) = a2(u) + a3(u)v2 + v3b(u, v) is monotone, for any
sufficiently small u. Since

g′u(0) = 0, g′′u (0) = 2a3(u) and g′′′u (0) = 6b(u, 0),

a necessary condition that prν(0) ◦ f is locally bijective is a3(u) = 0, for any sufficiently
small u. Since a3(0) = 0 and a′3(0) = κt (0), this proves the assertion.

Let f : (R2, 0)→ (R3, 0) be a map-germ, 0 a cuspidal edge, and M the image of f .
Then the slice locus M ∩ N0M is a cusp. When a pair of adapted vector field (ξ, η)
satisfies 〈ξ f , ηη f 〉 ≡ 0 on S( f ), then ηη f ∈ N0M points to the direction where
the cusp comes in N0M. We call this direction of the cusp-direction. Proposition
5.3 implies that the cusp-directional torsion measures the rotation of cusp-direction
along the singular curve of the cuspidal edge. This is a reason that we call κt cusp-
directional torsion. Remark that (5.1) is well defined for non-degenerate singularities
whose null direction is transverse to the singular direction (for example, the cuspidal
cross cap (u, v) 7→ (u, v2, uv3)). In the appendix, a global property of κt is discussed.

5.3 Edge Inflectional Curvature

The invariants introduced in the previous sections for a map-germ given by (3.4)
suggest that there is one more geometric invariant that should tell us about a30 or b30.
Let (ξ, η) be a pair of adapted vector fields on (R2, 0). We define the edge inflectional
curvature as follows:

κi(u, v) =
det(ξ f , ηη f , ξξξ f )

|ξ f |3|ξ f × ηη f |
(u, v)− 3

〈ξ f , ξξ f 〉 det(ξ f , ηη f , ξξ f )

|ξ f |5|ξ f × ηη f |
(u, v),

(u, v) ∈ S( f ). If where ξ is chosen satisfying |ξ f | = 1 on S( f ), then we have

κi(u, v) =
det(ξ f , ηη f , ξξξ f )

|ξ f × ηη f |
(u, v).

Proposition 5.4 The function κi does not depend on the choice of the pair (ξ, η) of
adapted vector fields.

Proof Define a new pair (ξ̃, η̃) of adapted vector fields as in (4.5). By (4.6), we have

ξ̃ξ̃ξ̃ f = a
(

(ξa)2 + aξξa
)
ξ f + 3a2ξaξξ f + a3ξξξ f

holds on S( f ). Thus, again by (4.6), we see that

det(ξ̃ f , η̃η̃ f , ξ̃ξ̃ξ̃ f )

|ξ̃ f |3|ξ̃ f × η̃η̃ f |
− 3

〈
ξ̃ f , ξ̃ξ̃ f

〉
det(ξ̃ f , η̃η̃ f , ξ̃ξ̃ f )

|ξ̃ f |5|ξ̃ f × η̃η̃ f |

=
3ξa det(ξ f , ηη f , ξξ f )

a|ξ f |3|ξ f × ηη f |
+

det(ξ f , ηη f , ξξξ f )

|ξ f |3|ξ f × ηη f |

−
3
(
ξa 〈ξ f , ξ f 〉 + a 〈ξ f , ξξ f 〉

)
det(ξ f , ηη f , ξξ f )

a|ξ f |5|ξ f × ηη f |

=
det(ξ f , ηη f , ξξξ f )

|ξ f |3|ξ f × ηη f |
− 3
〈ξ f , ξξ f 〉 det(ξ f , ηη f , ξξ f )

|ξ f |5|ξ f × ηη f |
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holds on S( f ) as we claimed.

The expression for κi at an adapted coordinate system is the following one:

κi(u, 0) =
det( fu, fvv, fuuu)

| fu|3| fu × fvv|
(u, 0)− 3

〈 fu, fuu〉 det( fu, fvv, fuu)

| fu|5| fu × fvv|
(u, 0).

The next result gives the edge inflectional curvature at 0 for the normal form of cus-
pidal edges. Its proof is a straightforward calculation, and so we omit it here.

Proposition 5.5 Let f be a map-germ given by (3.4). Then κi(0) = b30 holds.

Let us consider the geometric meaning of the invariant κi . Since η f = 0, ηη f
points in the direction in which the cusp comes, and

det(ξ f , ξξξ f , ηη f ) = 〈ξ f × ξξξ f , ηη f 〉 .

So, the invariant κi measures the difference between the vector ξ f × ξξξ f and the
cusp direction ηη f . Here, ξ f × ξξξ f = γ̂′(s) × γ̂′′′(s), where s is the arc-length of
γ̂. Let κ and τ be the curvature and torsion of γ̂, and assume κ > 0. Consider the
Frenet frame {t, n, b} and assume that γ̂′ × γ̂′′′ is constant. Then, by the Frenet–
Serret formulas, it holds that

κ2τt + (−2κ′τ − κτ ′)n + (κ′′ − κτ 2)b ≡ 0.

Since κ > 0, we have τ ≡ 0 and κ′′ ≡ 0. This means that γ̂ is a plane curve and a
clothoid, or a circle.

6 Geometric Invariants up to Order Three

Let f be a map-germ given by (3.4). Then

κ =
√

a2
20 + b2

20, τ =
a20b30 − b20a30

a2
20 + b2

20

, κs = a20,

κn = b20, κc = b03, κt = b12, κi = b30

at 0. We see that κ is written in terms of a20 and b20. However, the other six in-
variants are independent of each other. Moreover, they determine all the third-order
coefficients of the normal form (3.4). Therefore, we have the following theorem.

Theorem 6.1 Let f , g : (R2, 0) → (R3, 0) be map-germs, and let 0 be cuspidal edges
that have the same invariants τ , κs, κn, κc, κt and κi at 0 respectively, and let κn(0) 6= 0.
Then there exists a diffeomorphism-germ ϕ : (R2, 0) → (R2, 0) and an isometry-germ
Φ : (R3, 0)→ (R3, 0) that satisfies

f (u, v)− Φ
(

g(ϕ(u, v))
)

= O(4),

where O(4) = {h(u, v) : (R2, 0)→ (R3, 0)|(∂i+ j/∂ui∂v j)h(0) = 0, i + j ≤ 3}. Using
the differential of invariants, if f and g have the same invariants κs, κn, κc, κt , κ′s, and
κ′n at 0, then the same assertion holds.
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Proof By the formula for τ , κs, κn, κc, κt , and κi , if κn 6= 0, these six values de-
termine all the coefficients a20, a30, b20, b30, b12, and b03 in (3.4). Thus, we have the
result. By the same arguments, the second claim is proven by Theorem 4.4.

We remark that for given real numbers τ , κs, κn, κc, κt , and κi , there exists a map-
germ f at 0 such that 0 is a cuspidal edge, and its six invariants at 0 are τ , κs, κn, κc, κt

and κi , respectively, just by substituting these real numbers into (3.4) and applying
h(u, v) = 0. For global realization of fronts, see [18]. In Figure 1 we have drawn
surfaces that are images of map-germs given by (3.4). Invariants not specified are
zero.

(κs =)a20 = 3, b03 = 1 a30 = 3, b03 = 1 (κn =)b20 = 3, b03 = 1

(κt =)b12 = 3, b03 = 1 (κi =)b30 = 3, b03 = 1 (κc =)b03 = 3

Figure 1: Invariants of cuspidal edges

6.1 Example: Tangent Developable

Let γ̂ : R → R3 be a unit speed space curve that has curvature κ(u) > 0 and torsion
τ (u) 6= 0, for all u ∈ I, and let {t, n, b} be the Frenet frame. Let f : I × R → R3

be given by f (u, v) = γ̂(u) + vγ̂′(u). Then f is called a tangent developable surface
(see Figure 2). Then S( f ) = {(u, 0)} and (u, 0) is a cuspidal edge. The unit normal
vector field is b(u), and the area density function is proportional to v. Therefore,
taking ξ = ∂u and η = −∂u + ∂v, (ξ, η) is an adapted pair of vector fields. So, by the
Frenet formulas, we have

ξ f = t + vκn, ξξ f = κn + v(κn)′, and ξξξ f = −κ2t + κ′n + κτb + v(κn)′′.

Thus,

ξ f = t, ξξ f = κn, ξξξ f = −κ2t + κ′n + κτb (on S( f )).
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Furthermore, we have

η f = −vκn, ηη f = v(κn)′ − κn, ξηη f = v(κn)′′ + κ2t − κ′n− κτb

and

ηηη f = −v(κn)′′ + 2(−κ2t + κ′n + κτb).

Thus, it holds that

ηη f = −κn, ξηη f = κ2t−κ′n−κτb, ηηη f = 2(−κ2t +κ′n+κτb) (on S( f )).

Finally, since ηλ = vκ′ − κ, it holds that sgn(ηλ) = −1. Therefore, we obtain

κs = −κ(u), κn = 0, κc = − 2τ (u)√
κ(u)

, κt = τ (u), κi = −κ(u)τ (u) at (u, 0).

Figure 2: Tangent developable surface.

Appendix A Global Property of Cusp Directional Torsion

In this subsection, we consider a global property of the function κt .

Lemma A.1 Let f : (R2, 0)→ (R3, 0) be a frontal and 0 a non-degenerate singularity
whose singular direction and null direction are transversal. Let M be the image of f .
Then a slice locus M ∩ N0M is a curve σ̂ with σ̂′(0) = 0 and σ̂′′(0) 6= 0.

Proof Let (u, v) be an adapted coordinate system, since we can take it by the as-
sumption of f . Since 〈 f (u, v), fu(0)〉u 6= 0 at 0, there exists a function u(v) (u(0) =
0) such that 〈 f (u(v), v), fu(0)〉u ≡ 0. We set σ(v) = (u(v), v). Then the image
σ̂(v) = f ◦ σ(v) coincides with the slice locus M ∩ N0M. Remark that since ∂v is a
null direction, so 〈 f (u, v), fu(0)〉v (0) = 0, and thus u′(0) = 0 holds. By a calcula-
tion, we have σ̂′(0) = 0, σ̂′′(0) = fu(0)u′′(0) + fvv(0). Since 0 is a non-degenerate
singularity, det( fu, fvv, ν)(0) 6= 0 holds. Therefore, we have σ̂′′(0) 6= 0.

Lemma A.2 Let σ : (R, 0) → (R2, 0) be a curve with σ′(0) = 0 and σ′′(0) 6= 0.
Then there exist an orthonormal basis {x, y} of R2 and a parameter v of (R, 0) such that
j3σ(v) = v2x/2 + αv3 y/6, α ∈ R holds.
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Proof Since σ′(0) = 0 and σ′′(0) 6= 0, we can set j3σ(v) = (a2v2+a3v3, b2v2+b3v3),
where a2, a3, b2, b3 ∈ R and (a2, b2) 6= 0. We can assume that a2 6= 0. Set θ satisfying
sin θa2 + cos θb2 = 0. Then we have

Ãθ

(
j3σ(v)

)
=
(

(cos θa2 − sin θb2)v2 + (cos θa3 − sin θb3)v3, (sin θa3 + cos θb3)v3
)

(See (3.1) for Ãθ.). Set

ṽ =
√

2v
(

(cos θa2 − sin θb2) + v(cos θa3 − sin θb3)
) 1/2

.

Then Ãθ

(
j3σ(ṽ)

)
=
(

ṽ2/2, αṽ3
)

, α ∈ R, holds. Setting t x = Ã−1
θ

(
t (1, 0)

)
and

t y = Ã−1
θ

(
t (0, 1)

)
, we have the result.

Let Σ be a two dimensional manifold and f : Σ → R3 a frontal. Let γ : S1 → Σ
be a simple closed curve consists only of non-degenerate singularities whose singular
direction and null direction are transversal, namely d f (γ′) 6= 0. In [10], this type
of singularities are called non-degenerate singular points of the second kind. Denote
γ̂ = f ◦ γ. Let u be an arclength parameter of γ̂ and d1, d2 an orthonormal frame
along γ̂, namely an orthonormal frame field of the normal plane (γ̂′)⊥ of γ̂. Then
we have e′

d′1
d2

 =

 0 c1 c2

−c1 0 c3

−c2 −c3 0

 e
d1

d2

,
where, e = γ̂′. If the curvature of γ̂ does not vanish and e, d1, d2 is the Frenet frame,
then c1 = κ, c2 = 0, c3 = τ .

For a sufficiently small ε, a map (t1, t2, t3) 7→ γ̂(t1) + t2d1 + t3d2, (−ε < t2, t3 < ε)
is diffeomorphic. Thus by Lemmas A.1 and A.2, f can be represented as γ̂(u) +
v2x(u)/2+αv3 y(u)/6+v4z(u, v), where x(u), y(u), z(u, v) are vector fields along γ̂(u)
and {x(u), y(u)} is an orthonormal basis of γ̂(u)⊥. Remark that ηη f is proportional
to x. Then there exists a function θ(u) such that

x(u) = cos θ(u)d1(u)− sin θ(u)d2(u),

y(u) = sin θ(u)d1(u) + cos θ(u)d2(u)

hold. By a direct calculation, κt (u) = c3(u) − θ′(u) holds. Hence, 1
2π

∫
γ
(c3(u) −

κt (u))du ∈ Z holds. This integer n is called the intersection number of the frame
(γ̂, x) with respect to the frame (γ̂, d1). Thus, we have

∫
γ
κt (u)du =

∫
γ

c3(u)du−2πn.
On the other hand, if the curvature of γ̂ never vanish, then one can take d1 as the
principal normal vector. Then c3 is the torsion of γ̂. Hence,

∫
γ
κt (u)du is equal to the

difference of the total torsion of γ̂ between intersection number of (γ̂, x) with respect
to (γ̂, d1).
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