THE APPROXIMATE SOLUTION OF DUAL INTEGRAL
EQUATIONS BY VARIATIONAL METHODS

by B. NOBLE
(Received 15th October 1957)

1. Dual Integral Equations

The classic application of dual integral equations occurs in connexion
with the potential of a circular disc (e.g. Titchmarsh (9), p. 334). Suppose
that the disc lies in z=0, 0< p< 1, where we use cylindrical coordinates (p, 2).
Then it is required to find a solution of

% 1lé 0*
W + ;‘) —a% -5;—26 =0 e 1)
such that on z2=0
d=1, (0<p<]) : 8p/oz=0, (p>1). ccvreeiiirriiiiinnins (2)

Separation of variables in conjunection with the conditions that ¢ is finite
on the axis and ¢ tends to zero as z tends to plus infinity yields the particular
solution J(€p) exp (—¢z), 220, 0< < oo. Superposition gives the general
solution

$= f C AV o(Ep)e=5E, (230). o, 3)
0

In the case of the electrified disc the unknown function A(£) is determined
by the following dual integral equations obtained by applying the boundary
conditions (2) :

f AT (EDAE=L, (O<P<L)y errerermrrrrerree. (4a)
0

f mfA(f)-L,(fp)dé:O, S | VRS (4b)
0

The above procedure can be generalised in the following way. Suppose
that by separation of variables we can find a solution of a partial differential
equation in two variables z, y in the form X(t, ) Y (¢, y) where ¢ is a separation
parameter. Suppose that the general solution can be obtained by super-
position in the form

B
¢>=f ADXE DY YA, e, (5)

where A(t) is an arbitrary function. (In the general case ¢ may be complex
and the integration in (5) may be over a contour in the complex plane. If
we are dealing with a region possessing discrete eigenvalues, (5) is replaced by

=2 A, X (tn, 2) Y (£, 9),
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where the ¢, are the permissible values of ¢. In either of these cases the theory
can be carried through as for (5)).

Suppose that by suitable choice of X, ¥ we can satisfy all boundary
conditions except on y =y, where

$=1(=), (a<z<0): 3p|oy=g(z), (c<z<b).
Then from (5)

JﬁM(t)X(t, 2)A)dt=f(x), @<z <C), erviririininianaannn. (6a)

J‘BN(t)X(t, D) AW BE=g(z), (€<TLD), rrrrrrrrrererrerens (6b)

where we have written
ME)=Y(¢ y,) : N(t)=[0Y(¢, y)/ay]vsw'
These are dual integral equations which determine the unknown function A(t).

2. Reduction to a Single Integral Equation

Assume that there is an inversion formula

f ®X(t, D)UY =), (@LTLB), rerrrrerrrrerrrerenns (7a)

f "X, @) =Bl), (XKLL errerrrrrrrerrrrer (76)

Suppose that the left-hand side of (6b) equals the (unknown) function u(x)
for agxz <c. Inversion gives

N4 = f "X, ()it + f " X(t, Dyg(e)it.

The substitution of this expression for A(t) in (6a) gives an integral equation
for u(z), valid in a<z<c¢:

f JZ‘{,S;X 2) f X(t, Eyul)de dt

)—fM“)X, )thg \E)DE db. ... 8)

An alternative procedure is to assume that the left-hand side of (6a) equals
the (unknown) function v(z) for c<x<b. As above we can invert to find A(¢).
Substitution in (6b) then gives an integral equation in c <z <b for v(z) :

5 N(b)
M(t)X(t )f X(t, £y(E)de d

f ﬁﬁfixa z)f X(t, &) f(E)dE dt. .........9)

https://doi.org/10.1017/50013091500010804 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010804

SOLUTION OF DUAL INTEGRAL EQUATIONS 117

If it is permissible to ihterchange orders of integration on the left of (8),
(9), this would give standard integral equations of the first kind with the
following kernels :

M
% €)= f Ng;X(t X(t, £ty o, (10a)
Ky, &)= jﬁ(gX X(t, E)B. e (10b)

Unfortunately it will be found in concrete examples that one of these integrals
is divergent. (This is easily verified for equations (4) which are typical.)
Various manipulations can be used to remove the divergency but it will not
be necessary to consider these since the variational principles of §3 apply
directly to (8) and (9).

3. Basic Variational Principles

A fundamental variational prineiple for integral equations is the following.
Suppose that e(z) is a solution of

de(z) + f 'Kz, £)e()dE=w(z), (PKTEG), crrrrererererrnn, (1)
?

where all the functions are real, K(x, £) is symmetrical, and A is a given constant
which may be zero. Then the expression

_ f ! (2w(e)B(x) — \B2(z)}dz — f ! f ! K(=, &)E(@)B(t)dzdé ......(12)
Y » p

has a stationary value when E(x) varies round e(z), the solution of (11).
For the purposes of this paper we shall consider, instead of (12),

J(E)= f ! (2u(2) B () —AB*()}de — f *POTHO, e (13)
v B
where T(t)= f " X(t, 2)B(z)dx.
?
Set E(@)y=e(x)+en(x), ...ocvvvvinveniiiiiinnnn, (14)

where 7(z) is an arbitrary function and ¢ is a parameter. If (14) is substituted
in (13) we find

J(B)=J(e)+2el(e, ) — € {A f z)dz+ f ﬂP(t)N?(t)dz}, ......... (15)

where N(t)= f X(t, z)y(z)dx,
P

I(e, 7)= f ! {w(x) —de(z)— f Piyxt, =) f ’x¢, f)e(f)df}n(x)dx. ...... (16)
P a a

In this last expression we have assumed that orders of integration in = and ¢
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can be interchanged. J(E) defined in (13) is stationary with reference to
variations of E(x) about e(z) if the coefficient of ¢ in (15) is zero for arbitrary
n(z), i.e. from (16), if

8 q
)\e(x)+f P X(t, x)f X(t, Ee(§)dé dt=w(z), (p<x<q). ...... (17)
a »
This is an integral equation for e(x) but in one way it is more general than
(11) since it is only when orders of integration in £ and ¢ in (17) can be inter-
changed that (17) can be reduced to (11) with (cf. (10a, b) :

K(z, &)= f "PuyX(t, o)X, Hit.
From (15), if e(x) satisfies (17), P(t) >0 («<t<fB), and A=0, then
JE)ZT(E). it (18)

It is easily shown that
¢

J(e) =J W(Z)e(X)AX. oo (19)

»
In physical applications it will appear that this quantity has invariably a
direct physical significance. It is usually connected with the total energy
of the system.

In order to apply these results we proceed in the usual way by assuming
that

where the i,(x) are known functions and the k; are constants to be determined
from the condition that (13) is stationary. On substituting (20) in (13) and
setting dJ [dk, =0, (¢=1 to n), the following set of simultaneous linear algebraic
equations is found for the k; :

3 Al )by =[0, hels G=1 60 1)y rrrerrreerrerrrrenns (1)
j=1
where [w, $]= f ‘ WEW ()AL, ..o (22a)
V4

Al $)=A f ! @)z
P

8 7
+ f P(t) f X(, @)x(x)de f " X(t, EW(E)AE b oo (225)
a P r
Obviously the calculations will be simplified if the ;(x) are chosen so that
f " X(t, 2)di(2)dz
P

can be evaluated explicitly.
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In practice it often happens that we can guess the shape of e(z) reasonably
accurately, e.g. by physical intuition, and we need use only one term of the
series (20). If we set e(x)==kii(x), a straightforward calculation gives

_dl o [w P
o Tl Y D (23)

It is expressions of this form which usually appear in Schwinger’s applications
of the variational method.

4. Upper and Lower Limits

In §2 we reduced our dual integral equations to a single integral equation
in two different ways. The variational principle in §3 can be applied to each
of these in turn. Suppose that U(z), V(z) are approximations to the solutions
u(x), v(z) of (8), (9). Define

b
R(t)= f “X(t, 2)U(z)d : S(t) = f X(t, 2)V(@)dz, oo (24a)
a [
¢ b
F(t)=f X(t, 2) f(z)dx : G(t)=f X(¢, 2)g(x)dze. ooennnn.n. (24b)
a ¢
From (13) the following quantities are stationary with respect to variations

inU, ¥V:

H(U)=2 f F@)U@)dz—2 f l]"vg)Rt)G(t)dt

f PUL) Rz(t .................. (25a)

I(V)=2 f (2) V(2)de—2 f ﬁg)sny(t)dt

N@)
f T SO (25b)
When U, V are identical with u, v, inversion of (6a, b) gives
M)A =S5E)+F(t) : NOVAE)=RE) +O®). overeerererrennn.. (26)
Then
Huw= | Fem@iz— PU) o
= glx)v(z)dx + N(t) G2(tydt, ......... (27a)
)= ~ P N g
= | glz)v(z)dz flx)u(z)dzx + L3 z)F 8)dt. ......... (27b)
From (18),
Hu)zHU) : I@)2I(V).  cereviiiniinciceiannen. (28)
E.M.S,—H

https://doi.org/10.1017/50013091500010804 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010804

120 B. NOBLE

Hence
HU)- f Nt) G2(t)dt < ffx)u(x Yda— f g(zyv(x)dx
A N()
M(t) PO —I(V). ......... (29)

It is sometimes convenient to express this basic inequality in a different
way. Introduce A(U), I'(U) defined by

@—-H{) @ —I(V)
A( U) f.ll( U) Q2 P( V)= m 3  esaessesssassencss (30)

where @, @, are known constants given by

0 )
o= [ g mon: = [ T o

Let A(u), I'(v) denote the corresponding quantities with U, V replaced by
u, v. From (27),

H(u)— Q=01 ~1(v).

Hence

A)={T(@)1=D(u, v), 8F. cecovrervrrrrirrennannnn (31)
From (28), (30),
A@w)<AU) : Tw)gT(V).
Finally, therefore,
AU 2D, 0) 2LV oo, (32)

The point of these manipulations appears most clearly when either f(z)
or g(x) is identically zero. Suppose that g(x)=0. The expressions (25a, b)
for H(U), I(V), and the inequalities (29) lose their formal symmetry. But if
U, V are replaced by kU, IV and the optimum £, ! are found as in (18), (19)

we obtain
H(kU)= { f BR(t)F(t)dt}Z { f B%% R2(t)dt}_l, ............ (33a)

_{[* 20 20 =
V)= { f "0 S(t)F(t)_dt} { o Sz(t)dt} o (33D)
In the first equation we have used the result

f @)U f ROF(O)it.

(33a, b) have formal symmetry if we consider that E(f) corresponds to
S(e) {M @)}

The inequalities (29) are asymmetrical but A(kU), I'(kV) are now symmetrical
so that the inequalities (32) are symmetrical.
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5. Upper and Lower Limits (continued)

In the last section, in order to obtain both upper and lower limits it was
necessary to guess the form of two unknown functions U(x) and V(z). We
now show that it is sufficient to guess the form of only one of these functions.

For simplicity we assume g(z)=0. Suppose that we guess the form of
U(z) (a<z<c). By inversion of (6b) an approximate expression for A(f)
is given by

N f "X, 2)U(2)dz
Substitution in (6a) gives, for c< <
f Nt)X f X, )UEd2dl veeerrrrene.. (34)
If this expression for V(z) is substituted in S(¢), defined in (24a), we find
S= T BO- WO,
where R(t) is defined in (24a) and
f X(t, @) f o X(§ R(EAEDT. oo, (35)

We have f R(O)W(t)dt= f N(t) R(t)it

On using these results we find after some manipulation that if V(z) is chosen
as in (34),

PN _ PN pyy
Lm Fyde—I(V)=H(U)+ faM(t) {F(t)— W(t)}dt.

Hence (29) becomes

f Feyulz)de < H(U)+ ﬁg;[ﬁ’(t)— W)t ......... (36)

If we define the error A(x) in our solution of the original integral equation
(8) by
A(z)= f o ) x¢t, )f X(t, U(EIE L —F (@), weverrerenn, (37)

then from (35) and (245),
c
W(t)— F(t)= f X(t, DA@AZ.  overereererrrrrnen. (38)
a
This shows in a direct way that if U(x) is a good approximation to the solution
of the integral equation then the difference between the upper and lower

limits in (36) will be small. This also indicates a possible practical method of
approach to the evaluation of the error term.
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6. Application to Parallel Discs

As a first application consider the potential due to two parallel discs lying
in z=+d, 0<p<1. If the two discs are at the same potential we find

$= f wB(f)Jo(fp)e—f'z'df, (212d), wevereerineenn (39)
0

- f “C(E)T(Ep) cosh E2dE, (121<d). wrrerrreeen (395)
0

Continuity of potential on z=d gives
B(f)e—¢=C(£) cosh Ed=A(£)(1 +e—29), say. .....cc.ev.ene. (40)

If the discs are at unit potential the boundary conditions on 2z =d are
¢=1, (0<p<1): (ép/dz) continuous for p>1.
These give the following dual integral equations :

f " Fe~2HA(E) (Ep)dE=1, (O<p<1), worrrrren.. (41a)
0
EAEW(E0)AE=0, (p>1).  covviveereeeemiieenenns (41b)
0

If the two discs are at opposite potentials the cosh £z in (395) is replaced by
sinh £z and we find the same dual integral equations (41) except that in (41a)
the term {1 + exp(—2£d)} is replaced by {1 —exp(-2&d)}.

If we assume that the right-hand side of (415) equals the (unknown) function
u(p) for 0< p <1, then the theory of §§2, 3 shows that the following expression
is stationary when U(r) varies round w(r) :

H(U)=2 f U dr— f (0 4 e~ %N REEIE, oo, (42)
0 0

where R(§)= fl'rJo(fr) U(r)dr.
0

The upper and lower signs refer to discs at the same and opposite potentials
respectively. We have

H(u)= fl'ru(r)dr. ................................. (43)

0
From (396), (40), (41d), for 0<p<1,

wo= [edwiena=1] (%) -(%) }=2mt)

zd_

where o{p) is the charge density on the disc and electrostatic units are used.
Hence the total charge on a single disc is given by

Q=2m f 1ra(r)dr = flru(r)dr. ........................ (44)
0 0

The quantity H(U) in (42) therefore gives an estimate of the charge on a single
dise. .
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We first of all choose
Ulp)=k1—p?)", (0€p<1),cccrieiniinniininiienn. (45)

where k, v are constants to be determined by the stationary character of (42).
Then

R()=Fk f =) T gndr=ke ™ T =)~ T, 0,
0

where we have used Sonine’s first finite integral, ((10), p. 373). Substitution in
(42) and determination of the optimum % as for (22) gives

(H(U) = 222{T2—)AD,((0) + Dy(2A)}, +rvereerreennn. (46)
TaBLE I
d 0-2 05 1-0 25

Same (47a) 0-5999 0-6903 0-7816 0-88958
potential | N ura | 0-6027 0-6912 0-7822 0-88958
Opposite | 479 3.0023 1-8138 1-3876 1-14172
potentials | o ura | 3-1029 1-8208 1-3867* | 1-14172
where

0
Dyg)= f oo {1, (0.
0

Physically it is clear that for parallel discs at the same potential the charge
distribution on the discs will be approximately the same as that for an isolated
disc. This will also hold for discs at opposite potentials providing that the
discs are far apart. In these cases it is reasonable to choose v=14 in (46) and
we find

(3rH U} ={11£Dy2d)}, ..coreverrniiinnnnn.n. (47a)
where

D,(2d) = (2/m){arc tan(d-') — 3d In(1 +d-2)}. ............... (470)

Table I compares $7wH(U) calculated from (47a) with more exact values obtained
by a completely different method in Y. Nomura (7). (The value marked with
an asterisk would seem to be in error.)

The accuracy clearly deteriorates for oppositely charged discs when d
decreases, as we should expect. In this case a better approximation is to
assume a uniform charge distribution on the plates, i.e. v=01in (46). Then

GrH(U}2=87"1{Dy(0) = Do(2d)}, .- eeveevreeeeeeeennn (480)
EM.S.—H?2
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where Dy(2d)= —d + (1=K (k) + (22— DEE), «.oev..... (48b)

4
eyt
Dy(0)=4(3m) : k= (1+d2)-+.

This result has been given in ((8), p. 81) from a different though related point
of view.

In the transition region between large d in (47a¢) (lower sign), and small
d in (48a), we can take

UP)=Cy(1—=p2) = +C oveevrreireeeaeeennannn, (49)

Substitution in (42) gives
H(U)=aC,+BCy—aC2—2bC,C,—cC%, ..oveveeeeeaiene (50)

where a=2, /9—1 and

=1(0)—-1(2d),

o () (42)

=4{arc sin (p—49) + ¢ (p— 1+ (P + 39 —4g,
p=(1+1g?t.
If we define
A=PBa—ab: B=ac—fb: A=ac—-b?

it is found on minimising (50) that

C,=(2A)1B : C,=(2A)"14,
and the minimum is given by
I az P
=g 4aA b TRy 4CA ........................... (51)
Set H)=(4a)"1a? : Hy=(4c)"'p2.

These values of H correspond to C,=0, i.e. (47), and C, =0, i.e. (48), respectively.
The additional terms in (51) provide corrections for the first order results and
it is convenient to use these forms in numerical work. The results in table II
have been obtained from the above formule.

Another method for obtaining results which are more accurate than (47)
or (48) is to consider general v in (46). For small ¢ we can write ((10), p. 403),

1)m22+m—1gm (2 — 2y —m)I'(} 4 4m)

mi{TE—v—Jm)P(E —2v—bm)

13 B (SD2mOgEnTEy 9 m)I(E =y jm)
m=0 m{ 'y —m) I3 —v—im)

pw=142% =
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table IIT has been compiled by using this formula for v=—4%, 1, %, and by
taking the values for v=0, }, from table II.

The results in tables II and IIT show clearly that for parallel plates at
opposite potentials a constant charge distribution is appropriate when ¢ < 0-05,

TasrLe IT
d 0-05 0-10 0-20 0-40
(m/2)H, 7-862 4-755 3-002 2-023
(m/2)H, 8-855 4-795 2-699 1-390
(m|2)H,, 9-158 5-080 3-072 2-026
4C, 1-82 1-56 1-40 1-22
40, 8-00 3-35 1-15 0-14
TasLE IIT
\
0-05 0-10 0-20
Voo
2 4-03 2-93 2-16
1 7-86 4-76 3-00
3 9-09 5-13 3-02
0 8-86 4-80 2-70
-1 8:35 4-56 2-66

whereas the charge distribution of an isolated disc is more suitable when
d>0-2.

All the results in this section refer to lower limits for the total charge.
Numerical results for upper limits will be discussed in a later paper.

7. Concluding Remarks

Variational methods were applied extensively to the integral equation
formulation of electromagnetic problems by J. Schwinger and his collaborators
during the last war. An account of this type of application is given in (1).
Other applications are given in (6). The methods used here are related to
those of Schwinger but there are two important differences in detail :
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(@) In Schwinger’s method the integral equations are formulated by means
of Green’s functions, the two equivalent integral equations of §3 are obtained
separately, and often the kernel of the integral equation has to be transformed
before convenient formule are obtained. The present method deduces the
two integral equations in a symmetrical way by using merely separation-of-
variables (or transform methods if preferred). The kernels of the integral
equations appear automatically in forms which are convenient for the variational
principle.

(0) In Schwinger’s method (23) is regarded as the basic variational
expression whereas we use (13). The two are equivalent but it is somewhat
easier to use (13) in connection with the general expansion (20) and the general
theory for upper and lower limits in §§4, 5. (In this connection the reader
may compare the treatment of upper and lower limits for special examples
given in (1), (3), (5)). As already pointed out, (13) avoids divergence difficulties
on which various authors have commented (e.g. (2), p. 186, footnote).

In the particular example treated in §6 the dual integral equations can be
solved iteratively, or they can be reduced to a Fredholm integral equation
of the second kind (e.g. (4) and references there given). I have done a con-
siderable amount of work along these lines since 1951 and have come to the
conclusion that for general purposes the variational method given in this
paper is to be preferred. The other methods are convenient for certain problems
but they depend on special properties of Bessel functions. In the examples
of §6 they are not convenient for the parallel plate condenser with small
separation of the plates.

The methods used in this paper can be extended to deal with unsymmetrical
kernels, complex kernels, simultaneous integral equations, and estimation of
unknown functions at a point instead of estimation of overall parameters.

REFERENCES

(1) F. E. Boranis and C. H. Paras, Randwertprobleme der Mikrowellenphysik,
(Springer-Verlag, Berlin, 1955).

(2) B. B. Baker and E. T. CorsonN, Huyghens’ Principle (Oxford University
Press, 1950).

(3) J.F. Carrsox and T. J. HENDRICKSON, J. Appl. Phys., 24 (1953), pp. 1462-
1465.

(&) J. C. CookE, Quart. J. Mech. and Appl. Math., 9 (1956), pp. 103-110.

(5) H. Levine and C. H. Paras, J. Appl. Phys., 22 (1951), pp. 29-43.

(6) P. M. MorstE and H. FESHBACH, Methods of Theoretical Physics (McGraw-
Hill, New York, 1953).

(7) Y. NomURra, Proc. Phys. Math. Soc. Japan, (3) 23, (1941), pp. 168-180.

(8) G. Porya and G. SzEad, Isoperimetric inequalities in Mathematical Physics,
Annals of Math. Studies No. 27, (Princeton University Press, 1951).

(9) E. C. TrrcaMarsH, Fourier Integrals (Oxford University Press, 1937).

(10) G. N. WatsoN, Bessel Functions (Cambridge University Press, 1944).

DEPARTMENT OF MATHEMATICS
TaE Roval COLLEGE OF SCIENCE AND TECHNOLOGY
GLASGOW

https://doi.org/10.1017/50013091500010804 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010804

