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Annular self-organization of the
two-dimensional vorticity condensate
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Self-organization of the vorticity condensate of forced two-dimensional turbulence is
examined in analogy with the mixing of a background planetary vorticity gradient
in geophysical flows. Starting from the theoretical vorticity profile of the condensate,
different scenarios are illustrated by the construction of idealized angular momentum
conserving rearrangements of vorticity into a staircase profile similar to the potential
vorticity staircase of β-plane turbulence. Two sets of numerical experiments are then
presented that illustrate a similar self-organization of the background vorticity gradient
in fully turbulent flows. In the first set of experiments, the flow is initialized with a laminar
vortex dipole corresponding to the theoretical condensate vorticity profile. A fluctuation
vorticity field is then induced by a stochastic forcing at smaller scales, which induces an
azimuthally symmetric self-organization of the laminar flow into distinct annular bands.
In the second set of experiments, the flow is initialized from rest with stochastic forcing
generating a turbulent inverse energy cascade, out of which emerges the condensate in
a self-consistent evolution as the turbulent energy accumulates at the domain scale. A
self-organization of the condensate is again observed, giving a distinct annular structure on
top of the theoretically predicted condensate profile. A major difference from the potential
vorticity staircase of geophysical flows is the emergence in many cases of significantly
non-monotonic radial vorticity profiles.

Key words: turbulent mixing, critical layers

1. Introduction

The inverse energy cascade of two-dimensional turbulence, with small-scale forcing and
weak damping, and in a finite domain, leads to a condensation in which the energy is
overwhelmingly concentrated in the lowest available modes of the system. In a square
domain with periodic boundary, the mean state takes the form of a vortex dipole
(Chertkov et al. 2007; Laurie et al. 2014; Frishman 2017), with a well-defined mean radial
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vorticity profile. By considering the energy and angular momentum of the mean state, and
considering fluctuations at leading order only, Laurie et al. (2014, hereafter L14) showed
that the radial structure of the individual vortices in the dipole follows a simple power law
outside a viscous core, taking the form

ω̄ = (rū)r/r = U/r, ū = U (1.1a,b)

in a polar coordinate system centred on each vortex. Here, ω is vorticity, u is the azimuthal
velocity, and an overbar denotes a suitable average (in the case of L14, a long-time and
azimuthal average). In forced and frictionally dissipated flow, with equilibrated energy
E = ε/2α, the constant U was predicted to satisfy U2 = 3ε/α, where ε is the energy input
rate, and α is the friction coefficient.

The form (1.1a,b) may be taken to hold at intermediate radial distances rc < r < rd,
outside a (hyper)viscous core of radius rc, and on scales smaller than the dipole separation
rd. Within the viscous core, ω̄ may not increase without bound, and a simple solid rotation
has been proposed, while at distances approaching rd, the flow must assume a hyperbolic
structure (Kolokolov & Lebedev 2016). Within the range of validity, the form (1.1a,b) and
the numerical value of U are both well supported by the numerical experiments of L14
and later ones at higher resolution (Frishman & Herbert 2018).

In a different context, recent advances in the understanding of geophysical flows have
established the ubiquity of inhomogeneous mixing on a background gradient of planetary
vorticity. Under suitable conditions, the potential vorticity, the scalar product of absolute
vorticity and stratification, can organize into an approximate staircase profile where mixing
is confined to distinct latitudinal bands separated by near discontinuous jumps (Dritschel
& McIntyre 2008; Dunkerton & Scott 2008; Scott & Dritschel 2012; Scott & Tissier 2012).
The relation between potential vorticity and zonal velocity implies well-defined eastward
jets at the jump locations. Similar inhomogeneous mixing has been identified in other
contexts, notably vertical mixing on a background density gradient (Dritschel & McIntyre
2008) and more recently in tokamak flows of neutral plasmas and other plasma flows
(Dif-Pradalier et al. 2017).

The development of such zonal mean flows can be considered in some sense as an
instability of the background vorticity gradient, which is ‘an unstable equilibrium in the
presence of mixing by waves and instabilities’ (Dunkerton & Scott 2008). The instability
relies on the fact that Rossby waves propagating on eastward jets have critical layers on
the jet flanks, where further mixing is favoured, sharpening the jet cores (Dritschel &
McIntyre 2008). A natural question then arises as to whether the mean vorticity gradient
of (1.1a,b), embedded in a background turbulent flow, might also exhibit a susceptibility to
inhomogeneous mixing, or similar self-organization of the mean vorticity. The numerical
experiments of Dritschel, Qi & Marston (2015) on freely decaying turbulence on the
sphere, in which late-time quadrupolar vortices were found to develop such step-like
vorticity profiles, suggest that this might be the case.

In the context of the vorticity profile (1.1a,b), a vortex Rossby wave on a central core
may likewise be expected to possess a critical layer at larger radii. By way of illustration,
consider a condensate core in uniform solid body rotation such that ū = Ur/rc for r <
rc, continuously joined to the profile (1.1a,b) outside the core radius rc, as suggested by
Kolokolov & Lebedev (2016). The vorticity inside the core is ω = 2U/rc. Neglecting the
vorticity gradient outside rc, waves on the core edge satisfy the dispersion relation

σ = −U(m − 1)/rc, (1.2)

where m is the azimuthal angular wavenumber. The angular phase speed of such waves,
σ/m, would then match the angular speed U/r of the condensate at radii r = mrc/(m − 1),
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Annular self-organization of the 2-D vorticity condensate

implying critical layers outside the core. This simplified argument neglects the effect of
the vorticity gradient outside rc on the frequencies of waves on the core. It also neglects all
wave-like fluctuations on the mean vorticity profile outside rc, which may also be expected
to possess their own critical layers. A complete description would require the calculation
of quasi-modes on the full profile (1.1a,b) (e.g. Schecter et al. 2000; Turner 2014). The
point here is only that such critical layers may exist generally on such a mean flow, and
that where they do, inhomogeneous mixing would be expected.

The development of a staircase profile in the geophysical context involves independent
changes to the total energy and angular momentum of the system (Dunkerton & Scott
2008; Dunkerton 2018). As shown below, angular momentum preserving rearrangements
of (1.1a,b) into a staircase profile involve an increase in total energy. Such changes are
permitted in forced turbulent flows, in which total energy increases at a constant rate, or
in which energy can be transferred between the mean and fluctuation fields. The extent
to which these arguments are relevant to actual condensate flows, however, is limited; as
will be shown in the numerical experiments below, the mean flow often develops a profile
that is non-monotonic in radius. The process through which this occurs may be tentatively
linked to the advection of high vorticity values from the inner edge of a critical layer region
that does not have an analogue in the geophysical flows of the kind referred to here. The
construction is nonetheless instructive, and the examples shown in § 2 are included more
for the purposes of illustration than as quantitative predictions.

In this paper, we provide preliminary numerical evidence that spatially local
self-organization of the condensate mean flow will occur in a forced system. Two sets
of experiments are presented. In the first, an initially laminar vortex dipole, possessing the
radial structure (1.1a,b), is subjected to turbulent fluctuations by a stochastic small-scale
forcing. This allows the examination of turbulent mixing on a condensate-like vortex,
without the need for the long spin-up times required to establish the condensate from
rest. In the second set of experiments, the flow is started from rest and the condensate
emerges out of the turbulent inverse energy cascade as in previous studies. Here, however,
a time dependence is introduced into the energy input rate that allows for a more rapid
establishment of the condensate and an attenuation of the turbulent fluctuations. The two
sets of experiments may be considered as complementary, lying in some sense on either
side of the traditional approach of forcing with weak, constant energy input over very long
times.

The remainder of the paper is organized as follows. In § 2, we present some examples
of idealized vorticity rearrangements, by analogy with the geophysical case, that illustrate
the limiting forms that a vorticity staircase on the condensate may assume, and give an
indication of the accompanying changes in angular momentum and energy that the profiles
imply. In § 3, we outline the system of equations and implementation of the numerical
experiments, recall under what conditions the condensate is expected, and summarize the
configuration and parameter choices of the two sets of experiments. In § 4, we present
the results of each set of experiments, illustrating in each case the tendency toward
self-organization of the background condensate profile. Conclusions are given in § 5.

2. Staircase perturbations

From an ‘ideal’ condensate profile of the form given by (1.1a,b), we consider possible
axisymmetric perturbations that may develop from a rearrangement of vorticity followed
by azimuthal averaging. We restrict attention to a range of radii r satisfying rc < r < rd,
and ignore details of the inner core and outer hyperbolic regions.
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rmr0 r1

(a)
�M < 0

2rm = r0 + r1

rmr0 r1

�M > 0

(b)

r2
m = r0 r1

rmr0 r1r− r+

(c)
�M = 0

rmr0 r1r− r+

(d )
�M = 0

Figure 1. Illustrative staircase profiles on the ideal condensate: perturbed vorticity (red) and velocity (blue)
with the unperturbed profile (1.1a,b) (dotted).

One of the simplest perturbations consists of an advective, downgradient rearrangement
of vorticity over a finite interval [r0, r1], followed by an azimuthal average with uniform
final vorticity on [r0, r1], as shown in figure 1(a):

ω = 1/rm, r ∈ [r0, r1]. (2.1)

Here, rm is the point at which the vorticity value of the original profile equals that of the
mixed profile.

If the mixing leading to such a rearrangement is purely advective, then the area
integrated vorticity is conserved. This ensures that the circulation at r > r1, and hence the
azimuthal velocity outside the mixing region, remains unchanged. In an infinite domain,
this is the only kind of rearrangement permissible, without an infinite change in total
energy. Direct integration of the vorticity difference over the annular area then yields the
constraint

2rm = r0 + r1. (2.2)

The blue curve in figure 1(a) shows the velocity profile corresponding to the mixed
vorticity profile, calculated by direct integration of rω = (ru)r. From this, it is immediately
clear that the changes in both angular momentum and energy resulting from the
perturbation must be negative. The actual change in angular momentum may be evaluated
from

�M =
∫ r1

r0

(m(r)− m̄(r))r dr, (2.3)
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Annular self-organization of the 2-D vorticity condensate

where m = ru, i.e. ω = mr/r, and m̄ denotes the unperturbed profile. Integrating yields
the simple result �M = −δ3/12, where δ = r1 − r0 is the step width.

A second simple case can be obtained from a non-advective upgradient rearrangement
of vorticity, again across an interval [r0, r1], in which vorticity is increased on the interval
[r0, rm] to its value at r0, and decreased on the interval [rm, r1] to its value at r1 (figure 1b):

ω =
{

1/r0, r ∈ [r0, rm],
1/r1, r ∈ [rm, r1].

(2.4)

The vorticity is continuous at r0 and r1 but has a jump across rm. Such a profile cannot
be obtained by advective mixing of the original vorticity, but must involve creation and
destruction of mean vorticity through the action of eddy stresses v′ω′, primes denoting
departures from the azimuthal mean. The circulation requirement that the mean flow
outside r1 is unchanged now implies

r2
m = r0r1. (2.5)

The jump in vorticity at rm is associated with a local maximum in the mean velocity
(blue curve), an analogue of the zonal jet profile of the potential vorticity staircase. From
this mean velocity, it is clear that the changes in both energy and angular momentum are
now positive. Such a profile could be achieved only if there is a transfer of both energy and
angular momentum from the fluctuations to the mean flow. Integration of m(r)− m̄(r)
separately on the intervals [r0, rm] and [rm, r1], and making use of (2.5), now gives�M =
δ3/24.

Following Dunkerton & Scott (2008), we can modify both the above perturbations in
such a way that the angular momentum is unchanged from the original profile, �M = 0,
through the addition of mixed zones on either side of the interval [r0, r1]. In both cases, the
vorticity is made uniform on intervals [r−, r0] and [r1, r+]. In the first case, the vorticity
values on these intervals are such that the vorticity is continuous at r− and r+, increasing
the jumps across r0 and r1, while in the second case, the values are such that the vorticity
is continuous at r0 and r1, introducing new jumps at r− and r+. See figures 1(c) and 1(d),
respectively.

Again, the requirement that the change in circulation across the full interval [r−, r+] is
zero provides one constraint on the two new parameters r− and r+. The requirement that
�M = 0 provides a second constraint, uniquely determining r− and r+ for a given r0 and
r1. The accompanying changes in total energy are of the same sign as the changes in the
cases of figures 1(a) and 1(b), but an order of magnitude smaller.

The profiles shown here are purely for illustration of the type of mixing that might occur,
in analogy with the generation of the potential vorticity staircase on the β-plane. They may
be regarded as limiting cases, and the degree to which they are realized in practice will
depend on the strength of the eddy fluctuations that accomplish the mixing. In numerical
simulations at finite resolution, small-scale diffusion may additionally be expected to
smooth out the jumps in vorticity between the mixed regions. Moreover, mixing that leads
to non-monotonic profiles may be possible to a greater extent here than in the β-plane
case, where a non-monotonic potential vorticity profile is known to be shear-unstable.

To illustrate a simple mixing process that might give rise to a profile resembling those
just described, a simple experiment can be constructed in which an initial vorticity profile
(1.1a,b) is subjected to an externally imposed straining flow.
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To avoid the singular vorticity at r = 0, we add a uniform core inside a radius rc and
take the initial vorticity to be

ω̄ =
{

2U/rc = 2Ωc, r < rc,

U/r, r > rc.
(2.6)

The corresponding velocity is then ū = rU/rc for r < rc, and ū = U for r > rc.
The profile is forced by specifying an external straining flow us, with associated

streamfunction ψs, similar to the experiments of Turner (2014), so that the evolution of
the vorticity is governed by the vorticity equation

ωt + J(ψ + ψs, ω) = 0, with ψ = ∇−2ω. (2.7)

The external streamfunction is defined to be

ψs = γ (t) r2 cos(2θ + φ(t)), (2.8)

where θ is the azimuthal angle, φ is a time-varying phase, and γ is the amplitude. This
straining flow is applied in the region of interest and modified at large r to satisfy a
no-normal-flow condition at the domain boundary. The domain boundary is set at large
enough r and has been verified to have negligible effect on the dynamics of interest, owing
to the fact that vorticity gradients are very weak at large r.

The amplitude is grown gradually and then reduced again according to

γ = γ0 exp(−(t − t0)2/τ 2). (2.9)

The numerical values have been chosen as t0 = 250/Ωc, τ = 50/Ωc, and peak amplitude
γ0 = 0.8Ωc, again for illustration only.

The phase φ(t) in (2.8) may be chosen to excite different modes of perturbation to the
condensate profile. Taking a uniform rotation φ = Ωt, the strain field can be made to
project onto vortex Rossby waves that exist on the vorticity gradient of the initial vortex.
Although the dispersion relation for these waves cannot be calculated analytically, specific
values of Ω can be expected to excite waves whose angular phase speeds match the local
angular velocity of the vortex profile at some value of r. The resulting critical layer mixing
will differ in details but can be expected to share similarities with that studied extensively
in linear shear flows (e.g. Stewartson 1978, among others).

Three examples are shown in figures 2(a,d), 2(b,e) and 2(c, f ). As Ω increases, the
external strain matches the condensate angular velocity at decreasing radii. In all cases,
the critical layer structure is clear in the early stage of the evolution (t = 275/Ωc, just past
the peak forcing amplitude), with the advection of vorticity following closed streamlines
in a finite range of radii. Beyond t = 250/Ωc, the straining flow reduces in amplitude, and
further forcing of the critical layer diminishes. The flow then symmetrizes azimuthally;
by late time (t = 1000/Ωc), the wavenumber two structure has been mixed and vorticity
homogenized across the original critical layer. Notably, there is a thin band of elevated
vorticity values that persists at the outer edge of the original critical layer and appears to
be dynamically stable, at least on the time scales considered here.

These examples are for illustration only, and to point out the analogy with mixing in
geophysical flows. Details differ: for example, the thin band of elevated vorticity is not
typically found in critical layer mixing on a linear background vorticity gradient, and
seems due to the nonlinear variation of ωr across the critical layer and, in particular,
to the rapidly increasing ω on the inner edge. Similar elevated vorticity regions and
non-monotonicity in radius turn out to be a fairly common feature of the fully turbulent
simulations below.
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(a) Ω/Ωc = 0.04 (b) Ω/Ωc = 0.06 Ω/Ωc = 0.08(c)

(d ) (e) ( f )

Figure 2. Snapshots of the vorticity field at (a–c) t = 275/Ωc and (d–f ) t = 1000/Ωc, at various Ω . Colour
saturates white for r < rc.

3. Direct numerical simulation

3.1. Numerical model and configuration
We now examine the development of corresponding annular structure on a condensate,
or condensate-like vorticity profile, in response to general small-scale stochastic forcing,
typical of studies of forced-dissipative turbulence. Two sets of experiments are considered.

In the first set of experiments, an initial laminar vortex dipole is prescribed at t = 0,
and forcing and damping are then introduced to generate turbulent fluctuations while
retaining the same total energy of the system as time evolves. This approach avoids the
long spin-up stage needed to develop the condensate from an initial state of rest, and
permits higher-resolution calculations and an exploration of a broader range of forcing
parameters.

In the second set of experiments, the flow is started from rest and forcing applied that
leads to the spontaneous generation of a condensate dipole in a background turbulent field.
Crucially, the energy input rate used in this second set is time-varying, and allows for a
rapid condensate development with diminishing fluctuation energy in time.

The two sets of experiments are complementary, and demonstrate the robustness of the
tendency for annular self-organization to develop on the condensate profile.

In both cases, the equations solved are

ωt + J(ψ, ω) = −αω + f + ν ∇4ω, with ψ = ∇−2ω, (3.1)

where α is a coefficient of linear friction, and f is a stochastic forcing, δ-correlated in
time, that inputs energy at rate ε in a narrow band centred on wavenumber kf . A weak
hyperdiffusion with coefficient ν is included for numerical stability. The equations are
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solved in a square periodic domain of length L = 2π. Simulations are performed at a
resolutions from N = 512 to N = 2048 grid points in each direction using a standard
pseudo-spectral method with de-aliasing via a spectral filter.

3.2. Initial conditions and parameters for simulation set A
In the first set of experiments (set A), the initial condition is given by

ω0 =
1∑

i=0

(−1)iU
|x − xi| + periodic extension, (3.2)

where x0 = (π/2,π/2) and x1 = (−π/2,−π/2) in a domain of size L = 2π.
We note that the root mean square (r.m.s.) velocity of the flow defined by (3.2) satisfies

U2 ≈ 2.2U2
rms, (3.3)

which is comparable but distinct from the theoretical prediction U2 = 3U2
rms put forward

in L14. The value 2.2 was obtained by evaluating Urms numerically for a given U, and was
found to be insensitive to the details in the condensate core. The difference between this
value and the theoretical prediction may indicate that the profile (1.1a,b) does not hold at
large radii, comparable to the dipole separation (i.e. in the hyperbolic region). The energy
input rate and frictional damping rate are chosen to satisfy α = ε/U2

rms so as to ensure that
the total energy remains constant in time.

In L14, the establishment of the condensate is controlled by the parameter

δ = α(L2/ε)1/3, (3.4)

the ratio of frictional time scale to a large-scale eddy time scale. The condensate emerges
for δ � 1, that is, when the energy of the condensate significantly dominates the energy
of the turbulent fluctuations. Values of δ down to 10−3 were considered in Frishman &
Herbert (2018). Here, we consider energy input rates ε = U3β/L, for β a dimensionless
amplitude with β = 2nf 2π × 10−7, where nf = −2, . . . , 5 is an integral forcing parameter.
The values of nf used here give δ in the range

δ = (εL)2/3/U2
rms ∈ [0.064, 2.6] × 10−3, (3.5)

where we have used α = ε/U2
rms.

A related parameter can be constructed by considering the ratio of an enstrophy based
time scale η−1/3, where η = k2

f ε is the enstrophy input rate, with a time scale constructed
from the mean flow and the forcing scale, 1/kf U. We thus define

ζ = η1/3

kf U
= U2

rms

U2
δ2

Lkf
, (3.6)

and from its definition, we expect that ζ might influence the level of small-scale mixing
of the mean flow by the forced vorticity fluctuations. This interpretation is supported by
considering a rescaling of the length scales of the problem. Rescaling length by a factor
μ, so that r → μr, corresponds to a rescaling of the forcing scale as kf → μ−1kf . The
radial vorticity profile then scales as ω = U/r → μ−1ω, implying that the relevant vortex
turnaround time scales as τ ∼ ω−1 → μτ . The scaling of the turnaround time in turn
suggests a scaling of both friction and energy input rate as α → μ−1α and ε → μ−1ε, so
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kf N T/τ0 nf ε × 10 ζ × 103 δ × 103

16 512 1600 −2,−1, 0, 1, 2, 3 1/32–1 1.16–3.68 0.064–0.65
32 1024 800 −1, 0, 1, 2, 3, 4 1/16–2 1.16–3.68 0.1–1.0
64 2048 400 0, 1, 2, 3, 4, 5 1/8–4 1.16–3.68 0.16–1.6

Table 1. Parameter values used in simulation set A.

that Urms is fixed also, as is usual in the case of constant forcing with friction. Since ζ can
also be written as

ζ =
(

ε

kf U3

)1/3

, (3.7)

it follows that ζ is invariant under the scaling by μ. In this rescaling, forcing at larger kf
essentially leads to mixing at smaller distances r from the vortex core, and on a shorter
time scale. This prediction is supported by the numerical results reported below.

Simulations have been carried out with three different values of kf : kf = 16, 32, 64.
Following the above scaling, the grid resolution is kept proportional to kf , with N = 512,
1024, 2048 grid points in each direction, respectively. Similarly, the integration time is
set proportional to k−1

f . Defining a domain-scale turnaround time based on the initial
condition, τ0 = L/U, we integrate to t = T , where T = 1600τ0, 800τ0, 400τ0, for kf = 16,
32, 64. The full set of parameter values is summarized in table 1.

3.3. Forcing time dependence and parameters for simulation set B
In the second set of simulations (set B), the vorticity field is initially zero and subjected to
the stochastic forcing f . Here, we induce the rapid development of the condensate by using
a time-varying energy input rate ε(t), which is initially large, to force strong turbulent
fluctuations, but which then decreases as the condensate emerges, to allow the condensate
mean flow to dominate the turbulent fluctuations in a shorter time than would be achievable
with constant ε. Further, the time dependence of ε(t) is chosen to mimic the damping of
constant energy input by frictional dissipation.

When ε = ε0 is constant, frictional dissipation at rate α gives a total energy that grows
in time as

E(t) = ε0

2α
(1 − e−2αt), (3.8)

tending towards the steady state value ε0/2α. To mimic this energy growth with
time-varying forcing, we consider a frictionless system with α = 0. Energy then grows
simply according to

Ė = ε(t). (3.9)

By choosing

ε(t) = ε0 e−t/τf , (3.10)

we recover the energy growth of (3.8) provided that τ−1
f is identified with the 2α of

the constant ε = ε0 case. The total energy in the limit t → ∞ is ε0τf . One advantage
of this time dependence is that an initially rapid energy input allows turbulent fluctuations,
through the inverse cascade, to reach the domain scale relatively quickly, generating
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kf N T/τf τf ε0 ζ(T)× 103 δ(T)× 103

16 512 4 320, 160, 80, 40 2, 4, 8, 16 4.4–8.8 0.33–1.3
32 1024 4 160, 80, 40, 20 4, 8, 16, 32 4.4–8.8 0.52–2.1

Table 2. Parameter values used in simulation set B.

(a) (b) (c)

(d ) (e) ( f )

Figure 3. Snapshots of the full vorticity field at t/T = 1 for (a,d) kf = 16, (b,e) kf = 32, and (c, f ) kf = 64,
and (a–c) forcing index nf = 0, 1, 2 (intermediate forcing) and (d–f ) forcing index nf = 3, 4, 5 (strong forcing).
Orange denotes positive vorticity, blue denotes negative vorticity and the colour scale saturates to white at value
|ω| = U/rc with rc = 0.1, i.e. at a distance rc from the vortex centre in the case of the exact condensate profile.

a condensate. At later times, as the condensate develops, the turbulent energy fluctuations
decrease and the energy in the condensate dominates.

In the simulations presented below, we have chosen values for ε0 and τf that give a
similar Urms to that of the simulations in set A. We thus take a range ε0 = 2, 4, 8, . . .,
with corresponding τf = 320, 160, 80, . . .. All simulations are run to time T = 4τf , which
gives a final energy input rate of approximately εT = 0.0183ε0.

Following the scaling argument above, we expect more rapid mixing at larger kf , and
therefore take generally smaller values of τf and larger values of ε0 at larger kf . Finally,
the equivalent parameters δ and ζ can be considered based on the final energy input rate
εT and the actual Urms to give an approximate characterization of the forcing at the end
of each simulation. Values of the various parameter choices for this set of simulations are
summarized in table 2.
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Annular self-organization of the 2-D vorticity condensate

(a) (b) (c)

(d ) (e) ( f )

Figure 4. As figure 3, but for the fluctuation vorticity field. The colour saturates to white at vorticity values
|ω| = U/2 for (a,d) kf = 16, |ω| = U for (b,e) kf = 32 and |ω| = 2U for (c,f ) kf = 64.

4. Results

4.1. Forcing of an initially laminar vortex dipole
Snapshots of the vorticity evolution at the final time, t = T , are shown in figure 3 for a
variety of forcing wavenumbers kf = 16, 32, 64 and forcing strengths (weak–intermediate
forcing in figures 3(a–c), stronger forcing in figures 3(d–f )). In all cases, a clear annular
banding of the initially smooth vorticity gradient has occurred by the final time, though
with considerable variation both across different cases and even between the positive and
negative vortices of a single case. The banding may take the form of a uniform step-like but
broadly monotonic distribution (e.g. the negative (blue) vortices in figures 3a,e), or a more
distinct non-monotonic distribution (e.g. the positive (orange) vortex in figure 3(b) or the
negative vortex in figure 3(d). The radial scale of the banding decreases with increasing
kf and is harder to make out in figures 3(c, f ), kf = 64, which we examine in more detail
below. The vortices remain broadly axisymmetric, with stronger fluctuations visible in the
more strongly forced cases, as expected.

The fluctuation field can be examined more clearly by removing the mean flow. Here, the
mean flow is defined instantaneously as an azimuthal average centred on each vortex, thus
retaining the banded radial structure observed in the full fields. The fluctuation vorticity,
defined as the full vorticity minus this mean flow, is shown in figure 4 for the same cases
as in figure 3. The colour saturates to white at vorticity values proportional to kf , and in
all cases much lower values than for the full fields in figure 3. Across each level of forcing
(intermediate in figures 4a–c, strong in figures 4d–f ), the intensity of the fluctuation field
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(a) (b) (c)

Figure 5. Energy spectra for (a) kf = 16, nf = 3, (b) kf = 32, nf = 4 and (c) kf = 64, nf = 5, plotted at
t = T/2 (solid) and t = T (dotted). Straight lines have slope −3 and are for reference only.

0 2 0 1 0 0.5

(a) (b) (c)

(d ) (e) ( f )

rrr

−1 −0.5 −0.250.51 0.25

nf = –2 nf = –1

nf = 4 nf = 5

nf = 0

nf = 3

Figure 6. Azimuthally averaged vorticity ω̄(r) for (a) kf = 16, (b) kf = 32 and (c) kf = 64, and a range of
forcing strengths nf , with lines corresponding to different nf offset in the vertical for clarity; dotted lines
correspond to the initial ω̄(r). Detailed view of the full vorticity field for the cases in (a–c) indicated by the
blue lines: (d) kf = 16, nf = 2, (e) kf = 32, nf = 3 and ( f ) kf = 64, nf = 4. Magenta lines in (a–c) correspond
to the cases shown in figure 3.

appears approximately uniform in the scaled colour range, supporting the scaling discussed
§ 3.2, namely that the flow is approximately invariant under (kf , ε, ω) → μ−1(kf , ε, ω).

It is important to note that the r.m.s. vorticity fluctuations equilibrate at very early
times in each calculation. Fields plotted at times as early as T/10 (not shown) are
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Annular self-organization of the 2-D vorticity condensate

qualitatively indistinguishable from those of figure 4. Energy spectra are shown in figure 5
for the strong forcing cases, with lines plotted for times t = T/2 and t = T being almost
indistinguishable.

Figure 6 shows profiles of the azimuthally averaged vorticity field ω̄ centred on each
vortex for the full range of simulations, together with an enlargement of each vortex
region for the selected cases shown by the blue lines in figures 6(a–c). Organization of
the initial vorticity profile (dotted) is clearly visible in multiple bands surrounding each
vortex. In some places, the turbulent fluctuations have flattened the vorticity over an
annular region, while in other places, the azimuthal mean vorticity profile has developed
a significant non-monotonicity in the radial direction. The processes giving rise to the
annular structures are highly variable, but often can be clearly linked to cat’s-eye-like
structures, similar to those found in critical layers, as in figure 6(e), for example. The scale
of the annular regions appears to scale approximately with k−1

f , in both the profiles and
the detailed vorticity field – noting that the range of r in figures 6(a–c), and of (x, y) in
figures 6(d–f ), is also rescaled with k−1

f – consistent with the scaling arguments given in
§ 3.2. Indeed, there is no other preferred length scale in the system, other than the core
radius rc, which is smaller and does not appear to have a significant effect. (Here, rc is set
by the numerical truncation, which is also scaled with k−1

f and so fixed relative to the plot
range. While it is possible that the scale of the annular regions could be controlled by rc, it
seems much more likely that it is controlled by the forcing scale and the induced turbulent
fluctuations.)

Self-organization into annular structures is less distinct at weaker forcing (bottom two
curves in each of figures 6a–c), but is still present: there is clear flattening of the initial
vorticity profile over some regions, e.g. around r = 0.8–1.6 in the case nf = −2 in
figure 6(a), or on either side of r = 0.25 in the case nf = 0 in figure 6(c). However, large
overshoots are mainly found for stronger forcing, suggesting that their generation requires
a certain threshold of the fluctuation vorticity field.

The annular distributions shown are typical of other times in the simulations. To
illustrate the temporal evolution, we construct the relative vorticity difference

�ω̄(r, t) = ω̄(r, t)− ω̄(r, 0)
ω̄(r, 0)

. (4.1)

This is shown in figure 7 for the same cases as in figure 3, over the full time of the
integrations from t = 0 to t = T . The radial range is again proportional to k−1

f . Alternating
bands of positive and negative azimuthal vorticity develop in all cases from early time,
and persist with varying degrees of transience throughout the duration of the simulation.
In some cases, the bands are remarkably steady over the time interval considered (e.g.
figure 7(b), top). In general, there appears to be greater transience in the more strongly
forced cases (figures 7d–f ), which might be expected on account of stronger turbulent
fluctuations. In these cases, the relative azimuthal vorticity differences are stronger than
for weaker forcing, consistent with the stronger non-monotonicity in the upper versus lower
magenta lines in figure 6. The degree of variance that might be expected in an ensemble
can be inferred to some extent from the differences between the positive (upper) and
negative (lower) vortices of each case. Various of the lower-resolution calculations have
been run beyond t = T (not shown) and indicate that the patterns found here persist on
longer time scales, with occasional regime-like behaviour with more or less well-defined
annular structures persisting over prolonged periods.
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(a) (b) (c)

(d) (e) ( f )

Figure 7. Relative vorticity difference �ω̄(r, t) for (a–c) kf = 16, 32, 64 and nf = 0, 1, 2, respectively, and
(d–f ) kf = 16, 32, 64 and nf = 3, 4, 5, respectively. Orange and blue denote positive and negative differences,
with colour saturating white for �ω̄ = 0.2.

To quantify the dependence of the annular structure on forcing strength and strength
of the turbulent fluctuations, we calculate the total, radially integrated annular vorticity
difference Z, as well as the r.m.s. of the fluctuation vorticity field (that shown in figure 4)
F:

Z =
∫ r0

0
|�ω̄| dr and F =

∫
D

|ω′| dx dy. (4.2a,b)

In Z, we have omitted the area weighting, since �ω itself contains a normalization by
ω0 ∝ 1/r; Z therefore gives an area-weighted measure of the azimuthal vorticity difference
over the range of integration. Here, r0 has been taken to be 0.7 × 32/kf , i.e. 0.7 of the
domain shown in figure 7.

The measures are summarized in figure 8 for all values of kf and nf considered,
time-averaged over the last half of each simulation. There is considerable variance in Z, but
a general approximately linear dependence on ζ holds across the range of forcing strengths
considered. For given ζ , there is little systematic variation with kf .

The variation of the fluctuation field has less variance and shows bigger departures from
a simple scaling with ζ . The generally weaker F for kf = 16 might plausibly be attributed
to insufficient scale separation between the forcing scale and the vortex scale, and the fact
that the simple scaling, which neglects many aspects of the problem, is not satisfied. On
the other hand, there is good agreement between the kf = 32 and kf = 64 cases. At these
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Annular self-organization of the 2-D vorticity condensate

kf  = 16

kf  = 32

kf  = 64

2nf/kf 2nf/kf
2−6 2−2 2−6 2−2

Z(ζ)

0.20

0.02

F(ζ)

1.0

0.1 

ζ

ζ

(a) (b)

Figure 8. (a) Integrated azimuthal vorticity difference Z(ζ ) and (b) integrated fluctuation vorticity F(ζ ) (log
scales) for different energy input rates and forcing scales. Values have been time-averaged over the last half of
each simulation. Values of 2nf /kf range from 1/64 (leftmost points) to 1/2 (rightmost points), corresponding
to ζ ∝ (2nf /kf )

1/3 between 0.0016 and 0.00368 (see table 1).

these forcing values, there is a clear monotonic increase in fluctuation strength with ζ ,
though it is not a linear or even power-law dependence over the range considered.

4.2. Annular self-organization in a spontaneously developing condensate
The second set of simulations approaches the final condensate from the opposite
direction. Instead of starting with a pure laminar condensate profile and adding turbulent
fluctuations, the vortex dipole condenses self-consistently from the turbulent inverse
energy cascade. The process is sped up by allowing for the time-dependent energy input
rate described in § 3.3, in which forcing of the turbulent fluctuations decays exponentially
in the process.

The energy, enstrophy and vorticity maxima for the simulations set summarized in
table 2 are shown in figure 9. In all cases, the energy grows in close agreement with (3.8).
The enstrophy (red) shows an early-time dependence on τf , since shorter τf corresponds
to higher ε0 and stronger initial vorticity fluctuations. The variation with τf decreases
with time as fluctuations die out and the condensate regime is established. The vorticity
maxima are related more closely to the condensate core, rather than the fluctuations, and
consequently show no systematic dependence on τf but a clear scaling with resolution
(proportional to kf ), which controls the size of the condensate core. In all cases, an
approximate equilibrium is being approached towards the end of the simulation time
t = 4τf .

Snapshots at times t/τf = 0.25, 1, 4 of the full vorticity field are shown in figure 10 for
the cases kf = 32 and τf = 20 (figures 10a–c) and τf = 80 (figures 10d–f ). They illustrate
the emergence of the condensate from an initially turbulent flow comprising a distribution
of vortices across area; see Burgess & Scott (2017) for a description of this forced vortex
population at earlier times, before the energy reaches the domain scale. Here, at t/τf =
0.25, energy at the domain scale is becoming significant, with the emerging condensate
dipole just visible in the case τf = 80. The condensate is more clearly defined by t/τf = 1,
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0 4

1

0 4

1

t/τf t/τf

E/E0 E/E0

Z/kf E0

Z/kf E0

||ω||∞/kf E0 ||ω||∞/kf E0

(a) (b)

Figure 9. Normalized energy (black), enstrophy (red) and vorticity maximum (blue), where E0 = ε0τf for
(a) kf = 16 and (b) kf = 32. Solid, dotted and dashed lines indicate τf = 40, 80, 160 in (a), and τf = 20, 40, 80
in (b), respectively.

(a) (b) (c)

(d) (e) ( f )

Figure 10. Snapshots of the full vorticity field for kf = 32 at (a) t = 0.25τf , τf = 20, (b) t = τf , τf = 20,
(c) t = 4τf , τf = 20, (d) t = 0.25τf , τf = 80, (e) t = τf , τf = 80 and ( f ) t = 4τf , τf = 80.
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(a) (b) (c)

Figure 11. Snapshots of the fluctuation vorticity field at t = 4τf for kf = 32 and (a) τf = 20, (b) τf = 40 and
(c) τf = 80. The colour saturates to white at vorticity values one-sixth of those in figures 10(c, f ).
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Figure 12. Energy spectra for (a) τf = 20, (b) τf = 40 and (c) τf = 80, plotted at t = τf /4 (solid), t = τf
(dotted) and t = 4τf (dashed). Straight lines have slope −3 and are for reference only.

at which time there is still considerable energy in the turbulent fluctuations. By t/τf = 4,
the energy in turbulent fluctuations is significantly reduced. Note that at both t/τf = 1 and
t/τf = 4, a distinct banding is visible on the condensate dipole, more pronounced at the
later time.

As in the previous subsection, the turbulent fluctuations can be separated by defining
an azimuthal mean profile centred on each vortex at each time, and subtracting this mean
profile from the full vorticity field. The fluctuation field at t/τf = 4 is shown in figure 11 for
the cases kf = 32 and τf = 20, 40, 80; figures 11(a,c) correspond to figures 10(c, f ). The
colour scale is the same across all cases, saturating to white at a vorticity value one-sixth
that of figure 10, and shows a stronger fluctuation field at smaller τf (larger ε0). Also just
discernible in figures 11(a–c) is a qualitative difference in the structure of the fluctuations
in a square-lattice-like domain separating the individual dipole vortices. This difference
was even more apparent in the experiments of set A shown in figure 4. Their existence in
the set B experiments confirms that they are not artefacts of the initial condition but emerge
as inherent parts of the condensate flow. Presumably, they are related to the hyperbolic
regions discussed in Kolokolov & Lebedev (2016), but they appear to exist in relatively
narrow regions of the domain along the separatrices of the dipole.

Energy spectra for the same cases kf = 32 and τf = 20, 40, 80 are shown in figure 12,
with lines indicating times t/τf = 0.25, 1, 4. They confirm the above picture, namely that
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0 1 0 1 0 1

0 0.5 0 0.5 0 0.5rrr

(a) (b) (c)

(d) (e) ( f )

Figure 13. Azimuthally averaged vorticity ω̄(r) for (a–c) kf = 16, τf = 40, 80, 160, respectively, and
(d–f ) kf = 32, τf = 20, 40, 80, respectively. Individual lines represent equally spaced times from t = 2τf to
t = 4τf , offset in the vertical for clarity (time increasing upwards). The range of r values is proportional to k−1

f .
The left and right plots in each panel denote the two vortices of each dipole.

at t/τf = 0.25, energy has reached the domain scale but the k−3 profile of the condensate
has not fully developed. At scales smaller than the forcing scale, there is a clear decrease
in the energy level with increasing τf , and in all cases a distinct break between the large-
and small-scale distributions.

Finally, figure 13 shows the azimuthal mean vorticity for each pair of the condensate
dipole, and for all simulations in this set. Individual lines indicate the instantaneous ω̄(r)
equally spaced between t/τf = 2 and t/τf = 4, offset in the vertical for clarity. There
is a significant degree of variation from one vortex to another, although the basic 1/r
dependence is clear in all cases. On top of this general 1/r dependence, however, discrete
regions of annular banded fluctuations again appear spontaneously, mostly persisting in
time over the duration of the simulation, though with some transient behaviour (e.g.
figure 13(d) right, figure 13( f ) left). Comparing figures 13(a–c) and 13(d–f ), the width
of the annular regions appears to scale approximately with k−1

f , though again with
considerable variation across individual cases. There is no systematic indication that the
annular structure weakens as the time scale τf is increased.

5. Conclusions

While the condensate profile (1.1a,b) put forward by L14 may be obtained under
very-long-time averaging, a distinct radial structure appears over shorter time scales, in
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which the background vorticity gradient is reduced over well-defined annular intervals.
The structure appears to be generated by a self-organization of the background vorticity
gradient of the long-time average profile by turbulent fluctuations, in a manner analogous
to the inhomogeneous mixing of the background potential vorticity gradient on a rotating
planet: rearrangement of the mean vorticity by the turbulent fluctuations gives rise
to annular regions over which the vorticity gradient is reduced, and can even change
sign, giving rise to a non-monotonic profile. The appearance of the annular regions is
robustly observed both in simulations in which the flow begins in a pre-existing, ideal,
laminar condensate profile before being subject to mixing by turbulent fluctuations, and
in simulations in which the condensate develops spontaneously from the forced inverse
energy cascade. Notably, there was little discernible difference between the two sets of
simulations, in terms of the fluctuation vorticity field, energy spectra and the development
of the annular zones.

Although they persist on the time scales of the current simulations, transience in the
annular structures on longer time scales may obscure their observation in very-long-time
averages. Probably for this reason, they were not detected in the numerical simulations of
L14 and the subsequent studies (Frishman 2017; Frishman & Herbert 2018), particularly
at the larger values of δ considered in those works (for which transience is greater). It
is speculated that the ‘zero modes’ of Frishman & Herbert (2018) may be related to the
annular structures found here, and that the vorticity staircase construction might provide a
useful framework for their further analysis.

In β-plane turbulence, the emergence of the potential vorticity staircase depends on
the dimensionless parameter LRh/Lε, where LRh = √

U/β is the Rhines scale, with
characteristic velocity U, and Lε = (ε/β3)1/5. Strong staircases are found for LRh/Lε � 6
(Scott & Dritschel 2012). Corresponding local length scales for the condensate can be
defined analogously by

LRh =
√

U/ω̄r = r and Lε = (ε/ω̄3
r )

1/5, (5.1a,b)

which results in

LRh/Lε = (U3/εr)1/5. (5.2)

At a given radius, this is proportional to δ−3/10. At r < 1, values δ ∼ 10−3 give LRh/Lε �
10, which is well within the strong staircase regime, where inhomogeneous mixing of the
background vorticity might be expected.

The annular width of the annular regions observed scales approximately with the forcing
scale, suggesting that they arise in response to turbulent fluctuations at the scale of
the forcing itself, and therefore that the inverse energy cascade plays a limited role in
organizing the fluctuation vorticity before it mixes the background gradient. This means
that at very small forcing scale, the scale of the annular regions will become increasingly
small. However, a small forcing scale requires a correspondingly higher numerical
resolution and weaker (hyper)diffusion (Kolokolov & Lebedev 2016). Consequently the
(hyper)viscous core of the condensate vortex will be correspondingly smaller, and the
vorticity values correspondingly higher. Thus a self-similarity exists in which higher kf
corresponds to a smaller and more intense vortex core, and narrower annular zones at
smaller radii, developing over correspondingly shorter time scales. This self-similarity is
encapsulated by the observation of similar dynamics for similar values of the parameter ζ
defined by (3.6). However, because the annular zones are generated on a scale proportional
to k−1

f , they will become manifest only once the condensate dipole has reached a certain
intensity and scale.
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Finally, the results of the simulation set A suggest that the degree of self-organization
scales approximately with the parameter ζ , as shown in figure 8(a). This suggests that for
sufficiently weak forcing (small ζ ), the annular zones may eventually cease to be observed,
and the condensate may approach more closely to its theoretical form. To attain such a
regime in a flow that is forced from a state of rest and in which the condensate develops
spontaneously would, however, require weak forcing over extremely long time scales, far
beyond what is currently computationally feasible. For now, therefore, it remains an open
question whether a perfect universal condensate in the sense of (1.1a,b) might eventually
be attained with small enough energy input rates.
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