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Perturbations of Von Neumann
Subalgebras With Finite Index

Shoji Ino

Abstract. In this paper, we study uniform perturbations of von Neumann subalgebras of a von Neu-
mann algebra. Let M and N be von Neumann subalgebras of a von Neumann algebra with ûnite
probabilistic index in the sense of Pimsner and Popa. If M and N are suõciently close, then M and
N are unitarily equivalent. _e implementing unitary can be chosen as being close to the identity.

1 Introduction

In 1972, the uniform perturbation theory of operator algebras was initiated by Kadi-
son and Kastler [15]. _ey deûned a metric on the set of operator algebras on a ûxed
Hilbert space by the Hausdorò distance between their unit balls. We get basic ex-
amples of close operator algebras by small unitary perturbations. Namely, given an
operator algebra N ⊂ B(H) and a unitary operator u ∈ B(H), if u is close to the iden-
tity operator, then uNu∗ is close to N . Conversely, Kadison and Kastler suggested
that suitably close operator algebras must be unitarily equivalent. _is conjecture
was solved positively for injective von Neumann algebras in [5, 12, 24] with earlier
special cases [4, 18]. Cameron et al. [2] and Chan [3] gave classes of non-injective
von Neumann algebras for which this conjecture was valid. In [6], for von Neumann
subalgebras in a ûnite von Neumann algebra, Kadison-Kastler conjecture was solved
positively. However, for general von Neumann algebras, this conjecture is still open.
Examples of non-separable C∗-algebras that are arbitrary close but non-isomor-

phic were found in [1]. However, for general separable C∗-algebras, Kadison–Kastler
conjecture is still open. In [9], the conjecture was solved positively for separable nu-
clear C∗-algebras. Earlier special cases of [9] were studied in [7,16,19,20]. _e author
andWatatani showed that for an inclusion of simpleC∗-algebraswith ûnite index, suf-
ûciently close intermediate C∗-subalgebras are unitarily equivalent in [11]. Although
our constants depend on inclusions, Dickson obtained universal constants indepen-
dent of inclusions in [10].

In this paper, we study uniform perturbations of von Neumann subalgebras of a
vonNeumann algebrawith ûnite index. Let M andN be vonNeumann subalgebras of
a von Neumann algebra L with conditional expectations EM ∶ L → M and EN ∶ L → N
of ûnite probabilistic index in the sense of Pimsner–Popa [21]. IfM is suõciently close
to N , then M andN are unitarily equivalent. Moreover, the implementing unitary can
be chosen as being close to the identity. In general, there exist examples of arbitrarily
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close unitarily conjugate C∗-algebras where the implementing unitaries could not be
chosen to be close to the identity in [13]. Compared with the author and Watatani’s
C∗-algebraic case [11], we do not assume that M and N have a common subalgebra
with ûnite index.

2 Distance and the Relative Dixmier Property

In this paper, all von Neumann algebras are countably decomposable; that is, they
have faithful normal states.

We recall the distance deûned by Kadison and Kastler in [15] and near inclusions
deûned by Christensen in [7]. For a von Neumann algebra N , we denote by N1 and
Nu the unit ball of N and the unitaries in N , respectively.

Deûnition 2.1 Let M and N be von Neumann algebras in B(H). _en the distance
between M and N is deûned by

d(M ,N) ∶= max{ sup
n∈N1

inf
m∈M1

∥n −m∥, sup
m∈M1

inf
n∈N1

∥m − n∥} .

Let γ > 0. We say that N is γ contained in M and write N ⊆γ M if for any n ∈ N1,
there exists m ∈ M such that ∥n −m∥ ≤ γ.

If d(M ,N) < γ, then for any x in either M1 or N1, there exists y in the other unit
ball such that ∥x − y∥ ≤ γ.

_e following well-known fact is needed to show that maps are onto in Proposi-
tion 3.1.

Lemma 2.2 Let M and N be von Neumann algebras in B(H). If N ⊂ M and
d(M ,N) < 1, then M = N.

_e next lemma records some standard estimates.

Lemma 2.3 Let A be a unital C∗-algebra.
(i) Let x ∈ A satisfy that ∥x − I∥ < 1 and let u ∈ A be the unitary factor in the polar

decomposition x = u∣x∣. _en

∥u − I∥ ≤
√

2∥x − I∥.

(ii) Let p and q be projections in Awith ∥p− q∥ < 1. _en there exists a unitary w ∈ A
such that

wpw∗
= q and ∥w − I∥ ≤

√
2∥p − q∥.

Jones introduced an index for inclusions of type II1 factors in [14]. For arbitrary
factors, Kosaki extended Jones’ notion of the index in [17]. _e following deûnition
was introduced by Pimsner and Popa in [21].

Deûnition 2.4 Let N ⊂ M be an inclusion of vonNeumann algebras and let E∶M →
N be a conditional expectation. _en we call E is of ûnite probabilistic index if there
exists c ≥ 0 such that E(x∗x) ≥ cx∗x for all x ∈ M. When E is of ûnite probabilistic
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index, we deûne the probabilistic index of E by (sup{c ≥ 0 ∶ E(x∗x) ≥ cx∗x for x ∈

M})−1.

We recall the basic construction (see [22]). Let N ⊂ M be an inclusion of von
Neumann algebras with a faithful normal conditional expectation EN ∶M → N and
let ψ be a faithful normal state on N . Put ϕ ∶= ψ ○ EN . _en ϕ is a faithful normal
state on M. Let (H, π, ξ) be the GNS triplet associated with ϕ. _en we get the Jones
projection eN ∈ B(H) satisfying

I(eN) = [Nξ] and eN(xξ) = EN(x)ξ, x ∈ M .

_e basic construction ⟨M , eN⟩ is the vonNeumann algebra inB(H) generated byM
and eN . If EN is of ûnite probabilistic index, then there exists a conditional expectation
EM ∶ ⟨M , eN⟩ → M of ûnite probabilistic index by [22].

Let N ⊂ M be an inclusion of von Neumann algebras. For any x ∈ M, we will
denote by CN(x) the norm closure of the convex hull of

{uxu∗ ∶ u is unitary element in N}.

We recall the relative Dixmier property for inclusions of von Neumann algebras a�er
Popa [23].

Deûnition 2.5 Let N ⊂ M be an inclusion of von Neumann algebras. _en we say
that N ⊂ M has the relative Dixmier property if for any x ∈ M, CN(x) ∩ N ′ ∩M ≠ ∅.

In [23], Popa proved the following theorem.

_eorem 2.6 (Popa [23]) Let N ⊂ M be an inclusion of von Neumann algebras with
a conditional expectation E∶M → N of ûnite probabilistic index. _en N ⊂ M has the
relative Dixmier property.

Weshall establish relations between the relativeDixmier property and the distance.
Let N ⊂ M be an inclusion of von Neumann algebras. For any x ∈ M, the map

ad(x)∶N → M is deûned by (ad(x))(y) = yx − xy.
_e proof of the next proposition follows from [8, Proposition 2.5].

Proposition 2.7 Let M and N be von Neumann subalgebras of a von Neumann al-
gebra L with N ⊆γ M. If N ⊂ L has the relative Dixmier property, then

M′
∩ L ⊆2γ N ′

∩ L.

Proof For any x ∈ M′ ∩ L1, there exists y ∈ CN(x) ∩ N ′ ∩ L. Since for any unitary
u ∈ N ,

∥uxu∗ − x∥ = ∥ux − xu∥ = ∥(ad(x))(u)∥ ≤ ∥ ad(x)∥,
we have ∥y − x∥ ≤ ∥ ad(x)∥. On the other hand, for any n ∈ N1, there exists m ∈ M
such that ∥n −m∥ ≤ γ. _us,

∥(ad(x))(n)∥ = ∥nx − xn∥ = ∥nx −mx + xm − xn∥
≤ ∥n −m∥ + ∥m − n∥ ≤ 2γ.

Namely, ∥x − y∥ ≤ ∥ ad(x)∥ ≤ 2γ.
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3 Perturbations

In the following proposition, we construct a surjective ∗-isomorphism between von
Neumann subalgebras of a von Neumann algebra with ûnite probabilistic index. _e
argument is originated in early work of Christensen [5, 6].

Proposition 3.1 Let M and N be von Neumann subalgebras of a von Neumann alge-
bra L with conditional expectations EM ∶ L → M, EN ∶ L → N of ûnite probabilistic index.
If d(M ,N) < 1/15, then there exists a normal surjective ∗-isomorphismΦ∶N → M such
that ∥Φ − idN ∥ < 14d(M ,N).

Proof Put γ ∶= (1.01)d(M ,N). Let ⟨L, eM⟩ be the basic construction by using
EM ∶ L → M. _en there exists a conditional expectation EL ∶ ⟨L, eM⟩ → L of û-
nite probabilistic index. Since EN ○ EL ∶ ⟨L, eM⟩ → N is of ûnite probabilistic index,
N ⊂ ⟨L, eM⟩ has the relative Dixmier property by _eorem 2.6. _erefore,

M′
∩ ⟨L, eM⟩ ⊆2γ N ′

∩ ⟨L, eM⟩

by Proposition 2.7. _us, there exists t ∈ N ′ ∩ ⟨L, eM⟩ such that ∥t − eM∥ ≤ 2γ < 1/2.
Put p ∶= χ[1−2γ , 1+2γ]((t+ t∗)/2). Since we have ∥p− eM∥ ≤ ∥p− t∥+∥t− eM∥ ≤ 4γ < 1,
there exists a unitary w ∈ ⟨L, eM⟩ such that

weMw∗
= p and ∥w − I∥ ≤ 4

√
2γ

by Lemma 2.3. For any x ∈ N , we deûne Φ̃(x) ∶= eMw∗xweM = w∗pxpw. _en
Φ̃∶N → eM⟨L, eM⟩eM is a normal ∗-homomorphism, because p ∈ N ′. Now, there ex-
ists a surjective ∗-isomorphism ι∶ eM⟨L, eM⟩eM → M. Hence, we can deûne a normal
∗-homomorphism Φ ∶= ι ○ Φ̃∶N → M. For any x ∈ N1,

∥Φ(x) − EM(x)∥ = ∥eM(Φ(x) − EM(x))eM∥ = ∥eMw∗xweM − eMxeM∥

≤ 2∥w − I∥ ≤ 8
√

2γ.

_erefore, by [11, Lemma 3.2],

∥Φ − idN ∥ ≤ ∥Φ − EM ∣N∥ + ∥EM ∣N − idN ∥ ≤ (8
√

2 + 2)γ < 14d(N ,M) < 1.

_is gives that Φ is a ∗-isomorphism.
Moreover, for any x ∈ M1, there exists y ∈ N1 such that ∥x − y∥ ≤ γ. _en

∥x −Φ(y)∥ ≤ ∥x − y∥ + ∥y −Φ(y)∥ ≤ γ + (8
√

2 + 2)γ < 15d(N ,M) < 1.

Since this gives that d(M , Φ(N)) < 1, Φ(N) = M by Lemma 2.2.

_e following is our main theorem in this paper. It is based on Christensen’s work
[5, Proposition 4.2] and [6, Proposition 3.2].

_eorem 3.2 Let M and N be von Neumann subalgebras of a von Neumann algebra
L with conditional expectations EM ∶ L → M, EN ∶ L → N of ûnite probabilistic index. If
d(M ,N) < 1/15, then there exists a unitary u ∈ L such that uMu∗ = N and ∥u − I∥ <
20d(M ,N).
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Proof ByProposition 3.1, there exists a normal surjective∗-isomorphismΦ∶N → M
such that ∥Φ − idN ∥ < 14d(M ,N). Put

K ∶= {(
x 0
0 Φ(x)) ∶ x ∈ N} .

_en we can deûne a conditional expectation EK ∶M2(L) → K of ûnite probabilistic
index by

EK((
a b
c d)) =

⎛

⎝

EN(a)+Φ−1(EM(d))
2 0
0 Φ(EN(a))+EM(d)

2

⎞

⎠
, (

a b
c d) ∈M2(L).

_erefore, K ⊂ M2(L) has the relative Dixmier property by _eorem 2.6. Applying
the relative Dixmier property for ( 0 I

0 0 ) ∈M2(L), we obtain x in CK((
0 I
0 0 )) ∩ K′ ∩

M2(L). _en there exists y ∈ L such that x = ( 0 y
0 0 ) , because for any unitary u ∈ N ,

(
u 0
0 Φ(u))(

0 I
0 0)(

u∗ 0
0 Φ(u∗)) = (

0 uΦ(u∗)
0 0 ) .

Furthermore,

∥y − I∥ ≤ sup
u∈Nu

∥uΦ(u∗) − I∥ = sup
u∈Nu

∥Φ(u∗) − u∗∥ ≤ ∥Φ − idN ∥ < 1.

By Lemma 2.3, the unitary u ∈ L in the polar decomposition y = u∣y∣ satisûes

∥u − I∥ ≤
√

2∥Φ − idN ∥ < 20d(N ,M).

Since x = ( 0 y
0 0 ) ∈ K′, for any n ∈ N ,

(
0 yΦ(n)
0 0 ) = (

0 y
0 0)(

n 0
0 Φ(n)) = (

n 0
0 Φ(n))(

0 y
0 0) = (

0 ny
0 0 ) .

By taking adjoints, we have Φ(n)y∗ = y∗n for any n ∈ N . _erefore,

y∗yΦ(n) = y∗ny = Φ(n)y∗y, n ∈ N .

_is gives ∣y∣Φ(n) = Φ(n)∣y∣. _erefore,

uΦ(n) = y∣y∣−1Φ(n) = yΦ(n)∣y∣−1
= ny∣y∣−1

= nu, n ∈ N .

Hence, uMu∗ = uΦ(N)u∗ = N .
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