
J. Aust. Math. Soc. 82 (2007), 133-147

ON VALUES TAKEN BY THE LARGEST PRIME FACTOR
OF SHIFTED PRIMES

WILLIAM D. BANKS and IGOR E. SHPARLINSKF

(Received 12 April 2005; revised 28 February 2006)

Communicated by W. W. L. Chen

Abstract

Let V denote the set of prime numbers, and let P (n) denote the largest prime factor of an integer n > 1.
We show that, for every real number 32/17 < r) < (4 + 3\/2)/4, there exists a constant c(r\) > 1 such
that for every integer a ^ 0, the set

\p e V : p = P(q - a) for some prime q with p'1 < q < c(r)) pn]

has relative asymptotic density one in the set of all prime numbers. Moreover, in the range 2 < t) <
(4 + 3\/2)/4, one can take c(r)) = 1 + e for any fixed e > 0. In particular, our results imply that for every
real number 0.486 < # < 0.531, the relation P(q —a) x q" holds for infinitely many primes q. We use
this result to derive a lower bound on the number of distinct prime divisors of the value of the Carmichael
function taken on a product of shifted primes. Finally, we study iterates of the map q H> P(q — a) for
a > 0, and show that for infinitely many primes <?, this map can be iterated at least (log log^)1+o(1) times
before it terminates.

2000 Mathematics subject classification: primary 11N25, 11N64.

1. Introduction

1.1. Background Let V be the set of prime numbers, and for every integer n > 1,

let P(n) € V be the largest prime factor of n. The function P : {2,3,...} ^ V arises

naturally in many number theoretic situations and has been the subject of numerous

investigations; see, for example, [5, 6, 8, 14, 16, 17, 18, 20, 24, 28] and the references

contained therein.

Recently, driven in part by applications to cryptography, there has been a surge of

interest in studying the largest prime factors of the 'shifted primes' {q ± 1 : q € V).
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Improving on earlier results of Pomerance [25], Balog [4], Fouvry and Grupp [12],
and Friedlander [13], Baker and Harman [3] proved the existence of infinitely many
primes q for which P(q — a) < q02961, where a ^ 0 is any fixed integer. In
the same paper, they also showed the existence of infinitely many primes q for
which P(q — a) > q0611, improving earlier results of Hooley [19], Deshouillers and
Iwaniec [10], Fouvry [11], and others.

In this paper, we study the related problem of estimating the number of primes p that
occur as the largest prime factor of a shifted prime q — a when q e V lies in a certain
interval determined by p. Interestingly, questions of this sort also have applications in
theoretical computer science and, in a different form, have been considered by Vishnoi
[29].

We also study iterates of the map q i->- P(q — a) for a > 0, and show that for
infinitely many primes q, this map can be iterated at least (log log q)1+o(l) times before
it terminates.

1.2. Main results For an integer u ^ O and real numbers r\ > 0 and c > 1, let

Va,r,,c be the set of primes:

Va,i),c = {p € V : p = P(q — a) for some prime q with pn < q < c pn),

and let na^iC{x) denote its counting function:

*a,nAx) =#[p <x : p € Va,n,c).

Denoting by n(x), as usual, the number of primes p < x, we show that if TJ lies in a
suitable range, then there exists a constant c = c(r}) such that

lim l
*->°o n{x)

holds for every integer a ^ 0. In other words, Va^c has relative asymptotic density
one in the set of all prime numbers. More precisely, we prove the following.

THEOREM 1.1. For every real number 32/17 < r? < (4 + 3\/2)/4, there exists a
constant c = c{rf) > 1 such that the estimate

Xa.nAx) = 7T(X) + O I j - ) ,
\lOg*JC/

holds for every integer a ^ 0 and real number K, where the implied constant depends
only on a, r), and K. Moreover, if 2 < r] < (4 + 3-</2)/4, this estimate holds for any
constant c > 1.
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Let Xa denote the set of all limit points of the set of ratios

:q eV\.

Certainly, there is no reason to doubt that Xa = [0, 1]; however, our present knowledge
about the structure of Xa is rather limited. Using the results of [3] mentioned above,
it is easy to see that inf Xa < 0.2961 and supXa > 0.677 for any a ^ 0. In view of
Theorem 1.1, we immediately deduce the following result.

COROLLARY 1.2. For every integer a ^ 0, the set Xa contains the closed interval
[0.486,0.531].

We remark that, under the Elliott-Halberstam conjecture, which asserts that the
bound

n{y)
max max
yS* gcd(a,m)=

n(y;m,a)-
<p(m) logc*

holds for any fixed real numbers s, C > 0, our approach yields an extension of
Theorem 1.1 to the range 1 < rj < (4 + 3-s/2)/4. The same conjecture also implies
that Xa = [0, 1]. Indeed, if na(x, v) denotes the number of primes q < x for which
P(q — a) < y, then it is natural to expect that the asymptotic relation

(1) na(x,y)~ p(u)7t(x)

holds over a wide range in the ;cy-plane, where u = (logx)/(logy) and p{u) is the
Dickman function (see [14, 17, 27]). The statement (1) is a well-known consequence
of the Elliott-Halberstam conjecture (see [1, 14]), and using (1) it is easy to see that
Ta = [0, 1].

Next, recall that the Carmichael function k(n) is defined for n > 1 as the maximal
order of any element in the multiplicative group (l/nl) *. More explicitly, for a prime
power pv, one has

l), if/?>3orv<2;
V~2, ifp = 2andi>>3;

and for an arbitrary integer n > 2,

X(n) =

where n = p"' • • • pv
k
k is the prime factorization of n. Clearly, X(l) = 1.

We also use a>(n), as usual, to denote the number of distinct prime divisors of
n > 1; in particular, u>{\) = 0.

https://doi.org/10.1017/S1446788700017511 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017511


136 William D. Banks and Igor E. Shparlinski [4]

THEOREM 1.3. For a fixed integer a ^ 0, let

Qa(x) = Yl{q-a) and Wa(x) = a>(k{Qa(x))).
qzV

a<q<x

Then, for sufficiently large x, the lower bound Wa(x) > x03596 holds.

Again, it is an easy matter to verify that, under the Elliott-Halberstam conjecture,
the bound Wa(x) > x1+o(1) holds for any fixed a.

Now, let a > 0 be fixed, and put Q a 0 = {q eV : q < a + I}. We define sets of
primes {Qa,k '• k > 1} recursively by

Qa<k = {q e V : q > a + 2 , P ( q - a ) e Q a , k - i } , k e M ,

and consider the corresponding counting functions pa,k(x) = #(q S x : q e Qa,*},
ke N.

THEOREM 1.4. For every integer a > 0, the bound

PaAx) < 2fl3*+1xexp( - (logxy^dogjc)"*

holds for all x > xo(a), where xo(a) depends only on a, and k > 1.

For fixed a > 0 and an arbitrary prime q, consider the chain given by q0 = q, and
qj = P(qj_i — a), j 6 N, and define ka(q) as the smallest nonnegative integer k for
which qk < a + 1.

COROLLARY 1.5. Let a > 0 be fixed. Then for all but o(n(x)) primes q < x, the
following lower bound holds:

log log log x

The lower bound of Corollary 1.5 is closely related to (and complements) certain
results from [22].

We also observe that k i (q) gives a lower bound for the height of the tree representing
the Pratt primality certificate [26] associated to q. This primality certificate is a
recursively-defined construction which consists of a primitive root g modulo q and
a list of the prime divisors px,..., ps of q — 1 together with their certificates of
primality; accordingly, the whole certificate has the natural structure of a tree. Clearly,
the height H(q) of this tree satisfies the trivial bound H{q) <& \ogq. On the other
hand, our Corollary 1.5 implies that the lower bound

(2)
log log log x

holds for all but o(n(x)) primes q < x.
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2. Preliminaries

2.1. Notation Throughout the paper, we adopt the following conventions.
Any implied constants in the symbols O, « ; and » may depend (where obvious) on

the parameters a, r], and K, but are absolute otherwise. We recall that the statements
A <JC B and B J£> A are equivalent to A = O(B) for positive functions A and B.

The letters p,q,r,i are always used to denote prime numbers, and m, n always
denote positive integers.

As usual, we write n(x;m,a) for the number of primes p < x in the arithmetic
progressions (mod m).

For simplicity, we use log x to denote the maximum of 1 and the natural logarithm
of x > 0, and we write log2 x = log (log x).

Finally, we use <p(n) to denote the value of the Euler function at the positive
integer n.

2.2. Necessary tools Our principal tool is the following result, which follows
immediately from the Bombieri-Vinogradov theorem (see [9]) in the range 0 < i? < 1/2,
from [2, Theorem 1] in the range 1/2 < # < 13/25, and from the main theorem of [23]
in the range 13/25 < & < 17/32.

LEMMA 2.1. There exist functions C2(#) > Ci(#) > 0, defined for real numbers &
in the open interval (0, 17/32), such that for every integer a ^ O and real number K,
the inequalities

C,(#)j , , C2(d)y
—— < n(y; p, a) < — —
<p(p)\ogy <p{p)\ogy

hold for all primes p < y6, with almost O(y& / log* y) exceptions, where the implied
constant depends only on a, i?, and K. Moreover, for any fixed s > 0, these functions
can be chosen to satisfy the following properties:

• C\ (#) is monotonic decreasing, and C2{&) is monotonic increasing;
• Ci(l /2) = 1 - e , andC2(l/2) = l+e.

We also need a result from sieve theory, which is an application of Brun 's method.
The following statement is Theorem 6.7 of [21] (see also [15, Theorem 5.7]).

LEMMA 2.2. Let g be a natural number, and let ah bj (j = 1, . . . , g) be integers
such that E ^ 0, where E = Y[*=i aj Y\i<i<k<g(

a'bk — okbi). For a prime number r,
let p(r) be the number of solutions n modulo r to the congruence

+ bj) = 0 (mod r),
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and suppose that p(r) < r for every r. Then, for X > Y > 1,

#{Y - X <n <X : (ajn + b}) is prime for j = 1 , . . . , g]

reV

where the implied constant depends only on g.

Finally, we need the following technical result.

LEMMA 2.3. For every positive integer n, let

rzV

Then the following estimate holds:

£
gcd(*,a)=l,2|ta

where C2 is the 'twin primes constant' given by:

L6601618158.c2 = ]~f ( 1 —- ) = 0.

PROOF. Since VK«) = 5Z</|B,2td t*2(d)/F(d), where /x(d) is the Mobius function,
and F(n) = X\rev,r\n(

r ~ 2)>il follows that

J.
k 2-" kl— F(d) ^ dF(d) ^ h'

k<z k<z d\k v ' d<z v ' h<z/d
gcd(k,a)=l,2\ka gcd(*,a)=l,2| ka 2\d gcdW,2a)=l gcd(A,a)=l,2| ha

In the case that a is odd, we have

— E
/ g S\a h<z/2dS

gcd(/i,a)=l

\ E\ E
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whereas for even a,

y -= y - = T- y

139

E
gcd(/i,a)=l

(S | gcd(A.a) h<z/dS

= E <p(a)

b\a

Hence, in either case, we have

f(k) cp(2a)

gcd(i,a)=l,2|ta

Now we split the summation on the right according to whether d < w or d > w,
where w = exp (^/logz). Since F(rf) » Vd for all odd squarefree integers d > 1,
it follows that

E
w<d<z

d2

and

E
gcdW,2a)=I gcd(d,2a)=l

r\2a

The result follows. D

3. Proofs

PROOF OF THEOREM 1.1. Let the numbers a, r), and K be fixed as in the statement
of Theorem 1.1, and put ft = l/r). In what follows, the real numbers A. > 1 and
A, /x > 0 are constants that depend only on a, rj, and K.

Let x be a large positive real number, and put y = x*. Then

(3) x = and logy = r) log x.
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Applying Lemma 2.1, first with y and then with ky, we see that the inequalities

——— < 7r(y;p, a) < ——
<P(p)\ogy <p{p)\ogy

and
< 7r(Ay; p , a) <

<p(p)logy (p(p)logy

hold for all primes p < x, with at most O (x/ log* x) exceptions. Hence, if we define
the set

A I x C2(#)y J , x CiW^y)
A = {p < x : 7r(y; p, a) < — and 7r(Ay; p , a) > — \ ,

I Ptogy plogy J
it follows that #A = n(x) + O(x/logK x).

Next, let B = {p e A : p < (1 - A)x] andC = [p e A : (1 - A)x < p < x}.
Since A is the disjoint union of B and C, and

#£ < JT((1 - A)x) = (1 - A)

we see that

(4) #C>

O f
Vl

log**

For a fixed prime p e C, let

Cp = {y < q < ky : q = a (mod p) and P(q — a) > p],

and observe that

> (Ci(l?)X — C2(!?)) —; #jP»-
p logy

If q € Pp, then there exists a prime £ > p and an integer & such that q = pk£ + a
and P(q — a) = £. In fact, the condition P(q — a) = t is redundant. Indeed, since
£ > p > (1 — A)x, we have k = (q — a)Jp£ <£ y/;t2 = ;t"~2, and since ?? < 3, it
follows that £ > p > k once x is sufficiently large. Moreover, the preceding estimate
implies that T>p = 0 for all p e C if ^ < 2 and * is large enough.

Next, we estimate #T>P in the case that r\ > 2. For each prime p € C and integer
& <£ x''"2, let ^ , , t = {y < q < ky : q = pk£ + a for some prime £ > p). Clearly,
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T>p c U* •?>.*• Moreover, assuming that x is large enough, we have Tpk c Qp,k,
where Qpk = {(1 - ix)y/pk < I < (1 + n)Xy/pk : both £ and (pk£ + a) are prime}.
To estimate #GP,k, we first observe that QPtk = 0 if either gcd(&, a) ^ 1 or 2 { taz.
On the other hand, if gcd(&, a) = 1 and 2 | ka, then we apply Lemma 2.2 with the
choices g = 2, ax = 1, b\ = 0, a2 = pk, and 62 — <*• Note that £ = pka ^ 0. For
every prime r, the number p(r) of solutions modulo r to the congruence

n(pkn + a) = 0 (mod r)

is one if r | p/:a, and two otherwise; in particular, p(r) < r for every prime r. Finally,
taking X = (1 + n)ky/pk and K = (A./z + X + /x — \)y/pk in the statement of
Lemma 2.2 (thus, X — Y = (1 — ix)y/pk), we obtain the following bound:

reV

i V
where y = A./U. + A. + yu, — 1. Noting that y > A. — 1 > 0, and using the simple
estimates p/:a « : x11"1 and yy/pk » ;̂, we deduce that

-2 y

Now, since p, k, and a are pairwise coprime, and 2 | fca, it follows that

where the constant c2 and the function ir(k) are defined as in Lemma 2.3. Therefore,

P' ~ pk log2 x

Summing this estimate over k, applying Lemma 2.3, and using the fact that \\r (p) =
(1 + <?(!)), we derive that

k«x k<<x

gcd(t,a)=l,2|ta gcd(t,a)=l,2 \ka
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It is easy to verify that, for every integer a ^ O , one has

and therefore, using (3), we have

(6) #VP < (8y(»j - 2) + o(l)) -L-- = (twin-2) + o(l))
plogx plogy

We now turn to the selection of the constants c, A. > 1 and A, /x > 0. Our first goal
is to show, for x sufficiently large, that C c Va,vx. Suppose that p e C and q e £p.
Then,

p" < x" = y < q < ky = Xx" < p".

From these inequalities, it follows that C C Va,n,c if £p ^ 0 for all p e C, and the
constants c, A, and A satisfy the relation

(7) c =
( 1 - A ) "

In the case that r? < 2, we have already seen that T>p = 0 for all /7 € C once x is
large enough. By (5), it follows that £p £ 0 for all p e C if

Since # > 0.5 in this case, Lemma 2.1 implies that for any c > C2(#)/C2(#), both
relations (7) and (8) can be simultaneously satisfied for an appropriate choice of k > 1
and A > 0, provided that r) > 32/17.

In the case that t) > 2, after substituting (6) into (5), we see that £p •£ 0 for all
p e C if x is sufficiently large, and

(9)

Let e > 0 be a fixed constant, and put c = 1 + e. Choosing

k = 1 + e/2 > 1 and A = 1 - f i±l/l\ > o,
V 1 + £ 7

we see that relation (7) is satisfied. For any fixed constant 8 > 0, we can assume
d(i?) = 1 — 8 and C2(#) = 1 + 5 according to Lemma 2.1. Since the left-hand side
of (9) and y=kfi + k + n — 1 can each be made arbitrarily close to k — 1 = e/2 by
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choosing 8 and fi sufficiently close to 0, it follows that relation (8) is also satisfied for an
appropriate choice of 8 and fi, provided that 8*7(̂ 7 — 2) < 1, that is, r] < (4 + 3\/2)/4.

Taking into account (4), we have therefore shown that if 32/17 < rj < (4+3\/2)/4,
there exists a constant c = c{t)) such that at least A n(x) + O(x/logK x) primes p in
the interval (1 - A)x < p < x lie in the set Va,n,c> and the theorem follows. •

PROOF OF THEOREM 1.3. For fixed rj in the range 32/17 < rj < (4 + 3\/2)/4, put
# = \/rj, and consider the counting function

ujaiy) = # {p < y : p = P(q — a) for some q € V with q < cpn],

where c = c(rj) is the constant described in Theorem 1.1. According to that theorem,
we have the following estimate:

Defining y = (c lx)&, it follows that there are (1 -r-o(l))7r(y) primes p < y such that
P I Qa(x)', let S denote this set of primes. By a result of [3], there are at least y1+o(1)

primes p e S with P{p - a) > y0-611; let K denote this set of primes. Then

Let C be the set of primes I for which I = P(p — 1) for some p e TZ.
Clearly, a prime t > y0677 cannot have the property that I = P(p — 1) for more

than y°™ primes p e n. Consequently, Wa(x) > #£ > /-677+°<'> = .̂eTw-KXî
Taking r? = #~' sufficiently close to 32/17, we obtain the stated result. •

PROOF OF THEOREM 1.4. Let \[r(x, y) = #{n < x : P(n) < y}. We recall the well
known bound (see [7, 17, 27])

(10) ir(x,y) <jcexp(-(l + o(l))«log!i),

which holds uniformly as u — (log^:)/(logy) -»• oo with u < yl/2.
If k = 1, then the set Qa,, D [1, x] consists of all prime numbers q of the form

m + a, where P(m) < a + I and m < x — a < x. Therefore, the bound

holds uniformly for x > 2.
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We finish the proof by induction. Suppose that the result is true up to k — 1, where
k > 2. We can assume that

(11) k<
log log log x'

for otherwise the bound of the theorem holds trivially. For every integer w > 0, we
have:

_1

q
ew<q<x ew <q<x

We now choose u = (logx)1^, and put w = (logx)/u = (log^:)1"17*. Since
u > log log x by (11), and u < ew/2 if x is large enough (independent of k or a), we
can use the bound (10). In a weaker form, this gives

xlr(x,ew) <xe-u =xexp(-(\ogx)l/k)

if x is sufficiently large.
Using the inductive hypothesis, we derive that

LlogxJ LlogJcJ

* ( - (v + l)l"k

< 2fl3*eexp(-

Therefore

) + 2a3*^exp( - w^^

Since w1/ik~l) = (logx)17*, a > 1, and 1 + 3ke < 3k+l, we conclude the proof. •

4. Concluding remarks

As we have already remarked, the Elliott-Halberstam conjecture leads to an exten-
sion of Theorem 1.1 to the range 1 < r\ < (4 + 3\/2)/4. We also note that the factor
2gg\ in Lemma 2.2 is probably unnecessary. In the absence of this factor, the stronger
estimate of Lemma 2.2 would lead to a corresponding extension of Theorem 1.1 to
the range 32/17 < t] < 1 + <Jl.
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Clearly, Theorem 1.3 implies that k(k( f ] , ^ , q<x q)) » exp(x03596). It also would
be interesting to estimate &-fold iterates of the Carmichael function applied to the
product of the primes q < x.

We now recall the asymptotic formula

1 * ' "~ =0.6243. . .
x t—1 logn

2<n<x 6

for the average logarithmic size of the largest prime factor (see [27, Exercise 3,
Chapter III.5]). Assuming that the shifts qj —a, where q0 = q, and qj = P{qj-\ — a),
j = 1,2,..., behave as 'typical' integers, then it is reasonable to expect that the
bound ka{q) <£ log log q holds for almost all primes q. In particular, the lower
bound of Corollary 1.5 is probably rather tight. On the other hand, it should be
possible to improve the logarithmic factor (log*)* in the bound of Theorem 1.1 and
thus obtain a slightly better bound for ka(q), although the technical details are more
involved. Similarly, although we expect that Theorem 1.1 and Corollary 1.5 also
hold for negative integers a (with appropriate modifications), the proof appears to be
more complicated as the induction step must be handled in a different way to retain
uniformity of the bound with respect to k.

Finally, it would be interesting to know whether the lower bound (2) for the height
of the Pratt tree is tight.
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