J. Austral. Math. Soc. (Series A) 46 (1989), 395-401

A GENERALIZATION OF ROLLE'S THEOREM AND AN APPLICATION TO A NONLINEAR EQUATION

ANTONIO TINEO

(Received 10 November 1986)

Communicated by A. J. Pryde

Abstract

Given two C^1 -functions $g: \mathbb{R} \to \mathbb{R}$, $u: [0, 1] \to \mathbb{R}$ such that u(0) = u(1) = 0, g(0) = 0, we prove that there exists c, with 0 < c < 1, such that u'(c) = g(u(c)). This result implies the classical Rolle's Theorem when $g \equiv 0$. Next we apply our result to prove the existence of solutions of the Dirichlet problem for the equation x'' = f(t, x, x').

1980 Mathematics subject classification (Amer. Math. Soc.): 34 B 15.

0. Introduction

Let $f: [0, 1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function and suppose that there exist a continuous function $\phi: [0, \infty) \to (0, \infty)$ and a constant $\mathbb{R} > 0$ such that

 $f(t, x, 0)x \ge 0 \quad \text{if } |x| = R,$ $|f(t, x, y)| \le \phi(|y|) \quad \text{if } |x| \le R.$

It is well known that

0.1. THEOREM. The Dirichlet problem

(0.1)
$$x'' = f(t, x, x'), \quad x(0) = x(1) = 0$$

© 1989 Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

395

has at least one solution if

$$\int_0^\infty s\phi(s)^{-1}\,ds>R.$$

For instance see [1] or [2].

In this paper we prove a generalized Rolle's Theorem and we apply this result to obtain the following generalization of Theorem 0.1.

0.2. THEOREM. Suppose that there are $(r_0, s_0), (r_1, s_1) \in \mathbb{R} \times \mathbb{R}, r_1 < 0 < r_0$, such that

(i) $f(t, x, s_0) \ge 0$ if $r_0 \le x \le r_0 \exp(K)$, (ii) $f(t, x, s_1) < 0$ if $r_1 \exp(K) \le x \le r_1$, where $K = \max\{|s_0/r_0|, |s_1/r_1|\}$. Assume further that (iii) $|f(t, x, y)| \le \phi(|y|)$ if $r_1 \exp(K) \le x \le r_0 \exp(K)$, (iv) $\int_0^\infty s\phi(s)^{-1} ds > \max\{-r_1, r_0\}\exp(K)$.

Then the problem (0.1) has at least one solution v such that $r_1 \exp(K) \le v \le r_0 \exp(K)$.

1. A general existence principle

In the following, C_0^2 denotes the space of functions $u: [0, 1] \to \mathbb{R}$ of class C^2 such that u(0) = u(1) = 0, with the usual norm $||u||_2 = \max\{||u^{(i)}||_0, i = 0, 1, 2\}$, where $||u^{(i)}||_0 = \sup\{|u^{(i)}(t)|: 0 \le t \le 1\}$. For reference purposes, we state the following general, and now classical, result (see [2] for details).

1.1. THEOREM. Let U be an open and bounded neighborhood of $0 \in C_0^2$ such that the problem

$$x'' = \lambda f(t, x, x'), \qquad x(0) = x(1) = 0$$

has no solutions in the boundary ∂U of U for $0 < \lambda < 1$. Then the problem (0.1) has at least one solution in the closure cl(U) of U.

2. A Nagumo inequality

In this section we obtain a priori bounds for derivatives:

2.1. PROPOSITION. Let $v \in C_0^2$. If $v'(t_0) \neq 0$ then there is an interval $[a, b] \subset [0, 1]$ such that v and v' have constant sign in (a, b); $t_0 \in \{a, b\}$ and v' has a zero at one of the endpoints of [a, b].

PROOF. We consider two cases.

Case 1; $v(t_0) \neq 0$. Since v(0) = v(1) = 0 there is an interval $[c, d] \subset [0, 1]$ such that $v(t) \neq 0$ if $t \in (c, d)$, v(c) = v(d) = 0 and $c < t_0 < d$. In particular $v'(t_1) = 0$ for some $t_1 \in [c, d]$ and hence there is an interval $[a, b] \subset [c, d]$ such that $t_0 \in \{a, b\}$, $v'(a) \cdot v'(b) = 0$ and $v'(t) \neq 0$ for $t \in (a, b)$, as required.

Case 2; $v(t_0) = 0$. Since $v'(t_0) \neq 0$ there is an interval $[c, d] \subset [0, 1]$ such that $t_0 \in \{c, d\}, v(c) = v(d) = 0$ and $v(t) \neq 0$ if $t \in (c, d)$. The proof follows as in the first case.

2.2. COROLLARY. Let $\phi: [0, \infty) \to (0, \infty)$ be a continuous function and let $v \in C_0^2$ be such that $|v''(t)| \le \phi(|v'(t)|) \ (0 \le t \le 1)$. Then

$$\int_0^{|v'(t)|} s\phi(s)^{-1} \, ds \le ||v||_0 \qquad (0 \le t \le 1).$$

PROOF. Let $t_0 \in [0, 1]$ be such that $v'(t_0) \neq 0$ and take $[a, b] \subset [0, 1]$ as given by Proposition 2.1. If we follow the proof of Theorem 3.1 of [2] then we get

$$\int_0^{|v'(t_0)|} s\phi(s)^{-1} \, ds \le |v(a) - v(b)|,$$

so the proof is complete, since v has constant sign in (a, b).

3. A generalized Rolle's Theorem

From now on $h: \mathbb{R} \to \mathbb{R}$ denotes a function of class C^1 . Given $u \in C_0^2$ and $a \in [0, 1]$ we define

(3.1)
$$u_{a}(t) = u(t)\exp\left(-\int_{a}^{t} h(u(s)) \, ds\right),$$
$$M(u) = \{a \in [0, 1]: \max u_{a} = u(a) > 0\},$$
$$m(u) = \{a \in [0, 1]: \min u_{a} = u(a) < 0\}.$$

3.1. LEMMA. If max u > 0 (respectively min a < 0) then M(u) (respectively m(u)) is a nonempty set.

PROOF. If $\max u > 0$ we get $\max u_0 = u_0(a) > 0$ for some $a \in [0, 1]$. On the other hand $u_a = ku_0$ for some k > 0 and hence $0 < \max u_a = k \max u_0 = ku_0(a) = u_a(a) = u(a)$; or $a \in M(u)$. Similarly $m(u) \neq \emptyset$ if $\min u < 0$.

3.2. REMARKS. (a) If $a \in M(u)$ one has $u'_a(a) = 0$ and $u''_a(a) \le 0$, which is equivalent to

$$(3.2) u'(a) = u(a)h(u(a))$$

and

$$(3.3) u''(a) \le u'(a) \cdot [h(u(a)) + u(a)h'(u(a))].$$

(b) If $a \in m(u)$ we obtain (3.2) and the reverse of inequality (3.3).

Notice that $\max u_a = u_a(a)$ (respectively $\min u_a = u_a(a)$) if $a \in M(u)$ (respectively $a \in m(u)$).

REMARK. Let $u: [0, 1] \to \mathbb{R}$ a differentiable function and define u_a by (3.1) for $a \in [0, 1]$. If u(0) = u(1) = 0 we get $u_a(0) = u_a(1) = 0$ and hence $u'_a(c) = 0$ for some $c \in (0, 1)$. Therefore u'(c) = u(c)h(u(c)). This result implies Rolle's Theorem when $h \equiv 0$.

For each r > 0 let

$$U(r) = \{ u \in C_0^2 \colon M(u) \neq \emptyset, u_a(t) < r \text{ if } (a, t) \in M(u) \times [0, 1] \}, \\ V(-r) = \{ u \in C_0^2 \colon m(u) \neq \emptyset, u_a(t) > r \text{ if } (a, t) \in m(u) \times [0, 1] \}, \\ U(r, 0) = U(r) \cup U(0), V(-r, 0) = V(-r) \cup V(0), \end{cases}$$

where $U(0) = \{ u \in C_0^2 : M(u) = \emptyset \}$ and $V(0) = \{ u \in C_0^2 : m(u) = \emptyset \}.$

We give now some properties of the sets U(r, 0), v(-r, 0), that we shall use in the next section.

3.3. PROPOSITION. (a) If $u \notin U(r, 0)$ and $u \in C_0^2$ (respectively $u \notin V(-r, 0)$) then there is $a \in M(u)$ (respectively $a \in m(u)$) such that $u(a) \ge r$ (respectively $u(a) \le -r$).

(b) U(r, 0), V(-r, 0) are open sets (r > 0).

(c) $\partial(U(r_0, 0) \cap V(r_1, 0)) \subseteq (\partial U(r_0, 0)) \cup (\partial V(r_1, 0)), r_1 < 0 < r_0.$

(d) If $|h(x)| \le K$ for all $x \in \mathbb{R}$ (some $K \ge 0$) and $u \in cl(U(r_0, 0) \cap V(r_1, 0))$ for some $r_1 < 0 < r_0$, then $r_1 \exp(K) \le u(t) \le r_0 \exp(K)$ ($0 \le t \le 1$).

PROOF. (a) This is trivial.

(b) Let $\{u_n\}$ be a sequence in C_0^2 which tends to $u \in C_0^2$ in the $|| ||_2$ -norm; then $\{u_{n,a_n}\}$ converges uniformly to u_a if $a_n \to a$. Since [0, 1] is a compact set it is not difficult to prove that the complement of U(r, 0) (respectively V(r, 0)) is a closed set.

(c) This is a consequence of (b).

Finally, to prove (d), notice first that $U(r_0, 0) \cap V(r_1, 0)$ is the union of the sets $U(r_0) \cap V(r_1)$, $U(r_0) \cap V(0)$, $V(r_1) \cap U(0)$ and $U(0) \cap V(0)$. Secondly, by Lemma 3.1, $U(0) = \{u \in C_0^2 : u \le 0\}$ and $V(0) = \{u \in C_0^2 : u \ge 0\}$. If $u \ne 0$ it is easy to prove that one has the following cases: (i) there are $a, b \in [0, 1]$ such that max $u_a \le r_0$ and min $u_b \ge r_1$; (ii) $u \ge 0$ and max $u_a \le r_0$ for some $a \in [0, 1]$;

(iii) $u \leq 0$ and min $u_b \geq r_1$ for some $b \in [0, 1]$.

The proof follows from the fact that

$$u(t) = u_a(t) \exp\left(\int_a^t h(u(s)) \, ds\right) \quad \text{for } a, t \in [0, 1].$$

4. The proof of Theorem 0.2

Let $\rho, \varepsilon_0 > 0$ be such that

$$\int_0^\rho \frac{sds}{\phi(s)+\varepsilon_0} > \max\{-r_1, r_0\}\exp(K).$$

For some $\varepsilon_1 > 0$ one has

[5]

(4.1)
$$\int_0^{\rho} \frac{sds}{\phi(s) + \varepsilon_0} = \max\{-r_1, r_0\}\exp(K + \varepsilon_1).$$

CLAIM. If there is $\varepsilon \in (0, \varepsilon_1)$ such that

$$(4.2) |f(t, x, y)| \le \phi(|y|) \text{ for } r_1 \exp(K + \varepsilon) \le x \le r_0 \exp(K + \varepsilon)$$

then the problem (0.1) has at least one solution V such that $r_1 \exp(K) \le v(t) \le r_0 \exp(K)$.

Proof of the claim. By the Tietze-Uryshon Lemma there is a continuous functin Δ : $\mathbb{R} \times \mathbb{R} \rightarrow [-1, 1]$ such that $\Delta(x, s_0) = 1$ if $r_0 \leq x \leq r_0 \exp(k)$, and $\Delta(x, s_1) = -1$ if $r_1 \exp(K) \leq x \leq r_1$.

For each integer *n* such that $n\varepsilon_0 \ge 1$, we let $f_n(t, x, y) = f(t, x, y) + n^{-1}\Delta(x, y)$. Now fix *n* with $n\varepsilon_0 \ge 1$, and notice that there is $\delta = \delta_n > 0$ with $\delta \le \min\{\varepsilon, 1/n\}$ such that

(4.3)
$$f_n(t, x, s_0) > 0$$
 if $r_0 \le x \le r_0 \exp(K + \delta)$,

(4.4)
$$f_n(t, x, s_1) < 0$$
 if $r_1 \exp(K + \delta) \le x \le r_1$.

Choose a C^1 -function $h = h_n$: $\mathbb{R} \to \mathbb{R}$ such that $h(r_i) = s_i/r_i, h'(r_i) = -s_i/r_i^2, h(x) = s_0/s$ if $x \ge r_0, h(x) = s_1/x$ if $x \le r_1$, and $|h(x)| \le K + \delta$ for $x \in \mathbb{R}$.

Given $u \in C_0^2$ and $a \in [0, 1]$ define u_a by (3.1) and let U be the open and bounded neighborhood of $0 \in C_0^2$ defined by $u \in U$ if and only if

$$u \in U(r_0, 0) \cap V(r_1, 0), \qquad ||u'||_0 < \rho, \qquad ||u''||_0 < R,$$

where $R = R_n > 0$ is chosen such that

$$(4.5) |f_n(t, x, y)| < R ext{ if } |x| \le M := \max\{-r_1, r_0\}\exp(K+\delta),$$

and

$$|y| \le \rho \ (0 \le t, \lambda \le 1).$$

We shall prove that the problem

$$(4.6)_{\lambda} \qquad x'' = \lambda f_n(t, x, x'), \qquad x(0) = x(1) = 0$$

has no solutions on ∂U for $0 < \lambda < 1$.

Suppose that $u \in cl(U)$ is a solution of $(4.6)_{\lambda}$ for some $\lambda \in (0, 1)$; by Proposition 3.3(d) we obtain

(4.7)
$$r_1 \exp(K+\delta) \le u(t) \le r_0 \exp(K+\delta)$$

and by $(4.6)_{\lambda}$, (4.5) and (4.2), $|u''(t)| \le 1/n + \phi(|u'(t)|)$ since $\delta \le \varepsilon$. On the other hand, $n\varepsilon_0 \ge 1$ and $\delta \le \varepsilon < \varepsilon_1$, and therefore

$$\int_0^{\nu} s[1/n + \phi(s)]^{-1} ds > \max\{-r_1, r_0\} \exp(K + \delta) \ge \|u\|_0,$$

and by Corollary 2.2 we get $||u'||_0 < \rho$. Thus, by (4.5) and $(4.6)_{\lambda}$, $||u''||_0 < R$.

If $u \in \partial U$ then $u \in (\partial U(r_0, 0) \cup (\partial V(r_1, 0))$ and we suppose first that $u \in \partial U(r_0, 0)$. In this case, by Proposition 3.3(a), there is $a \in M(u)$ such that max $u_a = u_a(a) = u(a) \ge r_0$ and by remarks 3.2 and the definition of h we have

$$u'(a) = u(a)h(u(a)) = s_0$$

and

$$u''(a) \le s_0[h(u(a)) + u(a)h'(u(a))] = 0$$

as $h(u(a)) = s_0/u(a)$ and $h'(u(a)) = -s_0/u(a)^2$.

But this is a contradiction since, by (4.7) and (4.3), $u''(a) = \lambda f_n(a, u(a), s_0) > 0$. This contradiction proves that $u \notin \partial U(r_0, 0)$. Analagously $u \notin \partial V(r_1, 0)$ and then $u \notin \partial U$. So, by Theorem 1.1, the problem (4.6)₁ has at least one solution v_n such that $||v'_n||_0 \leq \rho$, $||v''_n|| \leq R$ and $r_1 \exp(K + 1/n) \leq v_n(t) \leq r_0 \exp(K + 1/n)$. Remember that $\delta \leq 1/n$. Now it is easy to prove that $\{v_n\}$ has a subsequence which converges in C_0^2 to a solution of (0.1). So the proof of the claim is finished.

Now take an arbitrary $\varepsilon \in (0, \varepsilon_1)$ and a continuous function $\alpha \colon \mathbf{R} \to \mathbf{R}$ such that

$$\begin{aligned} \alpha(x) &= x \quad \text{if } r_1 \exp(K) \le x \le r_0 \exp(K), \\ \alpha([r_1 \exp(K + \varepsilon), r_0 \exp(K + \varepsilon)]) \subset [r_1 \exp(K), r_0 \exp(K)], \end{aligned}$$

and define $g(t, x, y) = f(t, \alpha(x), y)$. We have

$$\begin{array}{ll} g(t,x,s_0) \geq 0 & \text{if } r_0 \leq x \leq r_0 \exp(K), \\ g(t,x,s_1) \leq 0 & \text{if } r_1 \exp(K) \leq x \leq r_1, \\ |g(t,x,y)| \leq \phi(|y|) & \text{if } r_1 \exp(K+\varepsilon) \leq x \leq r_0 \exp(K+\varepsilon). \end{array}$$

Then, by the claim, there exists at least one solution v of the problem

 $x'' = g(t, x, x'), \qquad x(0) = x(1) = 0$

such that $r_1 \exp(K) \le v(t) \le r_0 \exp(K)$. In particular $\alpha(v(t)) = v(t)$ $(0 \le t \le 1)$ and hence v is a solution of (0.1). So the Proof of Theorem 0.2 is complete.

References

- [1] R. T. Graines and J. L. Mawhin, Coincidence degree and nonlinear differential equations (Lectures Notes in Math., 568, Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [2] A. Granas, R. B. Guenther and J. W. Lee, 'Nonlinear boundary value problems for some class of ordinary differential equations', Rocky Mountain J. Math. 10 (1980), 35-58.

Departamento de Matematicas Universidad de Los Andes Facultad de Ciencias Merida, Edo Merida Venezuela