RINGS WHICH RESEMBLE RINGS OF
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Since Helmer’s 1940 paper [9] laid the foundations for the study of the ideal theory
of the ring A(C) of entire functionst, many interesting results have been obtained for the
rings A(X) of analytic functions on non-compact connected Riemann surfaces. For
example, the partially ordered set Spec(A(C)) of prime ideals of A(C) has been described
by Henrikson and others [2],[10],[11]. Also, it has been shown by Alling [4] that
Spec(A (C)) =Spec(A (X)) as topological spaces for any non-compact connected Riemann
surface X. Many results on the valuation theory of A(X) have also been obtained [1], [2].
In this note we show that a large portion of the results on the rings A(X) extend to the
W-rings with complete principal divisor space which were defined by J. Klingen in
[15],[16]. Therefore, many properties of A(C) are shared by its non-archimedian counter-
parts studied by M. Lazard, M. Krasner, and others [8], [17], [18].

In §1 we give the relevant definitions and then give some conditions on a W-ring R
which are equivalent to the condition that R satisfy a Mittag-Leffler theorem, and also
give some applications. In §2 we consider the group of divisibility and indicate how results
of Alling [1], [2], (3], (4] on the ideal theory and valuation theory of meromorphic
function fields can be extended to Klingen’s more abstract setting. We conclude in §3 with
some remarks on realizing a W-ring as a ring of analytic functions on a Riemann surface.
Since much of the work in this note involves fairly straight-forward translations to
W-rings of known results on rings of analytic functions, the details will be kept to a
minimum.

1. W-rings. We recall the definitions from [16] that we will use.

Derinrrion 1.1, An integral domain R is called a topological ZPE-domain if the
following hold:

(T)R is a Hausdorff topological ring in which the first countability axiom holds and
all principal ideals are closed.

(ZP1)R is a GCD-domain.

(ZP2)R is topologically factorial; that is for every non-unit xe R there exists a
sequence {p;}\., of pair-wise nonassociate prime elements, where N is a natural number

or ®, a sequence {n}", of natural numbers, and a sequence {¢;}i_, of units of R, such that

N
IT (pi€;) converges in R to x. Further, the sequence {(p;R, n;)}/L; is unique up to order.

i=1

It has been pointed out to the author by N. L. Alling that the main result of [9] can actually be found in J.
H. M. Wedderburn’s paper: On matrices whose coefficients are functions of a single variable, Trans. Amer.
Math. Soc. 16 (1915), 328-332.
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If R is a topological ZPE-domain we will denote the set of non-zero principal prime
ideals of R by X(R), or just X if no confusion can rise. By [16, Satz 1, p. 62] R is a rank
one discrete valuation ring for each P € X. We will denote by v, the associated normalized
valuation, or sometimes v, if P=pR.

Derinion 1.2, If R is a Hausdorff topological ring, a set 2 of prime ideals of R is
said to be permissible if @ is finite, or if # is countable and for some (equivalently, for

oo

every) numbering {P;};_, of ®, a sequence {r}7-, with r,e P; exists such that

limr,=1.

i—o0

We say that a set (or sequence) of prime elements {p;}7-, is permissible if {p,R};-, is
permissible.

If R is a topological ZPE-domain and x € R, then {P e X | vp(x) # 0} is a permissible
set [16, p. 62, Lemma 2].

DerFiNiTION 1.3. A topological ZPE-domain R is said to be a W-ring if for every
permissible sequence {p;};., of prime elements of R, and every sequence {n;};=, of positive
integers, there exists a sequence {¢};=, of units (called a convergence producing factor

system for {(p, n;)}i=,), such that the product [] (pi€;) converges in R —{0}.
i=1

Several examples of topological ZPE-rings are given in [15], [16]. In particular, if a
domain R is a topological ZPE-domain, then so is the polynomial ring R[X] [16, Satz 4,
p. 65]. At present however, the only examples of W-rings known to the author are the
rings A(X) of analytic functions on a Riemann surface, and the non-archimedian
counterparts of A(C) which were investigated in [8], [17], [18]. These latter rings will be
defined in §2.

DEeriNiTION 1.4. A topological ZPE-domain R is said to have representation field k if
k is a subfield of R which is mapped onto R/P by the canonical map for each Pe X.

Let R be a topological ZPE-domain with quotient field F and representation field k,
and let P(R) be a set of representatives for the prime elements of R. Let fe F, peP(R)
and v,(f) = m. Then it follows as in [16, Lemma 4] that there exist unique a; € k such that

vp(f— 2 a,p‘) > n for each integer n=m. Then } ap' s called the n-th partial sum of f

atp. If m=n=-1, then ¥ ap' is called the principal part of f at p.

DeriniTiON 1.5. Let R be a topological ZPE-domain with representation field k and
quotient field F and let ¢: F— [] F/Rp be the canonical map. Then §(F) is.called the

PeX
principal divisor space of R and is denoted HT(R).
In[16] HT(R) is given a topology so that HT(R) becomes a topological vector space
over k where k is given the discrete topology. The only fact we need about the topology is
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the following. Let

*K
[l AR, = {a e [I FIR, |support of a is permissible}.
PeX

PeX

%
Then HT(R)< [ F/R, with equality exactly when HT(R) is complete [16, Proposition
3] PeX

THEOREM 1.1. Let R be a W-ring with quotient field F and representation field k. The
following properties of R are equivalent.
(1) HT(R) is complete.
%

(2) ¢:F— T[] F/R; is surjective.
PeX

(3) For any permissible set D =P(R) and any set of polynomials {h,},.p in R[X] with
h,(0)=0 for all pe D, there exists fe F with principal part h,(p~') at p for pe D, and
v,(f)=0 for peP(R)\D. {

(4) For any permissible set D = P(R) and any set i aipp‘} of partial sums, there
i peD

n i=m,

exists f € F with n,-th partial sum i a,p' at pe D and v,(f)=0 for peP(R)\D.

(5) For any permissible set Dgﬂ;(R), and any family {f,},.p of elements of F, and
integers {n,},cp there exists fe F such that v,(f-f,)>n, for peD and v,(f)=0 for
peP(R)\D. - w
(6) For any fe R, R/fR=[] R/pR where f=[] (pPe) with p,eP(R) and ¢ units
Of R. i=1 i=1

Proof. (1)(2). [16, p. 71, Corollary].
(2)©(3). This is immediate from the definitions. n,
(3)=>(4). Let D<P(R) be permissible and for each peD let A,= ¥ a,p' be a

i=m,
given partial sum. Since R is a W-ring there exists a convergence producing factor system

{€,},ep so that g= p];ID (p™*'€,) € R. Let the (2n,—m, + 1)th partial sum at p of g be B,

By [1, Proposition 1.2] there exists C, = Pi ’ c,p' such that
i=0

v,(p~"*YB,C,-p~™A,)=n,—m,+1.
But then v,(p""% VB, - C,— A,)=n,+1. Since p" " "VC, is a principal part by (3)

there exists h € F such that the principal part H, of h at p is C, - p™~%"", and v,(h) =0
for p¢ D.

Claim. f= hg has partial sum A, at p for each pe D.
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Indeed let h=C,p™ ™ V+h' and g=B,+g' where v,(h)=0 and v,(g)=
2n,—m,+2. Then

v,(hg—A,) = v, [(C,p™ P+ h') (B, +g) - A,]
=v,(C,p"™ % VB, +h'B,+ C,p"™ " Vg'+ h'g'— A,)
—D[( p(m -n, l)B A)+hB +Cp(m—np—-1)gl+h!gl]

= min{v,(B,C,p"™ ™"V~ A,), v,(h'B,), v,(C,p™~"""g'), v,(h'g")}
=zmin{n,+1,n,+1, m,~n,-1+2n,-m,+2,2n,+2}

=n,+1.

4)> (5) It suffices to consider the case that n,=uv,(f,) for every peD. Let f, =
(Xrem, a;pp')+ 8, where v,(g,)>n, By part (4) there exists feF such that f=
(X2 m, aipp’) + b, Where v (h )>n, for peD and v,(f)=0 for peP(R)\D. Then

0,(f = fp) = v, (hy — g, ) = min(v, (hy), v, (g,)) =y, + 1
for all pe D and v,(f) =0 for p¢ D.
(5)=>(6). Let (&)icnE ﬁ R/pR, gie R. By (5) there exists geF such that
v, (g—g)=n; and v,(g)=0 flo=rl p eP(R)\{p:}ien- Then
v,,(8) = v, (g — &+ &) =min{v, (g - ), v,(8:)} =0,
so geR. Further v,(g—g)=n>g=g(modpi*R). Thus the canonical map R—
ﬁ R/pPR is surjective. Its kernel is clearly fR.

(6)>(2). Let {¥;2_,., a,p'},ep be a set of principal parts where D cP(R) is permissi-
ble. Let g= H (p™e,) for some convergence producing factor system {e,},cp. Since the
peD

canonical map R — [[ R/p™R is surjective, there exists f € R such that f=g Y
peD

(mod p™R) for every peD. Thus wv,(f-gXii_, ap')=m, and therefore
v,(flg—Lil .., ai,p')=0. Therefore fige F w1th principal parts {¥1_,. a,p'},cp-

i=-m, |pp

The above theorem allows us to give a very simple proof of the following result of
Klingen [16, Satz 6].

TueoreM 1.2. If R is a W-ring with HT(R) complete, then R is Bezout; that is, every
finitely generated ideal of R is principal.

Proof. It suffices to show that if f, g€ R have no common non-unit factors, then there
exists h, t€ R such that hf +1g=1. Let g= [] (pPe;), where the ¢ € R are units. We must
ieN

find heR such that (1-hf)/geR; that is we must find he R such that 1-hf=
0(mod pR) for all ie N. By part (6) above it suffices to show that for each i€ N there
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exists h;€ R such that 1=h;f(mod p["R). But since no p; divides f,ieN,f is a unit
mod pPMR so this is clear.

Many properties of W-rings with complete principal divisor space can be derived via
Theorem 1.1 from facts about countable products of rank one discrete valuation rings. For
example the ideas in [S] yield the following:

THEOREM 1.3. Let R be a non-Noetherian W-ring with representation field k and
HT(R) complete.

(a) If M is a maximal ideal of R, MR, is principal.

(b) If k is algebraically closed, then R/M is algebraically closed for each maximal ideal
M of R.

(c) Every non-zero prime ideal of R is contained in a unique maximal ideal of R.

(d) If M is a maximal ideal of R, Q= (| M" is the largest non-maximal prime ideal
n=1
contained in M, and R/Q is a rank one discrete valuation ring.
(e) There exists a maximal ideal M of R such that Q= (| M"# {0}, and for such an
i=1

M, R/Q is complete and M contains a chain of prime ideals of length 2.

2. The group of divisibility. If R is a W-ring, let X, be the set X = X(R) with the
topology inherited from Spec(R) with the Zariski topology. It follows that the closed sets
of X, are X and the permissible subsets of X, and that the group of divisibility G(R) of R
is isomorphic to {a € Z* | Suppx () is permissible} where Suppx(a)={Pe X|a(P)# 0}.
Thus G(R) is completely determined by X,. If also R is Bezout (e.g., if HT(R) is
complete), then G(R) completely determines Spec(R) as a partially ordered set by [7, p.
197]. In fact G(R) determines Spec(R) as a topological space (and more) as the next
theorem shows. We will use the following terminology and notation.

DerNITION 2.1. A proper subset J of a lattice ordered abelian group G is a dual ideal
if the following hold:

(1) If a,be], inf(a, b)e J, and

(2) if ael, ge G, and g=a, then geJ.

If G is a lattice ordered abelian group let G, ={ge G| g=0}, di(G) = the set of dual
ideals of G, J(G)={Jedi(G)|there exists d € G such that d <j for all je J}, and J(G,)=
{Jedi(G)|J= G,}. A dual ideal JeJ(G,) is called prime (respectively primary) if
a,be G \J implies a+ be G, \J (respectively a, nbe G,\\Jfor n=1,2, ... implies a+be
G.\J). For a,be G, let anb=inf{a, b}.

THEOREM 2.1. If R is a Bezout domain with quotient field K and group of divisibility
G, then the canonical map w:K — G U{®} gives a bijection from the set of R-submodules
of K onto the set di(G), and carries the sets of fractional ideals, integral ideals, prime ideals,
and primary ideals onto the sets J(G), J(G.), and the sets of prime and primary dual ideals,
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respectively. Further w has the properties

(@) wli+ L)=w(I)Awl) ={jiAjz| 1€ w(l)), € wlL)},
) i) =)+ w(k) ={ A G 1) € WL, € Wil 1=1,2,. ),

and
(c) wI,NL)=w(l,)Nw(l).

Proof. The first statement follows as in [7, p. 197]. The rest is given in [4, §2] for
rings of analytic functions and easily extends to arbitrary Bezout domains. As an example
we consider part (a) which appears in [4] to be the least straightforward. First note that if
J, J' are dual ideals of a lattice ordered abelian group G, then JAJ' is a dual ideal [4,
Lemma 2.8). Let acl,,bel,. Then since R is Bezout, aR+ bR =cR for some ce R.
Then a +b=rc for some re R and so

w(a+b)=w(rc)=w(r)+ w(c)=w(c)=w(a)rw(b);

so w(I, + I,) c w(I,) A w(l,). Conversely, let w(a)A w(b)e w(I;))Aw(l,), ae I}, bel,. Then
again there exists c€R such that cR=aR+bR, say c=ra+sh,r,seR Then
w(a)aw(b)=w(c)ew(I,+ L), so w(I)Aw(l,)c w(l,+L,).

Let k be an algebraically closed field which is complete with respect to a non-
archimedian valuation | |,. Let L, be the ring consisting of all Laurent series
T X', a;€k such that Y7___ a;t' converges for every te k. Then by [8, 17, 18] L,
shares many properties of the ring A(C) of entire functions. In [15, Satz 5.2] it was shown
that L, is a W-ring with representation field k and HT(L,) complete. The following result
shows that if k has cardinality 2%, then the ideal theory of L, is virtually identical to that
of A(X) for any non-compact connected Riemann surface X.

THEOREM 2.2. Let k be an algebraically closed field which is complete with respect to a
non-archimedian valuation | |,. If k and C have the same cardinality, then for any
non-compact connected Riemann surface X, L, and A(X) have isomorphic groups of
divisibility, and therefore isomorphic lattices of ideals.

Proof. By [4, Theorem 2.3] it suffices to consider the case X =C. Let R=L,. From
[15, Lemma 5.2] we get that there are canonical bijections k = X(R) and C— X(A(C)),
defined by a— (X-a)R and a— (X-a)A(C). Let U,={ack]||al,<n} and V,=
{a€C||a]<n} for each positive integer n.

Now UN\U,_, is uncountable for each n=1 since for each tek,
card{ae k||a|, = t}=card{aek||al,=1}. Thus for each n there is a bijection
¢,:U\U,_,— V.\V,_,. But since U,\U,., and V,\V,_, inherit from Xy (R) and
X,(A(C)) the cofinite topologies [15, Lemma 5.2], ¢, is a homeomorphism for each n.
The ¢, patch together to give a homeomorphism ¢ : X,(R) = X (A(C)). But as observed
before, this implies R and A(C) have isomorphic groups of divisibility.

Note. The cardinality condition in the above theorem is obviously necessary.
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As in the case of analytic functions one can obtain information about Spec(R) for
more general W-rings R, and also information about the valuation theory of such rings,
by using the correspondence between ideals of R and the A-filters of X(R). We adapt the
notation of [4] to our setting. If R is a W-ring and re R, let Z(r)={Pe X(R) | re P}. For
any subset S of R, let Z(S)={Z(r)| re S}, and let A= Z(R). Then A is the set of Zariski
closed subsets of X(R).

DEeFINITION 2.2. A A-filter on X is a subset § of A such that:
(a) D¢b
(b) U, Ved>UNVeS.
(c) Ues,VeAand Uc V> Ves.
A maximal A-filter is called a A-ultrafilter.

The following lemma is a straightforward extension of a well-known result on rings of
functions [4, 10].

LemMA. If I is a proper ideal of a W-ring R then Z(I) is a A-filter. Conversely, if 6 is a
A-filter, Z~'(8) is a proper ideal of R. Further I< Z7'Z(I), so the set of maximal ideals of
R is in one-to-one correspondence with the set of A-ultrafilters on X.

A A-ultrafilter § is called fixed if ({D|D e 8}# &, and is called free otherwise. A
maximal ideal M of R is called fixed (respectively free) if Z(M) is fixed (respectively free).
Let R be a W-ring with HT(R) complete and let M be a free maximal ideal of R. As in
the case of rings A(X) of analytic functions [2, p. 11] we can realize R/M as an
ultra-power of k. Indeed let §=Z(M) andlet D€, D# X. Then p ={DNE | Eeéd}isan
ultrafilter on D, and we have a homomorphism ¢ : R — k® defined by ¢(r)=7| D where
F:X—k is defined by F#(p) is the residue class of r in R/p=k Let M'=
{fekP|f'(0)e u}. Then M= ¢ ' (M’) and so we have a natural injection ¢:R/M —
kP/M'. Further, since R is a W-ring with HT(R) complete, ¢ is onto by Theorem 1, and
thus ¢ is an isomorphism. This gives another proof that R/M is algebraically closed if k is.
Further, we find that if k is an infinite field, then M is principal if and only if the canonical
map k — R/M is onto, and that the fixed maximal ideals of R are just the elements of
X(R).

The value groups of the valuation rings R, may also be represented as ultrapowers
as follows. Let M be a maximal ideal of the W-ring R having HT(R) complete. If M e X
then clearly G(Ry)=Z. If M is free then consider the canonical map v:(K\{0})—
G(R)={a € Z* | Suppx(a)# X and is closed in X,}. If D € § = Z(M), D# X, then restric-
tion to D gives us an order preserving group homomorphism p: G(R)— ZP. Then p. v is
onto since R is a W-ring. Let p be the ultrafilter u ={END|Ee8} on D and let
H={aeZP|a(B)=0 for some Be u}. Then G(R\)=Z"/H.

In [4] an ideal I of a ring R is called local if it is contained in a unique maximal ideal.
In [2, 4] the decompositions of ideals of A(X) into local ideals were studied and in [3, 20]
the primary ideals of A(X) were studied where X is a non-compact connected Riemann
surface. We add a few remarks on these ideas.

https://doi.org/10.1017/50017089500005000 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500005000

14 DAVID E. RUSH

ProrosiTiON 2.1. Let R be a Bezout domain such that each non-zero prime ideal of R
is contained in a unique maximal ideal. The following properties of a non-zero ideal I of R
are equivalent.

(1) I=IRy NR for some maximal ideal M.

(2) I has prime radical.

(3) I'is a local ideal.

Proof. (1)=>(2). Since R, is a valuation ring IR,, has prime radical, which we denote
by P. Then PN R is the radical of IRy, N R. (2)=>(3) is clear. (3)= (1). This follows since
for any ideal I={IRy,N R |M is a maximal ideal of R}.

Now let R be a Bezout ring as in the above proposition. Then for any ideal I of
R, I=N{IRyNR|M is a maximal ideal of R} gives a decomposition of I as an
intersection of local ideals and these local ideals are irreducible by [13, Theorem 8]. For
each maximal ideal M of R let $(M)={I|I is an ideal such that IR,;N R = I}. Then the
set of local ideals of R is partitioned into the sets $(M), M a maximal ideal of R, and for
each maximal ideal M, I - IR,, gives a bijection between the elements of $(M) and the
ideals of R, The primary ideals of R are of course local ideals and this bijection

preserves primary ideals. Thus the analysis of the local and primary ideals reduces to
studying the ideal theory of R,, for maximal ideals M. If further, R is a W-ring with
HT(R) complete, then the study of the ideal theory of R,, translates into an analysis of
the value group of R,, and this has been determined as an ultrapower Z”/H. Thus locally
the ideal theory of one such (non-Noetherian ) W-ring looks like the ideal theory of any
other. We make this more precise in the next proposition.

Prorosition 2.2. If R and S are non-Noetherian W-rings with HT(R) and HT(S)
complete, and V is any valuation overring of R, then there exists a valuation overring V' of
S with G(V)= G(V"'), and hence V and V' have isomorphic lattices of ideals.

Proof. Since any overring of a Bezout domain is a localization [7, Theorem 27.5] we
have V=R, for some PeSpec(R). Further, if we let M be a maximal ideal of R
containing P then G(Rj) is a quotient of G(R,,) by an isolated subgroup of G(R,,). Thus
it suffices to consider the case that V= R,,, M a maximal ideal. If M e X(R) the result is
trivial, so we may assume that M is a free ideal. Let D e Z(M), D# X(R). Let E# X(S)
be an infinite permissible subset of X(S), and let ¢:D— E be a bijection. Then
p,={DNH|He Z(M)} is an ultrafilter on D and so u,={@(B)|B € u,} is an ultrafilter
on E. Let §={He Z(S)| HNE € u,}. Then § is a A-ultrafilter on X(S). Let N=Z"'(5)
be the corresponding maximal ideal of S. Then Sy is a valuation ring whose value group
G(Sy) is ZE/pu,=ZP/u, = G(Ry).

COROLLARY. Any two non-Noetherian W-rings R with HT(R) complete have the same
dimension.

3. W-rings as rings of analytic functions. Let K be a field containing C as a subfield.
A C-rational place of K is a place s: K — CU{»}=3 which maps C onto C. Let S be the
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set of C-rational places of K. We get a natural map ¢ : K — X5 defined by o(f)(s) = s(f). It
is well-known [6] that if K is an algebraic function field in one variable over C, then S is
in a natural way a compact connected Riemann surface such that ¢ identifies K with the
set of meromorphic functions on S, and every compact connected Riemann surface is of
this form. A similar result for open Riemann surfaces has remained an elusive problem
[14, 19]. It was shown by Iss’sa [12] that if X is an open connected Riemann surface, then
X is uniquely determined as a Riemann surface by its field M(X) of meromorphic
functions. There remains the problem of determining those fields F which are of the form
M(X), or equivalently those rings R of the form A(X), for some open Riemann surface
X. In particular does it hold that every W-ring R with coefficient field C and HT(R)
complete is of this form? Let R be a W-ring with coefficient field C and HT(R) complete.
Then each point Pe X(R) defines a C-rational place sp by sp(a) is the residue class of a in
R/P=C if ae Ry, and sp(a) = if aec K\Rp, where K is the quotient field of R. We get a
natural map ¢ : K — 3% where 2 = CU{e}. If X is uncountable, then since each a € R has
at most countable many zeros, it follows that ¢ is injective. If R= A(Y) for some
Riemann surface Y, then Y would correspond to X as a point set, and would have the
weakest topology such that all of the elements of ¢(K) are continuous. Further, each
C-rational place of K whose valuation ring is rank one discrete, would be of the form sp
for some PeX [12]. Besides the given topology on a W-ring R, the embedding
@ : R — 32X allows one to give R the compact-open topology (which is in general weaker
than the given topology). Call R with this topology A. If X is second countable and
locally compact, then it can be seen that A is also a W-ring with HT(A) complete, but it
remains to determine a conformal structure on X. While we do not know what conditions
on R are required for A to be A(X) we note the further condition that for every ac A
there must exist a ring homomorphism f, : A(C) = A such that f,(z)=a where z:C—->C
is the identity function. That is A(C) is a free object on one generator in the category of
rings of analytic functions on open Riemann surfaces. This implies that each C-rational
place of K having rank one discrete valuation ring, is of the form s, for some Pe X.
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