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The moving contact line between a fluid, liquid and solid is a ubiquitous phenomenon,
and determining the maximum speed at which a liquid can wet/dewet a solid is a
practically important problem. Using continuum models, previous studies have shown that
the maximum speed of wetting/dewetting can be found by calculating steady solutions of
the governing equations and locating the critical capillary number, Cacrit, above which
no steady-state solution can be found. Below Cacrit, both stable and unstable steady-state
solutions exist and if some appropriate measure of these solutions is plotted against Ca,
a fold bifurcation appears where the stable and unstable branches meet. Interestingly,
the significance of this bifurcation structure to the transient dynamics has yet to be
explored. This article develops a computational model and uses ideas from dynamical
systems theory to show the profound importance of the unstable solutions on the transient
behaviour. By perturbing the stable state by the eigenmodes calculated from a linear
stability analysis it is shown that the unstable branch is an ‘edge’ state that is responsible
for the eventual dynamical outcomes and that the system can become transient when
Ca < Cacrit due to finite-amplitude perturbations. Furthermore, when Ca > Cacrit, we
show that the trajectories in phase space closely follow the unstable branch.
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1. Introduction

Understanding the shape and evolution of the interface between a fluid, a liquid and a solid
substrate is a classic problem in fluid mechanics and yet a remarkable number of open
questions still remain (Semenov et al. 2011; Afkhami, Gambaryan-Roisman & Pismen
2020). There are two fundamental cases: an advancing contact line, where a liquid phase
advances and ‘wets’ the solid (see figure 1a–c), and a receding contact line, where a liquid
phase recedes and ‘dewets’ the solid (see figure 1d–f ). Both experimental and theoretical
studies (see e.g. Bonn et al. 2009; Snoeijer & Andreotti 2013) have shown that there is
a critical contact-line speed relative to the solid, beyond which stability is lost and the
system ceases to return to a steady state. In the case of an advancing contact line (see
figure 1c) this instability is characterised by fluid entrainment (which in many practical
cases is air entrainment) whilst for the receding contact line (see figure 1f ) a thin liquid
film is deposited on the solid. The principal aim of this article is to provide insight into
this instability and understand the dynamics of the system near the critical speed.

The critical speed where the instability occurs is associated with a fold bifurcation
in the steady solution structure (see e.g. Vandre, Carvalho & Kumar 2013; Kamal et al.
2019), which divides the steady solutions between a stable branch and an unstable branch
(as seen in figure 2a; see Kuznetsov (1998) for a detailed mathematical description). For
parameter values ‘beyond the fold’ there are no (known) two-dimensional steady states and
the system must become transient and/or three-dimensional. In our system, the appropriate
non-dimensional parameter associated with the speed of the solid is the capillary number,
Ca (see next section for a precise definition). Whilst analysis of the unstable branch
of solutions (which exists for parameter values ‘below the fold’) can reveal important
information about transient behaviour, the focus of theoretical studies has been mainly to
calculate and characterise only the stable steady solutions immediately up to the critical
speed (see e.g. Eggers 2005; Chan, Snoeijer & Eggers 2012; Vandre et al. 2013; Sprittles
2015).

Interestingly, Chan et al. (2012) hypothesised that the set of unstable solutions
represents, what they termed, ‘effective dynamics’, so that the unstable branch of the
bifurcation curve guides time-dependent behaviour of the system. More specifically,
when the capillary number is above its critical value (Ca > Cacrit), and the speed of
the contact line is measured relative to that of the solid, time-dependent trajectories
closely match those obtained from the unstable branch of the steady system, as confirmed
experimentally in Delon et al. (2007). Therefore, the unstable branch is not just an
insignificant consequence of the fold bifurcation but provides unique insight into the
system dynamics. Such an influence and importance of unstable states in fluid dynamics
systems has been investigated in many different contexts, including shear flow (Eckhardt
et al. 2008), droplets (Gallino, Schneider & Gallaire 2018), finite air bubbles (Keeler
et al. 2019; Gaillard et al. 2020) and a slide-coating flow (Christodoulou & Scriven 1988).
Indeed, as shown in figure 2(b), where the phase plane is sketched for a generic system with
a stable (‘attractor’) and weakly unstable (‘saddle-node’) state, the unstable state can act as
a separator of dynamical outcomes; its stable manifold is a dividing ‘line’ and its unstable
manifold connects to the stable state. In this article we adapt these ideas from dynamical
systems theory to the moving-contact-line problem, for the first time, to reveal the role
of the unstable solutions. We calculate the bifurcation structure and stability properties
of the steady solutions and relate these to time-dependent calculations in the subcritical
(Ca < Cacrit) and supercritical (Ca > Cacrit) regimes.

We now provide some important background on moving contact lines. It is well
known that the classical ‘moving-contact-line paradox’, as described in Huh & Scriven
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Figure 1. The moving contact-line problem in a channel geometry in a frame of reference that moves with the
liquid. (a–c) The advancing contact-line problem. (d–f ) The receding contact-line problem. In both cases, as
the speed of the substrate, U∗, increases, the system is first stable (a,d), before the system becomes transient at
a critical speed U∗

crit (b,e) and air entrainment (c) or thin-film formation (f ) occurs. We denote the characteristic
horizontal width of the fluid entrainment region in the advancing problem as ĥ and the characteristic horizontal
width of the thin film in the receding problem as hfilm. The height of the interface, defined as the difference
in heights of the left and right contact points, is denoted Y (cf. (2.21)). (a) Stable. (b) Critical. (c) Fluid
entrainment. (d) Stable. (e) Critical. ( f ) Thin film.
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Figure 2. (a) A sketch of a typical fold bifurcation structure. A solution measure is plotted against a control
parameter to form a solution curve. At a critical value, two branches – one stable (solid line) and one unstable
(dashed line) – meet. The location of their intersection is known as a fold bifurcation. Beyond the critical value
there are no (known) steady states. In our specific problem the control parameter is Ca and the solution measure
is either the interface length or meniscus rise. (b) A generic two-dimensional phase plane for a parameter value
less than the critical value with a stable state (an ‘attractor’ on the stable branch, see a), and a weakly unstable
state (a ‘saddle-node’ on the unstable branch, see a). The unstable/stable manifolds of the saddle node are
dashed/dotted respectively.
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(1971), can be alleviated if there is slip near the contact point. Asymptotically, if this
slip occurs in an inner region, as considered by Voinov (1976) and Cox (1986), then
bending of the interface occurs in an intermediate region where viscous effects can
cause the liquid–fluid interface to curve sharply. In this formulation, it is often assumed
that the intermediate region connects to an outer region where the interface retains its
static meniscus shape. The possible asymptotic matching of these regions has critical
consequences and provides insight into the bifurcation structure of the steady solution
space. In a series of remarkable articles (Eggers 2004a,b, 2005), it was shown, by solving
a lubrication model for a liquid–vacuum system, how the curvature of the inner and outer
regions can be asymptotically matched. For the advancing contact line this can be achieved
for all values of Ca, but for the receding contact line, the matching fails when Ca is past
some critical threshold, interpreted as (i.e. defining) Cacrit. The bifurcation structure of the
stable and unstable branches of the receding contact line was then fully described using
matched asymptotics and bifurcation theory by Chan et al. (2012) for Ca � 1, and Cacrit
was determined to occur at a fold bifurcation.

The aforementioned analysis has been extended to general liquid–fluid systems, where
the viscosity of the fluid phase is considered non-zero (Chan et al. 2013; Kamal et al.
2019; Chan et al. 2020) and also for the full Navier–Stokes equations (Vandre, Carvalho &
Kumar 2012; Vandre 2013; Vandre et al. 2013). A key result from these studies is that, for
the advancing contact line, the presence of viscosity fundamentally alters the bifurcation
structure and a fold bifurcation appears at a finite Ca. Vandre et al. (2013) showed that,
physically, this fold bifurcation in the advancing contact-line problem occurs when the
horizontal air-pressure gradient matches the strength of the capillary-stress gradient near
the contact point. It was also demonstrated that using the lubrication model, in both
phases, poorly predicts Cacrit when compared to the full Navier–Stokes equations for
the advancing contact line (Vandre et al. 2012; Vandre 2013; Vandre et al. 2013). Other
physical effects such as Marangoni flows, inertia, gravity and shear thinning/thickening
were also found to preserve the fold bifurcation (Vandre et al. 2013; Liu et al. 2016a,b;
Liu, Carvalho & Kumar 2017, 2019; Charitatos et al. 2020).

In the advancing case, the critical behaviour indicates the threshold at which fluid
entrainment occurs where, experimentally, a three-dimensional saw-tooth pattern emerges
as observed in a variety of different flow configurations, e.g. liquid films (Reysatt & Quéré
2006), drop impact (Thoroddsen et al. 2012; Pack et al. 2018) and plate penetration in
a liquid bath (He & Nagel 2019). In the receding case, however, the fold bifurcation
marks the onset of thin-film deposition (Snoeijer et al. 2006, 2008). Interestingly,
despite the three-dimensional structures of air entrainment (He & Nagel 2019; He 2020),
two-dimensional models appear to accurately predict the transition point, an observation
which is yet to be understood (see e.g. Vandre et al. 2012; Sprittles 2017; Liu et al. 2019).
Transversal three-dimensional perturbations have been considered for the receding contact
line (Snoeijer et al. 2007) and the advancing contact line (Vandre 2013), both using a
lubrication model, but a stability analysis using the full hydrodynamics equations has not
yet been conducted.

In this article, we develop a computational framework and methodology that can
quantitatively determine the stability of dynamic contact lines. To do so, we use ideas
from dynamical systems theory to understand the effect of the stable/unstable states on the
transient dynamics, considering both advancing and receding contact lines. We emphasise
that the methodology we describe here can easily be extended to include different physics,
including the effects of inertia, gravity, different slip conditions on the moving plate
and different models that account for a velocity-dependent contact angle. We choose to
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focus on understanding the qualitative transient behaviour, from a dynamical systems
perspective, rather than attempting to include every physical effect in our model. Our
analysis of two-phase contact-line stability focuses on steady-state solutions using a hybrid
model; the liquid phase is modelled using the Navier–Stokes equations and the fluid phase
is accurately modelled using a lubrication approximation (see Stay & Barocas 2003; Liu
et al. 2016a,b, 2017; Sprittles 2017; Liu et al. 2019).

The structure of the article is as follows. In § 2 we discuss the hydrodynamic equations
that describe the system. In § 3 we calculate the steady solution curves to determine the
critical parameters associated with the loss of stability of the system. In addition, we
perform a numerical linear stability analysis that reveals the significance of the unstable
branch to the transient dynamics of the system. By treating the governing equations as
a dynamical system we form a generalised eigenproblem that can be solved numerically
to determine and quantify the stability of the solution branch. Next, in § 4, by solving
a time-dependent initial value problem (IVP) numerically we are able to demonstrate
that, far from having a passive role, the unstable branch represents, in the language
of dynamical systems theory, the ‘basin boundary of attraction’ of the stable state.
Furthermore, by examining the phase plane of the solution trajectory, we discover that
the subsequent unsteady time evolution is intrinsically linked to the unstable branch and
are able to confirm the prediction of Chan et al. (2012) that the receding contact line
moves quasi-statically along the unstable branch. Viewing the trajectories through the lens
of the phase plane allows us to understand if, and how, the system becomes transient when
Ca < Cacrit and also provides criteria that could potentially enable suppression of this
instability. Finally, in § 5, we discuss the implications of these results and some possible
future research.

2. Governing equations

We now discuss the hydrodynamic model and the assumptions that allow us to derive
an accurate simplified hybrid model that is used in the calculations thereafter. The
following discussion applies to both the advancing and receding contact lines, although
the demonstrative figures only show the advancing contact line.

2.1. Full hydrodynamic model
Motivated by the system used in Vandre et al. (2012), which is representative of an
experimental system, we consider two-dimensional flow between two parallel plates, as
shown in figure 1. In the following discussion we denote dimensional quantities using an
asterisk. Two fluids of viscosity μ∗

1,2, and density ρ∗
1,2, fill the channel bounded by two

rigid plates which are separated by a fixed distance H∗; subscript 1 indicates the upper
fluid (the fluid phase) and subscript 2 indicates the lower fluid (the liquid phase). In our
system the left plate moves with constant speed in the y direction U∗ and the right plate is
stationary. For a receding contact line U∗ > 0 and an advancing contact line U∗ < 0. The
fluid flow of each phase is governed by the two-dimensional Navier–Stokes equations.
All speeds, lengths, pressures and times are scaled by U∗, H∗, μ∗

2U∗/H∗ and H∗/U∗
respectively. Finally, the viscosity ratio, denoted χ , is defined with respect to the liquid
phase, i.e.

χ = μ∗
1/μ

∗
2, (2.1)

and we assume that the upper fluid is less viscous, i.e. χ < 1.
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Figure 3. The computational domain for the hybrid and full models for an advancing contact line. The
boundaries are denoted by Γi (labelled in c) with the origin centred on the contact line. (a) A typical streamline
pattern for a steady solution in the hybrid model. (b) The computational domain for the hybrid model. In this
model we solve for the velocity and pressure in the liquid domain, but only solve for the pressure of the fluid on
the interface boundary, Γ4. (c) The computational domain for the full model where the velocity and pressure
fields are also solved in the fluid domain. (d) The vertical component of velocity along the moving plate, i.e.
Γ1. (e) The enlargement near the contact line shows the mesh refinement required to ensure that the flow field
is sufficiently resolved.

As in previous studies (Sprittles & Shikhmurzaev 2011a,b; Vandre et al. 2012; Sprittles
& Shikhmurzaev 2013; Vandre et al. 2013; Liu et al. 2016a,b, 2017, 2019) we apply the
Stokes-flow approximation so that the Reynolds number, Re = U∗H∗ρ∗

2/μ
∗
2, is negligible

and assumed zero; results in Vandre et al. (2013) show Re can have an influence at
sufficiently high values but it does not qualitatively alter the conclusions. We assume
that gravitational effects are negligible throughout. The non-dimensional computational
domain is shown in figure 3(c). The coordinate system is centred on the contact point
between the two fluids and the left (moving) plate. The boundary corresponding to the
left plate is denoted Γ1, the right plate Γ2, the bottom Γ3, the free surface Γ4 and the top
Γ5. The fluid and liquid domains are denoted by Ω1 and Ω2 respectively. The Stokes-flow
equations for the fluid velocity, ui = (ui, vi), and pressure, pi, in each phase can be written
as

χ∇2u1 = ∇p1, ∇ · u1 = 0, x ∈ Ω1 (fluid), (2.2)

∇2u2 = ∇p2, ∇ · u2 = 0, x ∈ Ω2 (liquid). (2.3)
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On the left (moving) and right (stationary) plates, Γ1 and Γ2 respectively, we implement
a Navier slip condition written as

λ(τ i · np) · tp = (ui − U) · tp, x ∈ Γ1, i = 1, 2, (2.4)

λ(τ i · np) · tp = ui · tp, x ∈ Γ2, i = 1, 2, (2.5)

where np and tp are the vectors normal and tangential to each plate respectively,
U = (0,U) is the non-dimensional speed of the (moving) left plate (where U, in our
dimensionless system, is ±1, corresponding to the receding (+)/advancing (−) problem)
and λ is the non-dimensional slip length which, for simplicity, we assume to be the same
in each phase (see Sprittles (2017) for potential extensions). We could choose different
conditions that regularise the singularity at the contact line (Shikhmurzaev 2006), but,
assuming the actual contact angle is unchanged, the details of the solution (i.e. the value
of Cacrit) are more sensitive to values of the slip-length parameter that arises in these
models (in our case λ) than the actual form of the model (Dussan 1976). Thus, we would
expect the results we obtain to be qualitatively similar to those obtained for a different
slip model, although such slip models are easy to implement, if required. We choose a
moderate value of λ = 0.1, and although quantitative details, i.e. the values of Cacrit and
other solution measures, will differ as we vary λ, we find that the transient behaviour
and solution structure, as we describe later in the article, are qualitatively the same (cf.
figure 7).

We choose to implement a Navier slip condition on the stationary plate for consistency
and to ensure that the contact point on the stationary plate is allowed to move. However,
we could fix ui = 0 on Γ2 and get similar results (see e.g. Vandre et al. 2013; Liu et al.
2017) which corresponds to a pinned contact line. We also implement a no-penetration
condition on each plate, i.e.

ui · np = 0, x ∈ Γ1 ∪ Γ2, i = 1, 2. (2.6)

The stress tensor in each phase τ i is defined as

τ i = −piI + δi(∇ui + (∇ui)
T), (2.7)

where I is the identity matrix and δ1 = χ, δ2 = 1. We denote the unknown position of the
interface, Γ4, as r = (xs, ys) (see figure 3b) and assume a constant surface tension, γ ∗, so
that the dynamic boundary condition can be written as

τ 1 · n − τ 2 · n = 1
Ca
κn, x ∈ Γ4, (2.8)

where n is the normal of the interface pointing towards the fluid phase (see figure 3b),
κ = ∇ · n is the curvature of the interface and Ca = μ∗

2|U|/γ ∗ is the capillary number. In
addition to (2.8), we impose a kinematic condition on Γ4, written as

∂r
∂t

· n = u · n, x ∈ Γ4. (2.9)

We have to specify the angle that the interface makes on the left and right plates. These
angles can be allowed to vary with the capillary number, slip length or other quantities but
we choose the simplest approach and take these to be constant values, i.e.

θ = θ1, on Γ1 ∩ Γ4, (2.10)

θ = θ2, on Γ2 ∩ Γ4. (2.11)

It is straightforward to replace these conditions with equations involving Ca and other
quantities, but this is not the focus of this article.
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Finally, we implement fully developed flow conditions on the inflow and outflow
boundaries:

ui · tinflow = 0, x ∈ Γ3 ∪ Γ5, (2.12)

where tinflow = (1, 0)T, alongside a pressure drop across the domain so that

p1 = 0, x ∈ Γ5, (2.13)

p2 = pout, x ∈ Γ3. (2.14)

The full hydrodynamic system is defined in (2.2)–(2.14) with the following
infinite-dimensional state vector (denoted w) of unknowns:

w = [u1,u2, p1, p2, r]T. (2.15)

It is worth noting that we model the effect of varying the speed of the plate by varying
Ca and that the non-dimensional slip length, λ, can be varied to investigate changes in
physical channel width. Finally, as our primary interest is in understanding the transient
behaviour, for simplicity, we set θ1 = θ2 = π/2 in all simulations. Therefore we have a set
of control parameters,

Ca, λ, χ, pout, (2.16)
that need to be specified in order to solve (2.2)–(2.14).

2.2. Hybrid model
The computational cost of the full model can be significantly reduced by solving the
thin-film equations where they are valid (Oron, Davis & Bankoff 1997; Jacqmin 2004;
Sbragaglia, Sugiyama & Biferale 2008), leading to a hybrid model (see Stay & Barocas
2003; Liu et al. 2016a,b, 2017, 2019; Charitatos et al. 2020) which approximately halves
the complexity of the problem, as unknowns in the fluid phase are only computed on
the interface. The difference of our approach from previous implementations is that our
hybrid model takes into account time dependence so that stability can be probed and IVP
calculations can be performed. A key assumption is that a typical horizontal distance in
the fluid phase, when air entrainment occurs, is small when compared to the vertical height
of the meniscus (i.e. ĥ � Y in figure 1) so that the flow is approximately parallel, i.e. the
cross-stream component of u1 is small. The full derivation is discussed in Appendix A and
the computational domain is shown in figure 3(b).

The effect of this reduction in the fluid phase is to replace a full two-dimensional
description, given in (2.2), by a one-dimensional equation for the fluid pressure, p1, on
the interface only. This equation can be stated as

∂r
∂t

· n ± 1
χ

∂Q1

∂s
= 0, Q1 = 1

6
∂p1

∂s
h3 + 1

2
Ah2 + Bh, (2.17a,b)

where h is the horizontal distance (i.e. xs) from the left plate to the interface (see figure 3),
Q1 is the flux and the constants A and B are functions of χ, λ and u2 and are given in
Appendix A. The ± sign is used for the advancing (+)/receding (−) contact line. The
fluid phase is coupled to the liquid phase through the applied traction given in (A6). We
now have a system of partial differential equations (PDEs) described by (2.3)–(2.14) and
(2.17a,b) with the infinite-dimensional state vector of unknowns:

w = [u2, p2, p1(r), r]T. (2.18)

The hybrid model has been extensively validated for steady advancing contact-line
problems against the full system and experiment (Liu et al. 2016b, 2019). We validate
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the time-dependent hybrid model by comparing to the full hydrodynamic model in
Appendix A. Finally we note that this approach is strictly only valid for the advancing
contact-line problem but, as shown later, the receding contact-line problem is effectively
a one-phase problem (cf. figure 7), and implementing the hybrid model for a receding
contact line does not significantly change the value of Cacrit (Appendix A).

2.3. System parameters and integral measures
We now describe additional system parameters and measures that will be useful in
computing and describing the steady and time-dependent solutions. The pressure at the
outflow boundary, pout, is determined implicitly by an integral volume constraint acting
on the liquid phase, i.e. ∫∫

Ω2

dV = V, (2.19)

where V is the volume of the liquid domain (corresponding to the area of the computational
domain). In our numerical calculations the positions of the contact points on the moving
and stationary plates are both allowed to move so that (2.19) can be satisfied. For ease
of presentation, we post-process and rescale the solution so that the origin is always at
the contact point of the moving plate. In the calculations that follow we choose a value
of V which is large enough for fully developed flow to occur near the outflow boundary,
Γ1. After careful experimentation we find that the solutions are independent of values of
V ≥ 5 that we choose.

For a fixed set of parameter values, as defined in (2.16), we calculate steady solution
curves by setting the time derivatives in the governing equations to zero and then solving
the resulting steady system. As we vary Ca, and then subsequently calculate a solution,
a solution curve will be traced and a fold bifurcation will occur at the critical value
of the capillary number, denoted Cacrit. Whilst it is possible to trace a solution branch
around the fold numerically by a pseudo-arclength continuation method (see e.g. Doedel
2007), we implement an alternative, bespoke approach. We expect the interface length,
L, to increase monotonically as the curve is traced out around the fold and therefore it
is a suitable candidate for a continuation parameter that allows us to calculate solutions
smoothly around the fold. To achieve this, we let Ca become an unknown parameter that
is determined implicitly by setting the total length of the interface, i.e.∫

Γ4

ds = L. (2.20)

This approach enables us to trace solution curves around the fold by incrementally
increasing L and solving the system of equations, with Ca effectively determined by (2.20).
We also emphasise that (2.19) and (2.20) are only implemented in steady calculations; the
former constraint is unnecessary in time-dependent calculations as the second equation in
(2.3) ensures volume is conserved, whilst the latter constraint is used as a means of tracing
the solution curve.

Finally, when describing the steady solutions and time-dependent solutions we use
the meniscus rise (more specifically, the vertical distance between the two contact lines)
defined as

Y(t) = |ys(s = L)− ys(s = 0)| (2.21)

as a convenient solution measure (as previously considered, for example, in Kamal et al.
(2019); see figure 3 (in this article) for reference).
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2.4. Numerical method
The governing equations are solved using the finite-element method from within the
open-source oomph-lib object-orientated multi-physics library (Heil & Hazel 2006). The
structure and implementation of our equations follow that of Sprittles & Shikhmurzaev
(2013). Following multiplication of the equations by a test function, ψ , and then an
integration over the domain, the boundary integrals that result from integration by parts
require the traction to be specified on each of the boundaries. The dynamic condition, (2.8),
and the Navier slip condition, (2.5), therefore can be implemented as a natural condition
by these boundary integrals.

Special care has to be taken at the contact point. In other studies (Vandre et al. 2012,
2013; Liu et al. 2016a,b, 2017, 2019) the contact angle is imposed as an essential boundary
condition at the expense of solving a component of the momentum equations at the
contact point. We adopt the approach of Sprittles & Shikhmurzaev (2013) and impose the
contact angle as a natural boundary condition on both the intersection of the free surface
with the left plate (Γ1) and the symmetry plate (Γ2). We therefore introduce a field of
Lagrange multiplier unknowns on Γ1 and Γ2 which are determined from the weak form
of the no-penetration condition, (2.6). We refer the reader to Sprittles & Shikhmurzaev
(2013) for a detailed description of this implementation (we adopt approach (B) in their
nomenclature).

As is standard, the fluid velocities are interpolated using bi-quadratic shape functions
and the pressure using linear continuous shape functions with Taylor–Hood triangular
elements. We choose to mesh the liquid domain using an unstructured triangular grid (see
figure 3b,c). The mesh is considered to be a fictitious pseudo-solid with the position of the
nodes coming as part of the solution. The weak form of the kinematic condition, (2.9), is
imposed as an essential condition and determines a field of Lagrange multipliers (not to
be confused with the Lagrange multipliers in the previous paragraph) that act on the solid
deformation equations which in turn determines the shape of the unknown interface, r;
see Sackinger, Schunk & Rao (1996) for more details. We note that this approach results
in a large system of equations which is disadvantageous, but it allows for the interface to
become highly deformed, as well as naturally handling time-dependent flow (where the
domain could significantly change shape; cf. figure 1), which is difficult to achieve if the
mesh is structured.

To solve the hybrid equation, (2.17a,b), it is convenient to introduce two fields of
unknowns on the fluid interface, the pressure p1 and flux Q1, interpolated using quadratic
shape functions. We solve two equations in their weak form:∫

S
(Q1 − QC)ψ dS = 0, QC = 1

χ

(
Ah + 1

2
Bh2 + 1

6
h3 ∂p
∂s

)
(2.22a,b)

and ∫
S

(
∂r
∂t

· n ± ∂Q1

∂s

)
ψ ds = 0. (2.23)

Equation (2.22a,b) projects the flux from the lubrication equation onto the finite-element
space and then (2.23) ensures mass is conserved in the fluid phase.

The resulting discretised equations are solved with Newton’s method using the SuperLu
numerical algebra package (Li 2005). For time-dependent calculations the solution is
updated in time using a backwards-difference second-order Euler method (BDF2). A
typical streamline pattern is shown in figure 3(a).

Around the contact line the interface becomes highly deformed due to viscous bending
and the pressure and velocity gradients are large (see figure 3d,e). In steady calculations,

945 A34-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

52
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.526


Stability and bifurcation of dynamic contact lines

as Ca → Cacrit, we expect the number of elements required in the vicinity of the contact
line to increase to ensure a smooth converged solution. We re-mesh the domain according
to a ZZ error estimator (Zienkiewicz & Zhu 1992), which measures the discontinuity of
strain-rate gradients between adjacent elements and interprets this as a measure for the
local error. Typically we set a minimum error as 10−6 and a maximum error 10−3, so that
elements with error above this range get refined and those with error below this range
get unrefined. We allow element sizes from 10−12 to 10−2 to accommodate these error
estimates. We do not adapt the mesh at each calculation; rather we adapt the mesh based
on the condition that

|θ1 − θc| < 1.0◦, θc = atan(( y2 − y1)/(x2 − x1)), (2.24a,b)

where θc is the computed angle based on (x1, y1) and (x2, y2), the coordinates of the nodes
on Γ4 directly at the contact line and immediately adjacent, respectively. The number of
elements and their sizes are highly dependent on λ and Ca. As an illustrative example, for
steady solutions at λ = 0.1, χ = 0.1 and V = 5, the resulting mesh has ∼103 triangular
elements and ∼105 discretised unknowns at Ca = Cacrit.

3. Linear stability analysis

We now present the stability algorithm and results. Rather than perform a standard normal
modes reduction to the Orr–Somerfeld equations (see e.g. Severtson & Aidun 1996), we
take a more general approach that determines the modes as part of the solution. The
analysis below is independent of the model, and although the results we present are from
the hybrid model, these results also follow from the full model.

In both cases the PDE system can be written as

R(ẇ,w) = 0, (3.1)

where R is a nonlinear operator and w(t) represents a state of the system at time t, given
as a vector of all the unknowns (either (2.15) or (2.18)). The time derivatives, ẇ, appear
in linear combinations in our system so we can decompose R into a linear mass operator,
M, that operates on the time derivatives in the problem and a nonlinear operator, F , that
operates on the spatial derivatives in the problem so that (3.1) becomes

R(ẇ,w) ≡ M(ẇ)+ F(w) = 0. (3.2)

To proceed we write the state of the system, w, as a perturbation expansion, i.e.

w = w� + εeσ tg + O(ε2), (3.3)

where w� is a base state only dependent on spatial variables, ε � 1 is a small parameter,
g is an eigenmode that is dependent on spatial variables only and σ is the growth rate of
the perturbation. The expansion in (3.3) represents a general class of perturbations that
satisfy the boundary conditions of the problem and are in-plane perturbations; we are not
extending to the third dimension, a problem we will discuss later.

Substituting (3.3) into (3.2) gives a series of problems that have to be solved at each
order of ε. At leading order we have

F(w�) = 0. (3.4)

The solution, w�, is the steady state of the system. At first order we solve

[σM(w�)+ J (w�)] g = 0, (3.5)

where J (w�) is the functional derivative of the nonlinear operator F applied at the steady
state w = w�. Equation (3.5) is a generalised eigenvalue problem that can be solved to find
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g and σ . The eigenspectrum of σ determines the stability of the steady solutions. If at least
one of the spectrum of σ has a positive real part then the steady state is linearly unstable.
Conversely if the entire spectrum lies in the left half of the complex plane then the solution
is linearly stable. In general there will be an infinite number of these eigenmodes and thus
we can write the linearised solution as

wlin(t) = w� +
∞∑

n=1

angneσnt + c.c., (3.6)

where c.c. denotes the complex conjugate and an are arbitrary constants set by the initial
conditions. When the system becomes discretised, the operators M and J are represented
by the mass matrix and Jacobian matrix, respectively. The mass-matrix representation of
M is highly rank deficient as the only time derivatives occur at the fluid–liquid interface
and special care has to be taken to ensure that the solution to (3.5) has converged. We
use the Anasazi linear algebra library which is an iterative eigensolver that can solve
highly rank-deficient eigenproblems (Heroux et al. 2003). As the spectrum has an infinite
number of eigenvalues, the discretised spectrum will have a finite number of eigenvalues,
proportional to the number of unknowns in the problem. We find a small subset of
eigenvalues which have the largest real part as these will be the modes visible in the
transient dynamics; large negative eigenvalues correspond to eigenmodes that decay very
rapidly. We validate the calculations using a simplified lubrication model and present this
in Appendix B.

3.1. Stability of the solution branches
We now discuss the bifurcation structure and the corresponding stability results of the
advancing and receding dynamic contact-line problems. Figure 4 shows the bifurcation
structures in a typical advancing case (figure 4a: χ = 0.1, λ = 0.1) and receding case
(figure 4b: χ = 0.0, λ = 0.1). Notably, our focus here is on providing insight into the
stability structure, rather than necessarily probing the precise values from experimental
analyses, where the slip length could be far smaller and therefore typically require more
computational resources. Previous works (Vandre et al. 2012) have shown that whilst
changes in slip length can have a weak effect on Cacrit, they do not qualitatively alter the
physical mechanisms at play (similarly for smaller viscosity ratios, e.g. with a glycerol–air
system).

The solution curves are shown in the (Ca, Y) projection of the solution space (see (2.21)
for a definition of Y). The markers on the curve indicate specific solutions which are
shown in the inset panels labelled A1–A4 for the advancing contact line, and R1–R4 for
the receding contact line. In both the advancing and receding cases, as Y increases, the
solution curve experiences a fold which separates the lower branch and upper branch.
The eigenspectra are real and at the fold a single eigenvalue crosses the imaginary axis,
as expected. The eigenspectra also indicate that the A1/R1 states (all eigenvalues in the
left-hand Argand plane) are ‘attractors’ of the system and A2/R2 states (a single eigenvalue
in the right-hand Argand plane, akin to a ‘saddle-node’ state in a two-dimensional
dynamical system) are weakly unstable, as seen in figure 2(b), thus numerically confirming
that the lower branch is stable (solid curve) and the upper branch is unstable (dashed
curve).

The interface has an inflection point near the contact point. We measure the angle at
the interface inflection point (to the downwards vertical) and, as is common, define this as
θapp; the apparent contact angle (Vandre et al. 2012; Liu et al. 2016b). Notably, as can be
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Figure 4. Solution curves for the advancing (a) and receding (b) contact lines. The values of the control
parameters are χ = 0.1 (a) and 0 (b) and λ = 0.1 for both panels. Individual solutions are labelled on the
curve and correspond to the inset panels with the same label. The solid/dashed lines sections of the curve
are the stable/unstable branches, respectively. The smaller insets show the eigenspectra for the A1/R1 and
A2/R2 solutions and at the fold. Solutions A3/R3 are the solutions where the inflection point on the interface
first becomes parallel to the plate, i.e. when dxs/dys = 0. In (a), A4 is the solution just before the numerical
calculations cease to converge. In (b), R4 is the solution where the interface starts to ‘overhang’ the right plate.
The top-left inset in (b) shows the bifurcation curve for larger Y .
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the signed version of Y . The critical Ca for each problem is denoted by a dotted line. The two problems are
connected through the origin.

seen from solutions A1,A2 and R1,R2 in figure 4, θapp < 180◦ not only on the stable
branch, but also immediately after the fold on the unstable branch. This is consistent
with the asymptotic results of Eggers (2004a), who shows that the solution at Cacrit
has θapp → 180◦ as λ→ 0. Consequently, for given λ > 0 we would expect to find that
θapp < 180◦ at Cacrit. These findings are consistent with Sbragaglia et al. (2008).

Further up the unstable branch, see A3,A4 and R3,R4 in figure 4, θapp = 180◦ and
the interface develops a stationary point (i.e. dxs/dys = 0). In the advancing case, the
solution curve terminates when the interface touches the right plate and effectively appears
to ‘pinch off’ off the fluid domain; see A4. For the receding case, the calculations stop
when the size of the computational domain no longer allows a converged solution.

The steady-solution curves of the advancing and receding contact-line problems,
although treated separately in figure 4, are actually two halves of the same solution space.
Figure 5 shows the connection for λ = 0.1, χ = 0 and 0.1, where the signed meniscus rise,
ys(s = L)− ys(s = 0), is plotted against Ca × U, where U = ±1 with ± corresponding to
the receding (+)/advancing (−) problem. In this projection the advancing and receding
curves occupy the second and fourth quadrants, respectively, and the location of the
respective folds in each quadrant highlights that the advancing contact line only becomes
unstable if χ /= 0, in which case Cacrit,rec < Cacrit,adv (Marchand et al. 2012; Chan et al.
2013) and that, in general, Caadv,crit and Carec,crit increase as χ → 0.

Finally, we note that in both cases the solution curve does not experience additional
bifurcations as Y increases along the unstable branch. For a system where gravity is
included it is known that within the lubrication approximation, the solution curve (for
the receding contact line, at least) oscillates around a fixed value of Ca = Ca∗ (see
Chan et al. 2012), experiencing multiple saddle-node bifurcations as Y → ∞. Preliminary
calculations show that, if gravity is included, the oscillations are also present in the
advancing/receding hybrid system, although, for brevity, we do not show the results here.

945 A34-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

52
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.526


Stability and bifurcation of dynamic contact lines

0.5 0.6 0.7 0.8 0.9

0 0.5

0.5

1.0

1.0

1.0

Ca

Cacrit

IP

x

hinf

h=hinf

Ca
1 ∂κ
∂s

∂s
∂p1

h=hinf

y

0.4
0

2

4

6

8

S
tr

es
s 

at
 I

P
 (

w
.r

.t
 s

)

10

12

14

16

18

20

Figure 6. Comparison of the air-pressure gradient and the capillary-stress gradient for the steady solutions
at the inflection point (IP) on the interface for the advancing contact-line problem. Parameter values are χ =
0.1, λ = 0.1.

3.2. Physical interpretation of the bifurcation
As discussed in Vandre et al. (2013) for the advancing contact line, the fold occurs when
the fluid-pressure gradients (fluid 1) are comparable to the capillary-stress gradients (see
Vandre 2013) near the contact line, i.e. when

∂p1

∂s
∼ 1

Ca
∂κ

∂s
. (3.7)

This is because as Ca → Cacrit the air-pressure gradients near the contact line will
increase as the system seeks to ‘pump’ air out of the region near the contact line to maintain
a steady state. Eventually these air-pressure gradients will exceed the capillary-stress
gradients and the system will be unable to maintain a stable steady equilibrium. Figure 6
shows the evolution of the quantities on either side of (3.7) calculated at the inflection
point for the advancing case. Here, one can see that the air-pressure and capillary-stress
gradients balance close to Cacrit, as seen by the intersection of the curves, which confirms
the ideas of Vandre et al. (2013).

3.3. Fold tracking
We can take advantage of the fact that at the fold bifurcation the leading eigenvalue crosses
the imaginary axis to develop an algorithm for finding Cacrit. We augment the system with
the additional constraint

Re(σ1) = 0, (3.8)

and let another control parameter come as part of the solution. It is convenient to let
the interface length, L, be determined by (3.8) so we are able to track the evolution of
Cacrit as another parameter, the viscosity ratio χ , for example, is varied. This is a robust
way of tracking the fold without having to recalculate the solution curve for every set of
parameters, as previously considered in Kamal et al. (2019) and Vandre et al. (2012).
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Figure 7. The evolution of the fold, and hence Cacrit, as the relative viscosity χ (a,b) and the slip length λ (c)
are varied. (a) The advancing contact line, λ = 0.1. As χ → 0, Cacrit → ∞ so that the fold in the bifurcation
structure ceases to exist. The inset shows the generic bifurcation structure in the χ = 0 and χ /= 0 cases. In
the former case there is always a stable solution for the system to be attracted to. (b) The receding contact line,
λ = 0.1. The fold exists for all viscosity ratios. For a given χ the bifurcation structure is shown in the inset. (c)
Variation of Cacrit as λ is varied for the advancing and receding problem (different colours) with χ = 0.1.

If we vary χ and calculate Cacrit we observe that the curve of the loci of Cacrit does not
itself experience any bifurcation, as seen in figure 7(a,b). In addition, we observe that the
bifurcation structure also remains intact when the slip length, λ, is varied (see figure 7c) .
In fact, we note that the value of Cacrit only changes relatively weakly as λ changes from
O(1) to O(10−4). Therefore we expect the dynamics to be qualitatively similar (from a
dynamical systems perspective) regardless of the slip length and provided χ /= 0.

An important observation is that the advancing and receding cases differ significantly
as χ → 0. For the advancing case, Cacrit → ∞ in this limit, whilst for the receding case it
tends to a finite value. This indicates that the viscosity of the fluid phase has to be taken into
account for the advancing contact line in order to describe the bifurcation structure. This
feature has been identified before, in driven liquid filaments (Ledesma-Aguilar et al. 2011)
and in plate-plunging experiments (Marchand et al. 2012). In contrast the receding contact
line is essentially a one-phase problem, and the qualitative features of the bifurcation
structure are the same regardless of the viscosity of the fluid.

3.4. Eigenmode perturbations
We now discuss the nature of the eigenmodes resulting from the stability analysis.
The modes corresponding to the three leading eigenvalues of the unstable branch, i.e.
σ1, σ2 and σ3, are shown in figure 8. These eigenmodes correspond to the base states
w� = A2,R2 in figure 4. In this figure the dotted profile indicates the steady interface
shape and the coloured lines indicate the shape of the interface when it is perturbed by a
single eigenmode, i.e.

w = w� ± ρgi, i = 1, 2, 3. (3.9)

The dashed/solid curves correspond to the +/− sign, respectively. The amplitude of the
perturbation, ρ, is constrained so that the meniscus rise of the perturbation is no more than
10 % of the rise of the steady solution. Each successive mode intersects the steady interface
at precisely one more location, in similarity to the form of the (sinusoidal) eigenmodes
in a related lubrication model (see figure 20). Thus, the effect of adding higher-order
eigenmodes to the steady state is to add extra corrugations to the interface and increase
the overall length of the interface.
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leading eigenmodes, g1, g2, g3, corresponding to the advancing w� = A2 (Ca = 0.873, χ = 0.1) solution in
figure 4(a). (d–f ) The leading eigenmodes corresponding to the receding w� = R2 (Ca = 0.3, χ = 0) solution
in figure 4(b). In each case the eigenmodes cross the steady interface in successively more locations. The slip
length is λ = 0.1.

Concentrating on the leading eigenmode alone, the action of adding a multiple of g1 to
a steady solution, i.e. using (3.9), stretches/shrinks the interface according to the ± sign
with no additional corrugations. Figure 9(a) shows the stable A1 and unstable A2 states
with solid lines and the perturbation from the A1 state using (3.9) and i = 1 with dotted
lines. This figure demonstrates that we can continuously ‘stretch’ the nonlinear stable state
by increasing the strength of the perturbation, ρ, and can eventually achieve an interface
with an identical value of Y to the unstable steady state and remarkably similar profile.
This will have consequences, as discussed in the next section. We can also continuously
deform the unstable branch in the same manner to match the interface of the stable branch.
Therefore, we denote perturbations using the leading eigenmode only in (3.9) as ‘stretch’
perturbations.

In a physical experiment, perturbations will naturally emerge from the presence of
‘noise’ in the system causing fluctuations of the interface and contact line. We will
take advantage of the stability analysis and mimic this ‘noise’ by using the higher-order
eigenmodes in the perturbation, i.e.

w = w� +
N∑

i=1

ρigi, (3.10)

where for the purpose of simple illustration we choose the amplitude coefficients, ρi, to
be equal. Figure 9(b) shows the perturbed interface as the value of N increases from 1
to 10, which demonstrates that by increasing the value of N we are able to perturb the
nonlinear steady interface with increasingly more corrugations or ‘noise’ in a systematic
manner and hence be able to isolate specific geometric effects that act on the stability
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Figure 9. Perturbations of the advancing w� = A1 state. (a) ‘Stretch’ perturbations. The lower solid curve is
the stable interface and the upper solid curve is the unstable interface. The dotted curves are different strength
perturbations of the stable state according to (3.9) with i = 1. The dashed curve corresponds to the perturbation
which results in an identical value of Y as the A2 state. (b) ‘Corrugation’ perturbations. The coloured curves
are different strength perturbations of the stable state according to (3.10) for a fixed value of ρ and increasing
N and the shaded region represents the nonlinear A1 steady solution. Parameter values are Ca = 0.873, χ =
0.1, λ = 0.1.

of the system (the first 10 modes are sufficient to analyse the response of the system
as higher-order modes will decay rapidly). Strictly speaking, to model physical ‘noise’
would require performing a number of realisations with the values of ρi chosen randomly
from a probability distribution, which must be chosen in some reasonable manner, ideas
which we do not pursue further here. Henceforth, perturbations of the form in (3.10),
i.e. a combination of leading-order and higher-order modes, are called ‘corrugation’
perturbations.
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Stability and bifurcation of dynamic contact lines

The two forms of perturbation discussed here, in our nomenclature the ‘stretch’ and
‘corrugation’ perturbations, are used in the next section to understand the subsequent
time-dependent behaviour of the system after systematically applying a perturbation to
a steady state.

4. Transient dynamics

Now that we have calculated the steady solution branches and quantified their stability, we
attempt to answer the two questions of fundamental importance:

(i) How do the steady states, stable and unstable, and the resulting bifurcation structure
help us understand the time-dependent behaviour of the system when Ca < Cacrit?

(ii) What is the time-dependent behaviour of the system when we choose initial
conditions beyond the fold, i.e. when Ca > Cacrit?

To address these questions we solve the time-dependent hybrid PDE as an IVP. It is
useful to define solution measures that will help visualise and aid the discussion. In our
formulation Ca corresponds to the speed of the plate and not the speed of the contact
point. It is therefore useful to introduce an ‘effective’ Ca, based on the contact-line speeds
relative to the plate (as discussed in Chan et al. (2012)), which we denote Ca and is defined
as

Ca = Ca|U − Ucl|, (4.1)

where U = ±1 is the non-dimensional speed of the plate, the ± sign corresponds to the
advancing (−)/receding (+) case and Ucl = dycl/dt is the speed of the contact line. We
remark that for steady solutions Ucl = 0, and hence Ca = Ca and the time-dependent
phase-plane trajectories can be directly compared with the bifurcation structure in the
(Ca, Y) plane.

We also introduce a system measure to quantify the size of the perturbation. Let
the meniscus rise of a steady solution be Y�, where � indicates the base solution the
perturbation is measured against. We can then define a quantity �(t, �) that measures
the deviation of the perturbation from the corresponding steady state at time t:

�(t, �) = Y(t)− Y�, (4.2)

as demonstrated schematically in figure 10. If �(t, �) > 0 then the meniscus rise of the
current state is larger than that of the steady interface indicated by � and vice versa if
�(t, �) < 0 (see figures 10a and 10b, respectively).

4.1. Perturbations from a steady-state IVP: Ca < Cacrit

We now consider the first question and look at the dynamics of the system when Ca <
Cacrit. Our methodology is to start at either the stable or unstable state and perturb it using
either a ‘stretch’ or ‘corrugation’ eigenmode expansion, which we will consider separately.
We then run a series of IVPs to examine the transient behaviour and eventual dynamical
outcome.
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Figure 10. The perturbation measure. The solid curve in each panel is the interface of the base solution, w�,
and the dotted curve represents the interface of the system at a given time, w(t). (a) The system is in a state
with �(t, �) > 0. (b) The system is in a state with �(t, �) < 0.

4.1.1. ‘Stretch’ perturbations
For the ‘stretch’ perturbations, we use the leading eigenmode only, and set the initial
conditions to be

w(t = 0) = w� ± ρg1. (4.3)

Initially we concentrate on the advancing contact-line problem. Using the initial conditions
stated in (4.3), small perturbations from the A1 stable state (figure 4a) decay and the
system (unsurprisingly) relaxes back to its stable configuration. Figure 11 demonstrates
this by tracking the value of Y in time for two different perturbations, corresponding to
�(0,A1) < 0 and�(0,A1) > 0, of the stable state near the fold (parameter values quoted
in the caption). Furthermore, as seen in the insets on the right of figure 11, the decay
rate excellently matches the value of the leading eigenvalue, σ1, obtained from the linear
stability analysis.

For the same parameter values, we can also perturb the A2 unstable state (figure 4a)
by its leading eigenmode, which is unstable. Figure 12(a,b) shows the time signal of Y as
well as the phase-plane trajectories in the (Ca, Y) projection. This case is more interesting,
and we see that if�(0,A2) < 0 (i.e. the perturbation ‘contracts’ the A2 interface) then the
system returns to the stable state (see figure 12a), whereas if�(0,A2) > 0 (i.e. a ‘stretch’)
then entrainment of the upper fluid occurs (see figure 12b).

Similar outcomes occur for the receding contact-line problem. Perturbations, using the
leading eigenmode, of the R1 (figure 4b) stable state relax back to the stable equilibrium
(results not shown). In contrast, figure 12(c,d) shows the time evolution of perturbations
from the R2 (figure 4b) unstable state, where for �(0,R2) < 0, the system relaxes back
to the R1 state. But if �(0,R2) > 0 then, unlike the advancing contact line where
entrainment occurs, a thin film develops that grows in size at a linear rate as t → ∞ as
shown in figure 12(d).

These IVP calculations show that if we consider the class of perturbations representing
‘stretches’, using the leading eigenmode only, then the indicator of whether the system
returns to the stable state is that meniscus rise of the initial perturbation is smaller than the
meniscus rise of the unstable state, i.e. the condition for stability is

�(0,A2) < 0, advancing contact line, (4.4)

�(0,R2) < 0, receding contact line. (4.5)
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Figure 11. Time-dependent perturbations of the advancing contact line using (4.3). This figure shows
perturbations from the solution labelled A1 in figure 4(a). The two different initial conditions are shown in the
inset panels corresponding to the same colour lines in the main panel. Whether �(0,A1) > 0 or �(0,A1) < 0
the system relaxes back to the stable state. The inset panels on the right show the time signal of log(|�(t,A1)|)
as compared to the predicted growth rate σ1. Parameter values are Ca = 0.873, χ = 0.1, λ = 0.1.

In the language of dynamical systems the unstable state represents the ‘boundary of the
basin of attraction’ of the stable state, when considering simple stretches of the stable
interface corresponding to perturbations using the leading eigenmode. The unstable state
is therefore not just a trivial consequence of the steady bifurcation structure but also has
an important role in dividing the phase plane into regions that have different transient
dynamics.

Another important observation is that the calculation in figure 12(d), for the receding
contact line, is consistent with the claim from Chan et al. (2012) that the solution curve
represents the effective dynamics of the system ‘in which the state of the solution moves
quasi-statically along the solution curve’. In the receding case, the trajectory of the system
in the phase space (Ca, Y) is qualitatively similar to the steady solution curve when plotted
in the same diagram. The inset panels in figure 12(b,d) labelled ‘Phase plane’ show the
steady solution curve and the trajectory of the system shown with an arrow. In the receding
case, when �(0,R2) > 0 the trajectory closely follows the upper reaches of the unstable
branch, whereas in the advancing problem this similarity does not occur. The comparison
between the steady solution curve and the time-dependent trajectories is discussed in more
detail in the next section. Finally, we note that the qualitative behaviour and conclusions
that we have described are identical to the full model, as we show in Appendix C.

4.1.2. ‘Corrugation’ perturbations
We now concentrate on the ‘corrugation’ perturbations which arise from taking more
eigenmodes in the perturbation expansion (3.10). As discussed in the previous section
this class of perturbations includes higher modes, which we might reasonably expect
in a noisy physical system. We choose the number of eigenmodes as N = 10 for
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Figure 12. Time-dependent perturbations of the unstable branch using (4.3). (a,b) The advancing contact-line
problem. (c,d) The receding contact-line problem. This figure shows perturbations from the solution labelled
A2/R2 in figure 4. For both the advancing and receding contact line, when �(0,A2) < 0 the perturbation
relaxes to the corresponding stable branch (a,c). When �(0,A2) > 0 the perturbation grows and in the case of
the advancing contact line, entrainment occurs; see inset panel labelled ‘Entrainment’ in (b). For the receding
contact line a thin film develops; see inset panel labelled ‘Thin-film’ in (d). The other inset panels show the
phase plane in the (Ca,Y) projection. The initial conditions are marked as open circles, the system trajectory is
marked with arrows and the steady bifurcation is shown without arrows. The unstable branch can be considered
as the basin boundary of attraction of the stable steady state. Parameter values are Ca = 0.873, χ = 0.1, λ =
0.1 for the advancing problem and Ca = 0.3, χ = 0, λ = 0.1 for the receding problem.

computational efficiency. We set the initial condition of the system therefore as

w(t = 0) = w� + ρ

N∑
i=1

gi + c.c., N = 10. (4.6)
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Stability and bifurcation of dynamic contact lines

We concentrate solely on the advancing case and, as before, examine perturbations from
the stable A1 and unstable A2 (figure 4a) states using the initial conditions prescribed in
(4.6). Figure 13 shows the time-dependent results for incrementally increasing values of ρ
in (4.6). Figure 13(a) shows trajectories in the (L, Y) phase-plane projection, where L is
the total arclength of the interface. To help orient the trajectories we have added artificial
axes which are centred on the unstable A2 state.

After perturbing the A1 state, initially the system ‘smoothes’ the corrugations, which
is indicated by the decreasing value of L in the trajectories. Once these corrugations
disappear, either the system becomes transient, and air entrainment occurs, or the system
returns to the stable state. The dashed line between the A1 and A2 state is the response
of the system if only the leading eigenmode is retained in the initial perturbation, as
considered in the previous section on ‘stretch’ modes, which can be interpreted as the
approximate unstable manifold of the A2 state.

The nonlinear trajectories, i.e. the time-dependent solution to the hybrid system given
in (2.3)–(2.14) and (2.17a,b) with initial conditions (3.10), all eventually collapse on the
unstable manifold of the unstable A2 state once the higher-order modes have sufficiently
decayed, but, significantly, the combination of stable higher-order modes in the initial
perturbation can cause transient behaviour, i.e. fluid entrainment, in the system, despite the
corresponding eigenvalues being highly stable. This is in contrast to the linear response,
i.e.

wlin(t) = w� + ρ

N∑
i=1

gie
σit + c.c., N = 10, (4.7)

which will always decay back to the stable state (as the eigenvalues are all negative), as
demonstrated in the inset diagram for a particular initial condition.

The unstable A2 state, as indicated by a large circular symbol, plays a crucial role in
the partition of behaviours. By examining the trajectories that explore the vicinity of the
unstable branch in figure 13(a–c), it is not unreasonable to hypothesise that by continually
refining the value of ρ in the initial perturbation the system would be able to stay in the
vicinity of the unstable state for an arbitrary time period, where the dynamics of the system
is dominated by the stable eigenmodes of the unstable branch. This behaviour is typically
indicative of interpreting the unstable branch as an ‘edge’ state, commonly used to describe
weakly unstable states in the transition to turbulence and other fluid dynamics problems
(see Kerswell, Pringle & Willis (2014) for a description of an edge state). In these scenarios
the weakly unstable ‘edge’ state acts as an ‘edge’ between two dynamical outcomes; in our
problem it separates the system returning to the stable state or becoming transient.

The role of the unstable state is further emphasised in figure 13(d–f ) for perturbations
from the unstable A2 branch. In figure 13(d) different colour trajectories correspond to
whether a positive or negative ρ is chosen in the initial conditions given by (4.6), and
figure 13(e, f ) shows the initial conditions compared to the A2 steady state. Again, the
system outcomes are partitioned by the presence of the unstable state which ‘deflects’
the system to either relax back to the stable state or become transient so that entrainment
occurs. We note that in this case if�(0,A2) < 0 (initial conditions in the lower half-plane
of figure 13d) then the system will become transient which is in direct contradiction to the
‘stretch’ mode perturbations. These calculations demonstrate that L could be a more robust
indicator of dynamical outcome; in this figure, all trajectories in the right-side (L, Y) plane
(centred on the unstable state) eventually become transient as entrainment occurs.

To determine the exact regions in phase space where initial conditions becomes transient
or return to the stable state requires knowledge of the stable manifold of the A2 state (see
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Figure 13. Time-dependent perturbations using the ‘corrugation’ perturbations. Perturbations from the
solutions labelled in figure 4(a) using (4.6). (a–c) Perturbations from A1. (d–f ) Perturbations from A2. (a,d)
Time-dependent trajectories in the in the (L,Y) phase-plane projection. Initial perturbations (IC) are denoted
by open circles and steady states by large solid circles. The dashed blue lines indicate the unstable manifold
of the A2 state and the solid black lines are artificial axes centred on the unstable A2 state. (a) Each red curve
indicates a time-dependent trajectory with a different value of increasing ρ, as indicated by the black arrow,
the initial conditions with minimum and maximum ρ have been labelled. The solid trajectories correspond
to initial perturbations that return to the steady state and dotted trajectories correspond to trajectories that
result in entrainment. The inset shows the linear response given in (3.6) for a particular initial condition
marked with a filled circle in the main panel. (b) The initial interfaces of the trajectories shown in (a) are
shown as solid lines and the A1 and A2 steady states are shown using the shaded area and a dashed line,
respectively. (c) The corresponding time signals of Y for the trajectories shown in (a). (d) Red/black curves
indicate trajectories with initial conditions�(0,A2) positive/negative, respectively. (e, f ) The initial conditions
corresponding to the trajectories in (d) with the unstable state indicated by the shaded area. Parameter values
are Ca = 0.873, χ = 0.1, λ = 0.1.
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figure 2b). In our high-dimensional system of PDEs, the calculation of the stable manifold
of the A2 state is a non-trivial task (see e.g. Krauskopf et al. 2005) which we do not pursue
here.

4.1.3. Physical significance of the perturbations
We now relate these results to the physical system. Firstly, we make the key observation
that the system is able to experience instability for Ca < Cacrit due to finite-amplitude
perturbations of the stable state. Furthermore, these results suggest that the system
is susceptible to instability caused by perturbations that increase the total arclength;
corrugations, representing ‘noise’, can be just as dangerous as perturbations that increase
the meniscus rise. Given that noise is a ubiquitous phenomenon in physical systems we
would expect to see this realised in a system with Ca < Cacrit. Secondly, the extent to
which we are able to perturb the stable A1/R1 state so that the system remains stable
is dictated by the information encoded in the unstable A2/R2 steady state, in particular
whether the perturbation causes the interface length or meniscus rise to increase beyond
that of the unstable steady state. A consequence of this is that the closer Ca is to Cacrit
(from below), the smaller is the finite amplitude required to cause the system to become
transient, as the stable and unstable branches are increasingly approaching each other.

We can be more precise and approximate the ‘size’ of the maximal stretch perturbation
that maintains a steady contact line as a function of Ca − Cacrit. Locally to the fold, the
bifurcation curve will take the form

Ca − Cacrit = a1(Y − Ycrit)
2 + a2(Y − Ycrit)

3 + · · · , (4.8)

where Ycrit is the meniscus rise at the fold and ai are constants that can be determined
by, for example, normal-form reduction methods (Kuznetsov 1998). Therefore, close to
the fold, the ‘length’ of the basin boundary is approximately equal to the vertical distance
between the stable and unstable branches and is approximately

Y2 − Y1 =
√

2
a1

|Ca − Cacrit|1/2. (4.9)

As a conclusion, finite disturbances from the steady stable state potentially lead to
instability before that interface might become transient otherwise (due to a lack of
steady state). Minimising ambient disturbances and minimising fluctuations in Ca would
help maintain a stable interface for higher Ca. The physical mechanisms underlying the
observations are not straightforward to address due to the highly nonlinear nature of the
problem. Moreover, three-dimensional perturbations will likely be important in practice
and introduce additional physical mechanisms. Such three-dimensional calculations are
exceedingly challenging and are currently the focus of ongoing research, so we defer a
detailed study of physical mechanisms for future work.

4.2. Dynamics ‘beyond’ the fold: Ca > Cacrit

We now turn our attention to starting the system from rest with a flat interface beyond the
fold, i.e. Ca > Cacrit, so that we are able to answer the second question stated at the start
of § 4. The initial condition is

w(t = 0) = [u(0), p(0), p1(0), r(0)]T = [0, 0, 0, (xs, 0)]T. (4.10)

For values of Ca exceeding the critical value there are no (known) steady states which can
influence the system, unlike in the previous section. For the advancing case, the system
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Figure 14. Time-dependent evolution for an advancing contact line when Ca > Cacrit and the system is at
rest initially for λ = 0.1, χ = 0.1. The different colour curves indicate different values of Ca = 0.95, 1.05.
(a) The time signal of Y with interface profiles at the indicated times in the inset. (b) The trajectories (curves
with arrows) in the (Ca,Y) phase-plane projection compared with the steady bifurcation curve (curve without
arrows). The inset compares the interface profiles for each Ca at t = 200.

becomes transient with entrainment occurring, as shown in figure 14 where the time
signal of Y is measured along with time snapshots of the interface at the times indicated
for Ca = 0.95, 1.05. We emphasise that the system is not attracted to a different steady
state of the system that may exist and we are unable to find any additional steady states
beyond the fold bifurcation. There are two distinct length scales present in the interface
profile for sufficiently large times. The width of the fluid entrainment, ĥ, and the width
of the thin film, hfilm, appear to be weakly dependent on Ca as shown by the inset of
figure 14(b). These results are consistent with recent experimental work (He & Nagel
2019), but we leave a detailed analysis of the thickness of these entrainment regions,
and their dependence on system parameters, to a future study; our focus is on the broad
dynamical outcome, rather than the fine details of the solution. We do, however, remark
that the hybrid model shows excellent promise in being able to predict the width of these
films.

For the receding case, a thin film develops. Figure 15(a) shows the time signals of Y in
the receding case when Ca = 0.4, 0.5 > Cacrit. The system, although not approaching a
steady state, forms a coherent structure whose meniscus rise grows at a constant velocity,
independent of Ca, similar to the structure seen in figure 12(c). Unlike the advancing case,
the time-dependent trajectories and the steady solution curve for the receding problem,
when plotted in (Ca, Y), are qualitatively similar. Figure 15(b) also compares the actual
interface profiles for the time-dependent calculation and the corresponding steady solution
for the same value of Y (insets). It is striking how close the two corresponding interface
profiles are, although we note that in the time-dependent case the horizontal height of the
inflection point is smaller than that of the steady solution in all of the cases. This again
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Figure 15. Time-dependent evolution for a receding contact line when Ca > Cacrit and the system is at rest
initially for λ = 0.1, χ = 0. The different colour curves indicate different values of Ca = 0.4, 0.5. (a) The time
signal of Y with the final interface profiles in the inset. (b) The trajectories (curves with arrows) in the (Ca,Y)
phase-plane projection compared with the steady bifurcation curve (curve without arrows). The inset panels
compare the interface profiles for the time-dependent evolution (red) and the steady solution branches (blue) at
the same values of Y = 1, 2, 3 for the Ca = 0.4 case.

shows compelling evidence that in the receding contact-line problem the unsteady solution
branch represents the effective dynamics of the system.

In both the advancing and receding contact-line problems, the system trajectory
approaches a fixed value of Ca as t → ∞. For the advancing contact line, the limiting
meniscus rise velocity is dependent on Ca (see slopes in figure 14a) so that the trajectories
approach a limiting value of Ca which depends on Ca (see figure 14b). However, for the
receding contact line, the limiting value of Ca appears to be almost independent of Ca
(see figure 15b), indicating the contact-line region and the thin-film region are essentially
de-coupled by this point. This would mean that if, after a thin film has developed, we slow
the plate speed so that Ca < Cacrit, the contact line would continue to move upwards and
only the thin-film thickness, which is dependent on Ca according to a Landau–Levich-type
law (Landau & Levich 1988), would change. Figure 16 shows this situation, where the
trajectory in the (Ca, Y) plane of a receding contact-line IVP initially starting at rest when
Ca > Cacrit. Once a film is developed we instantaneously change the value of Ca < Cacrit,
once Y is large enough (we choose Y = 6 for convenience) and observe the contact line
continuing to rise, whilst the thin film becomes smaller, adjusting to the changed value of
Ca.

We do not have a concrete physical explanation for why the trajectories and steady
bifurcation curve closely match one another for the receding contact line. From a
dynamical systems perspective it is possible that the stable manifolds of the unstable
branch persist as Ca > Cacrit and that the system is constantly being ‘attracted’ by the
remnants of the stable manifolds. This is, of course, speculation, and we leave this aspect
as a challenge for future work.
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Figure 16. Time-dependent evolution for the receding contact line when Ca > Cacrit and the system is at rest
initially. Once a film has formed and Y = 6, we set Ca < Cacrit, as indicated in the figure by different colour
trajectories and interface profiles. Other parameter values are λ = 0.1, χ = 0.0.

5. Discussion

We have developed a time-dependent hybrid model and utilised ideas from dynamical
systems theory to investigate the advancing and receding contact-line problems. By
solving a generalised eigenproblem numerically and performing IVP simulations we have
demonstrated that far from being passive, the unstable branch of the bifurcation structure
plays a subtle role in the underlying time-dependent behaviour, from a dynamical systems
perspective.

By perturbing the stable branch using the eigenmodes we have demonstrated that the
unstable branch represents the basin boundary of attraction of the stable solution and it
has a profound effect on the eventual evolution of the system. We have demonstrated that
perturbations that cause the interface to stretch are robust, in that provided the stretch does
not exceed that of the unstable branch the system returns to the stable state. In contrast,
perturbations that increase the overall length of the interface by adding ‘corrugations’
are also dangerous and the system can become transient, despite these ‘corrugations’
corresponding to stable eigenmodes, as indicated by figure 13(d–f ). This information may
be helpful in physical systems as a means of flow control, as knowledge of the structure
of the unstable eigenmodes may enable us to stabilise the system using suction/injection
techniques. We also note that in physical experiments, estimates of Cacrit should be
interpreted as a lower bound, because in practice fluctuations may cause the system to
become transient, despite a stable state existing, which has implications in real-life control
of fluid systems.

We note that the perturbations we have considered here are purely theoretical eigenmode
perturbations and it would be of interest to examine the stability of the contact line when
physically perturbed by, for example, the surface defects on the moving substrate. This is
part of the authors’ current research.

In addition, for the receding case, by performing time-dependent calculations we have
shown that trajectories in phase space qualitatively match the steady bifurcation structure.
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The solution curve describes what Chan et al. (2012) termed the ‘effective dynamics’ of the
system. The bifurcation structure remains structurally stable (i.e. the stable–fold–unstable
branch structure does not change) as χ and λ are varied (see figure 7), and hence we predict
the overall qualitative behaviour to be similar, i.e. the unstable branch is generically the
basin boundary of attraction for systems of this nature.

Gravitational and inertial effects can easily be added to the model and it is interesting to
consider what effect these would have on the bifurcation structure and stability analysis.
We have already performed some preliminary calculations incorporating gravity and have
found that the bifurcation structure experiences the same multiple saddle-node bifurcations
as predicted by the lubrication model (Chan et al. 2012). Our preliminary analysis shows
that the entire upper branch past the first saddle-node bifurcation is unstable, but we have
not pursued this in detail and leave this for future research. For inertial effects, we could
expect other types of bifurcations, including Hopf bifurcations, which would introduce
complex eigenvalues to the spectrum of σ and lead to more complex transient behaviour.
We also leave this avenue for future research.

We emphasise that the computational stability algorithm and methodology presented
here are independent of the governing equations that are chosen, even if the results
differ. The system we decide to analyse is applicable to a wide range of physical settings
where gravity and inertia play a minimal role (see e.g. Ledesma-Aguilar et al. 2011)
but these physical effects, and even different contact-line physics such as that which
molecular kinetic theory proposes (see e.g. Blake 2006), can easily be incorporated into
our computational framework. In fact, any dynamic wetting system that can be written in
the form

R(ẇ,w) = 0, (5.1)

where R represents a dynamic wetting model that is appropriate for the physical situation
with a set of state variables given by w, is amenable to the analysis that we have described.

In our model, we choose the simplest approach and set the contact angle to be constant.
It is hotly debated whether this is indeed physically realistic and whether the actual contact
angle varies or whether all dynamics of the angle are ‘apparent’. A natural extension to
the model would be to investigate the effect of having a contact angle that is dependent
on the velocity of the plate, such as that proposed by molecular kinetic theory (see e.g.
Blake 2006; Fernández-Toledano, Blake & Coninck 2021) or the interface formation
model (see Shikhmurzaev 2007). Provided the bifurcation structure remains intact (i.e.
stable–fold–unstable) then we predict the dynamics will be qualitatively the same. This is
the subject of another article where we apply the hybrid model and stability algorithm
developed here to account for a Ca-dependent contact angle observed in molecular
simulations (Keeler et al. 2021).

For the advancing contact line, the instability manifests itself as fluid entrainment and for
the receding contact line, a thin film and a capillary ridge form. The instability in this study
is taken in a two-dimensional context but it is well known that the ‘saw-tooth’ patterns
that emerge in an unstable advancing contact line are intrinsically three-dimensional. An
intriguing extension to our model would be to consider transverse perturbations of the
advancing contact line in the third dimension and perform a stability analysis, similar to
our approach here. This has been done before in the receding case (Snoeijer et al. 2007)
and the advancing case (Vandre 2013) using a lubrication model, but the time-dependent
hybrid model developed here is a perfect testing ground for a three-dimensional calculation
as the computational cost is relatively small compared with the full model, and we are also
able to fully account for the two-dimensional (lubrication-violating) velocity in the liquid.
This direction of research is currently being developed.
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Appendix A. Derivation of hybrid model

As the flow is approximately one-dimensional, using a lubrication approximation, the
momentum equations of the fluid phase are known to reduce (Oron et al. 1997) in our
case to

∂p1

∂x
= 0,

∂p1

∂y
= χ

∂2v1

∂x2 , (A1)

so the pressure in the fluid phase is a function of y only and a straightforward two-fold
integration of the momentum equation in (A1) yields an expression for v1, i.e.

v1 = 1
χ

(
1
2
∂p1

∂y
x2 + Ax + B

)
, (A2)

where A and B are constants of integration. We impose the Navier slip condition on x =
0 and impose continuity of velocity at the interface boundary, denoted by x = h, as in
figure 3(c). These conditions determine A and B:

A = B − Uχ
λ

, B = χ(Uh + λv2)− 1
2λ(∂p1/∂y)h2

λ+ h
, (A3a,b)

where v2 is the vertical component of velocity of the lower fluid and p1 is the upper fluid
pressure, both evaluated at the interface. We have now determined the vertical velocity in
the fluid phase in terms of the (as yet) unknown pressure gradient ∂p1/∂y on the interface.

We now use conservation of mass to form an equation that determines the pressure in
the fluid at the interface. The conservation equation, (2.2), can be written as

u1 − ∂h
∂y
v1 ± 1

χ

∂

∂y

(
1
6
∂p1

∂y
h3 + 1

2
Ah2 + Bh

)
= 0, (A4)

where the ± sign is used for the advancing (+)/receding (−) contact line. As typical
horizontal length scales are small compared with vertical distances in the fluid when
entrainment occurs, i.e. ĥ/Y � 1 (see figure 1c for illustrations of ĥ and Y), then the
arclength along the interface, s, measured from the contact point (see figure 3e) is
s = y + O(ĥ/Y). Therefore we can replace derivatives with respect to y with derivatives
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with respect to s which means the first two terms above become u1 · n. The arclength
parameterisation is preferable, as it allows the interface to become multi-valued in
calculations. Using the kinematic condition (2.9) at the interface means that (A4) becomes

∂r
∂t

· n ± 1
χ

∂Q1

∂s
= 0, Q1 = 1

6
∂p1

∂s
h3 + 1

2
Ah2 + Bh, (A5a,b)

as stated in the main text. This equation determines the evolution of the pressure in
the fluid phase on the interface. We set p1(s = L) = 0 and Q1(s = 0) = 0 to ensure the
system is well-posed. The velocity in the fluid phase can be recovered using (A2). In this
formulation, the equations in the liquid phase are coupled to (A5a,b) due to the presence
of v2 in the definition of the constant A. Furthermore, we couple the pressure and velocity
in the fluid phase to the liquid phase through the dynamic boundary condition, i.e.

τ 1 · n = −p1n − χ
∂v1

∂x
t, x ∈ Γ4, (A6)

where t is the tangent along the direction of the arclength s (see figure 3b), which is
standard when using a thin-film approximation (Oron et al. 1997).

A.1. Justification of the model
We now discuss the justification of the hybrid model. For small Ca the hybrid model’s
slender geometry approximation is not valid, but because in this regime upper fluid stresses
are small compared with the capillary stress (i.e. the fluid is dynamically passive), the
difference between the hybrid and full model is small. In contrast, in the large-Y regime,
the geometry is genuinely slender in the upper fluid phase and a hybrid model is justified
and we expect the difference again to be small. However, there are cases when the hybrid
model loses accuracy. For example, when the upper fluid is a liquid of similar viscosity its
stress on the interface is significant even at moderate Ca and the geometry is not always
slender – clearly such cases require the full model, although figure 17, which shows a
comparison of steady solutions of the receding contact line between the hybrid (solid
lines) and full (circular markers) models for λ = 0.1 and χ = 0.1, demonstrates that even
at χ = 0.1 agreement between the models is reasonable.

The hybrid model has been extensively validated for steady solutions of the advancing
contact-line problem, over a wide range of χ (Liu et al. 2016b), and has also shown
impressive agreement with curtain-coating experiments (Liu et al. 2019). Here, we show
that the time-dependent hybrid model is consistent with the full model by performing
a series of time-dependent IVP calculations starting the system from rest (ui = 0) with
a flat interface. If we choose Ca < Cacrit we expect the system to eventually relax to a
stable state. As χ → 0 the full model and the hybrid model should converge, because
the pressure in fluid 1 reduces to p1 = constant so that the hybrid and full models are
described by identical equations. Figure 18 shows the time signal of the meniscus rise, Y ,
for different viscosity ratios (different colours) for the full model (dotted lines) and the
hybrid model (solid lines). In all cases the interface eventually relaxes to a stable state, as
shown by the time signals in the main figure. It is also clear that for the smallest value of
χ in the figure the full and hybrid models are virtually indistinguishable. This is because
for small χ , the fluid only has an influence on the liquid in thin films (where the liquid
phase has an approximately constant height, ĥ; see figure 1c) in front of the contact line,
and this is where the lubrication model is valid. In contrast, at moderate χ the influence of
the fluid is felt everywhere, the films are thicker/non-existent and this approximation loses
accuracy. In other words, this approximation works best when the fluid is a gas.
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Figure 17. Steady bifurcation curve of the receding hybrid and full model when λ = 0.1, χ = 0.1. The
horizontal axis is Ca and the vertical axis is the meniscus rise, Y = |ys(s = L)− ys(s = 0)|. The solid markers
are the full model solutions and the solid/dashed lines are the corresponding hybrid model results. The insets
show the comparison of the interface and streamlines in the full and hybrid models when Y = 2 (right-hand
insets) and Y = 4 (left-hand insets).
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λ = 0.1,Ca = 0.2. The different colours indicate χ = 0.1, 0.01, 0.001. As the main panel shows, the system
relaxes to a stable state and as χ → 0 the two models converge. The insets show interface profiles at sampled
times indicated by the labels.

In our final validation calculation, we show in figure 19 that for different values of χ
and θ1 the hybrid model is consistent with the full two-layer model for variations in χ and
the contact angle θ1.
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eigenmodes from (B2) and those obtained from the numerical calculations. (a) Eigenmode g1, corresponding
to the largest eigenvalue; (b) g2 and (c) g3 are the eigenmodes for the next two largest eigenvalues.

Appendix B. Validation of our eigenvalue analysis

We can validate the solutions of (3.5) against a situation where analytic eigenmodes are
known. If we assume the plate is static (Ca = 0) and that H/L � 1, corresponding to a
short fat pool of liquid at the bottom of the channel with no slip beneath it, then we can
also apply a lubrication approximation to the liquid domain. If the fluid is treated as a
vacuum we have the following equation for the vertical height of the interface:

yt + C( y3yxxx)x = 0, (B1)

where C is a known constant containing non-dimensional system parameters (in this case
we choose C = 3). The boundary conditions y(0) = y(L) = y0, yxxx(0) = yxxx(L) = 0
describe a pinned contact line and no flux through the plates so that the resulting interface
is flat in equilibrium. In this case the set of unknowns is ‘one-dimensional’ in that w = [y]
and using the perturbation in (3.3) yields a set of equations where analytic progress can
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Figure 21. Time-dependent perturbations from the unstable state using the ‘stretch’ perturbations and the full
two-layer model. (a–c) Advancing contact line. (d–f ) Receding contact line. (a,d) The phase plane in the (L,Y)
projection, with steady states indicated by circular markers (full model) and stars (hybrid model). Trajectories
that result in a stable configuration (�(t = 0,A/R2) < 0) are solid and those that result in a transient behaviour
(�(t = 0,A/R2) > 0) are in dashed lines (red/full and black/hybrid). The inset diagrams show the two-layer
mesh of the steady states with the interface as a solid red line, and comparisons of the growth rate of the
simulations (solid/dashed red lines) and that predicted by the leading eigenvalue (dotted blue lines). In (d),
the time-dependent state when air entrainment starts is also included. (b,e) The stable state (solid blue),
unstable state (dashed blue) and the perturbations (solid/dashed red). (c, f ) The time signals of each simulation.
Parameter values are χ = 0.1, λ = 0.1 and Ca = 0.7 (advancing), Ca = 0.25 (receding).
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be made. It can be shown that the eigenvalues and eigenmodes of (B1) can be written as

gn = an

[
sinh(σ 1/4

n L)+ sin(σ 1/4
n L)

cos(σ 1/4
n L)− cosh(σ 1/4

n L)
(cosh(σ 1/4

n x)− cos(σ 1/4
n x))

+ sinh(σ 1/4
n x)+ sin(σ 1/4

n x)

]
, σn ≈

(
π/2 + nπ

L

)4

. (B2)

These non-trivial analytic expressions can be used to validate our numerical stability
calculations. We choose a computational domain with H/L = 40, to reflect H/L � 1, and
calculate the corresponding eigenmodes numerically using the hybrid model described
in the previous section. Figure 20 shows the first three eigenmodes corresponding to
the largest three eigenmodes, n = 1, 2, 3, as calculated by the hybrid model and the
analytic solution (different colour curves). These solutions are stable as the eigenspectra
lie exclusively in the left-hand complex plane and the agreement between the numerical
calculations and the analytic solution obtained from the lubrication model is excellent,
giving us confidence in our computational framework.

Appendix C. Full two-layer time-dependent perturbations

In this appendix we show that the qualitative time-dependent behaviour of the full
two-layer model matches that of the hybrid model. In particular we show that applying
a stretch perturbation to the unstable state, as shown in § 4.1.1, leads to similar qualitative
transient features. In figure 21, leading-order eigenmode perturbations, i.e. ‘stretch’ modes,
of the unstable state in the full model result in either stable flow, if the initial interface
has been contracted, or becoming transient, if the initial interface has been stretched.
This qualitative behaviour precisely matches that of the hybrid model, in both the
advancing and receding contact-line problems, as is evident from the red (full) and black
(hybrid) curves in figure 21(a,d). Furthermore, as can be seen by the mesh in figure
21(d), when a thin film starts developing, the number of elements in the computational
domain significantly increases due to the adapation procedure and the calculations become
prohibitively expensive and eventually fail when the moving-wall contact point reaches the
end of the domain, thus highlighting the attraction of the hybrid model for time-dependent
simulations.
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