ON P-VALENT STARLIKE FUNCTIONS WITH REFERENCE TO THE BERNARDI INTEGRAL OPERATOR

VINOD KUMAR AND S.L. SHUKLA

Let S_p^* (A,B) denote the class of certain p-valent starlike functions. Recently G. Lakshma Reddy and K.S. Padmanabhan [Bull. Austral. Math. Soc. 25(1982), 387-396] have shown that the function g defined by

$$g(z) = (c+p)z^{-c} \int_{0}^{z} t^{c-1} f(t) dt$$
, $c = 1,2,3,...$

belongs to the class $S_p^*(A,B)$ if $f \in S_p^*(A,B)$. The technique used by them fails when c is any positive real number. In this paper, by employing a more powerful technique, we improve their result to the case when c is any real number such that $c \ge -p(1+A)/(1+B)$.

1. Introduction

Let $S_{p}^{*}(A,B)$ denote the class of functions of the form

(1.1)
$$f(z) = a_p z^p + \sum_{n=p+1}^{\infty} a_n z^n, p \ge 1,$$

which are analytic in the unit disc $E = \{z : |z| < 1\}$, and satisfy

(1.2)
$$z \frac{f'(z)}{f(z)} = p \frac{1+Aw(z)}{1+Bw(z)}, z \in E,$$

where $-1 \le A \le B \le 1$, w in analytic in E, and satisfies w(0) = 0

Received 20 January 1984

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00

and $\left|w\left(z\right)\right|<1$ for $z\in E.$ Evidently, the functions in $S_{p}^{\star}(A,B)$ are p-valent starlike in E.

Bernardi [1] has shown that, if the function f is univalent starlike in E, then so is the function g given by

$$g(z) = (c+1)z^{-c} \int_{0}^{z} t^{c-1} f(t) dt$$

where c is a positive integer. This result has been improved by Miller et al. [5,Theorem 2] to the case when c is a positive real number. Recently, Reddy and Padmanabhan [6,Theorem 1] have extended the result of Bernardi [1] by proving that, if $f \in S_p^*(A,B)$, then so does the function g given by

$$g(z) = (c+p)z^{-c} \int_{0}^{z} t^{c-1} f(t) dt$$

where c is a positive integer. The classical technique used by Reddy and Padmanabhan [6] fails when c is any positive real number. It is therefore natural to ask whether their result can be improved for real c.

The object of the present paper is to establish a theorem which improves, in particular, the result of Reddy and Padmanabhan $[6,Theorem\ 1]$ to the case when c is a real number such that $c \ge -p(1+A)/(1+B)$. It is worth noting that the technique employed to prove our theorem is different from those used by Miller et al. [5] and Reddy and Padmanabhan [6]. In fact our important tool is Lemma 2.1, to be proved in section 2, which provides a geometrical definition of the class $S_D^*(A,B)$.

2. Preliminary lemmas

To establish our main result we require the following lemmas:

LEMMA 2.1. A function f of the form (1.1) belongs to $S_p^*(A,B)$, $-1 \le A < B < 1$, if and only if

(2.1)
$$\left| z \frac{f'(z)}{f(z)} - m \right| < M, \quad z \in E,$$

where

(2.2)
$$m = p(1-AB)/(1-B^2)$$
 and $M = p(B-A)/(1-B^2)$.

Proof. Let $f \in S_p^*(A,B)$. Then from (1.2) we have

(2.3)
$$z \frac{f'(z)}{f(z)} - m = \frac{(p-m) + (Ap-Bm)w(z)}{1+Bw(z)}$$

$$= Mh(z)$$

where h(z) = -(B+w(z))/(1+Bw(z)). Since |h(z)| < 1, the inequality (2.1) follows from (2.3).

Conversely, let f satisfy (2.1). Then

$$\left|z \frac{f'(z)}{Mf(z)} - \frac{m}{M}\right| < 1, \quad z \in E.$$

Let

(2.4)
$$q(z) = z \frac{f'(z)}{Mf(z)} - \frac{m}{M}$$

and we define

(2.5)
$$w(z) = \frac{q(0) - q(z)}{1 - q(0)q(z)}.$$

Clearly the function w is analytic in E, and satisfies w(0) = 0 and $\left|w(z)\right| < 1$ for $z \in E$. Since q(0) = -B, from (2.5) we get

(2.6)
$$q(z) = -(B+w(z))/(1+Bw(z)).$$

Eliminating q(z) from (2.4) and (2.6) we get (1.2). Hence $f \in S_p^*(A,B)$.

Note: (i) The condition (2.1) can be written in the form

$$\left| \frac{(zf'(z)/f(z)) - (p(1+A)/(1+B))}{p - (p(1+A)/(1+B))} - \frac{1}{1-B} \right| < \frac{1}{1-B}, z \in E.$$

Now as $B \to 1$ and $A = -(1-2\beta)$, $0 \le \beta < 1$, this inequality reduces to $\operatorname{Re}\{zf'(z)/f(z)\} > p\beta$, $z \in E$, which is precisely a necessary and sufficient condition for $f \in S_p^*(2\beta-1,1)$. Thus including the limiting case $B \to 1$, the results proved with the help of Lemma 2.1 will hold for -1 < A < B < 1.

(ii) Throughout this paper m and M are given by (2.2).

LEMMA 2.2. If the function w is analytic for $|z| \le r < 1$, w(0) = 0 and $|w(z_0)| = \max_{|z|=r} |w(z)|$, then $z_0w'(z_0) = kw(z_0)$, where |z|=r k is a real number such that $k \ge 1$.

The above lemma is due to Jack [3].

Main result

THEOREM. If $f \in S_p^*(A,B)$ and g is defined by

(3.1)
$$g(z) = \left[(c+p\alpha)z^{-c} \int_{0}^{z} t^{c-1} f^{\alpha}(t) dt \right]^{1/\alpha}$$

where α and c are real numbers such that $\alpha>0$ and $c\geq -p\alpha(1+A)/(1+B)$. Then the function g also belongs to $S_p^*(A,B)$.

In (3.1) powers denote principal ones.

Proof. Let us define a function w such that

$$w(z) = \frac{zg'(z)/g(z)-p}{Ap-Bzg'(z)/g(z)}$$

so that

(3.2)
$$z \frac{g'(z)}{g(z)} = p \frac{1+Aw(z)}{1+Bw(z)}$$
,

where w is either analytic or meromorphic in E. Clearly w(0)=0. We claim that w is analytic in E, and $\left|w(z)\right|<1$ for $z\in E$, which we will prove by contradiction.

From (3.1) and (3.2) we have

(3.3)
$$(c+p\alpha)\left\{\frac{f(z)}{g(z)}\right\}^{\alpha} = \frac{(c+p\alpha)+(Ap\alpha+Bc)w(z)}{1+Bw(z)}.$$

Logarithmic differentiation of (3.3) yields

$$(3.4) z \frac{f'(z)}{f(z)} - m = \frac{(p-m) + (Ap-Bm)w(z)}{1+Bw(z)} - \frac{p(B-A)zw'(z)}{\{1+Bw(z)\}\{(c+p\alpha) + (Ap\alpha+Bc)w(z)\}}.$$

Let r^* be the distance, from the origin, of the pole of w nearest the origin. Then w is analytic in $|z| < r_0 = \min\{r^*, 1\}$. By Lemma 2.2, for $|z| \le r$ ($r \le r_0$), there exists a point z_0 such that

(3.5)
$$z_0 w'(z_0) = kw(z_0)$$
, $k \ge 1$.

From (3.4) and (3.5) we have

(3.6)
$$z_0 \frac{f'(z_0)}{f(z_0)} - m = \frac{N(z_0)}{D(z_0)}$$

where

$$N(z_0) = (p-m)(c+p\alpha) + \{(c+p\alpha)(Ap-Bm) + (Ap\alpha+Bc)(p-m) - kp(B-A)\}_w(z_0)$$

+ $\{(Ap\alpha+Bc)(Ap-Bm)\}_w^2(z_0)$

and

$$D(z_0) = (c+p\alpha) + (Ap\alpha + 2Bc + Bp\alpha) w(z_0) + B(Ap\alpha + Bc) w^2(z_0)$$
.

Now suppose that it were possible to have $\max_{|z|=r} |w(z)| = |w(z_0)| = 1$

for some r, r < r₀ \le 1. Then by using the identities Ap - Bm = -M and B - A = $(M^2 - (m-p)^2)/(Mp)$, we have

(3.7)
$$|N(z_0)|^2 - M^2|D(z_0)|^2 = a + 2b Re\{w(z_0)\}$$

where

$$a = kp(B-A) \{kp(B-A) + 2M(c+p\alpha) + 2MB(Ap\alpha+Bc)\}$$

and

$$b = kp(B-A)M\{(Ap\alpha+Bc) + B(c+p\alpha)\}.$$

From (3.7) we have

(3.8)
$$|N(z_0)|^2 - M^2 |D(z_0)|^2 > 0$$
,

provided a ± 2b > 0. Now

a + 2b =
$$kp(B-A)[kp(B-A) + 2M(1+B)\{c(1+B) + p\alpha(1+A)\}]$$

> 0, provided $c \ge -p\alpha(1+A)/(1+B)$,

and

a - 2b =
$$kp(B-A)[kp(B-A) + 2M(1-B)\{c(1-B) + p\alpha(1-A)\}]$$

> 0, provided $c \ge -p\alpha(1-A)/(1-B)$.

Thus from (3.6) and (3.8) it follows that

$$\left|z_0 \frac{f'(z_0)}{f(z_0)} - m\right| > M$$

provided

$$c \ge \max\{-p\alpha(1+A)/(1+B), -p\alpha(1-A)/(1-B)\}$$

= $-p\alpha(1+A)/(1+B)$.

But this is, in view of Lemma 2.1, contrary to our assumption $f \in S_p^*(A,B)$. Therefore we cannot have |w(z)| = 1 in $|z| < r_0$. Since

|w(0)| = 0, |w(z)| is continuous and $|w(z)| \neq 1$ in $|z| < r_0$, w cannot have a pole at $|z| = r_0$. Since r_0 is arbitrary, we conclude that w is analytic in E, and satisfies |w(z)| < 1 for $z \in E$.

Hence, from (3.2), $g \in S_{D}^{*}(A,B)$.

Remark. It is evident that, for $\alpha = 1$, the above theorem improves the result of Reddy and Padmanabhan [6, Theorem 1].

If we set $A = -(1-2\beta)$, where $0 \le \beta < 1$, and $a_1 = p = B = 1$, the class $S^*(A,B)$ reduces to the well known class $S^*(\beta)$ of univalent starlike functions of order β . For the class $S^*(\beta)$, the undermentioned corollary follows immediately from the above theorem.

COROLLARY. Let a and c be real numbers such that a > 0 and $c \ge -\alpha \beta$. If $f \in S^*(\beta)$, then the function g defined by

(3.9)
$$g(z) = \left[\frac{c+\alpha}{z^c} \int_0^z t^{c-1} f^{\alpha}(t) dt \right]^{1/\alpha}$$

is also an element of $S*(\beta)$.

Remarks (i) A result of Miller et al. [5,Theorem 2] turns out to be a particular case of the above corollary when $\beta=0$.

(ii) Gupta and Jain [2,Theorem 1] have also shown that the function g defined by (3.9) belongs to the class $S^*(\beta)$ if $f \in S^*(\beta)$. However, as an example, the integral operator

$$g(z) = \left[\frac{11}{4z^2} \int_0^z t f^{3/4}(t) dt\right]^{4/3}$$

can be studied by the above corollary and not by the result of Gupta and Jain, since the technique followed by them fails when at least one of α and c is not a positive integer.

Problem. Very recently, Kumar and Shukla [4,Theorem 1(i)] have shown that the function g given by (3.9) belongs to S*(β) even when c is a complex number such that Re(c) $\geq -\alpha\beta$. It would be interesting to show that the function g given by (3.1) belongs to S*(A,B) when c is a complex number such that Re(c) $\geq -p\alpha(1+A)/(1+B)$.

References

- [1] S.D. Bernardi, "Convex and starlike univalent functions", Trans.

 Amer. Math. Soc. 135 (1969), 429-446.
- [2] Ved P. Gupta and Pawan K. Jain, "On starlike functions", Rend. Mat. 9 (1976), 433-437.
- [3] I.S. Jack, "Functions starlike and convex of order α", J. London Math. Soc. (2) 3 (1971), 469-474.
- [4] Vinod Kumar and S.L. Shukla, "Bazilevič integral operators", Rend. Mat. 3 (1983).
- [5] Sanford S. Miller, Petru T. Mocanu and Maxwell O. Reade, "Starlike integral operators", Pacific J. Math. 79 (1978), 157-168.
- [6] G. Lakshma Reddy and K.S. Padmanabhan, "On analytic functions with reference to Bernardi integral operator", Bull. Austral. Math. Soc. 25 (1982), 387-396.

Dr V. Kumar, Department of Mathematics, Christ Church College, Kanpur-208001, India.

Dr S.L. Shukla, Department of Mathematics, Janta College, Bakewar, Etawah-206124, India.