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A computational study is presented on cross-stream migration and focusing of deformable
capsules in curved microchannels of square and rectangular sections under inertial
and non-inertial regimes. The numerical methodology is based on immersed boundary
methods for fluid–structure coupling, a finite-volume-based flow solver and finite-element
method for capsule deformation. Different focusing behaviours in the two regimes are
predicted that arise due to the interplay of inertia, deformation, altered shear gradient,
streamline curvature effect and secondary flow. In the non-inertial regime, a single-point
focusing occurs on the central plane, and at a radial location between the interior face
(i.e. face with highest curvature) of the channel and the location of zero shear. The
focusing position is nearly independent of capsule deformability (represented by the
capillary number, Ca). A two-step migration is observed that is comprised of a faster radial
migration, followed by a slower migration toward the centre plane. The focusing location
progressively moves further toward the interior face with increasing curvature and width,
but decreasing height. In the inertial regime, single-point focusing is observed near the
interior face for channel Reynolds number ReC ∼ O(1), that is also highly sensitive to
ReC and Ca, and moves progressively toward the exterior face with increasing ReC but
decreasing Ca. As ReC increases by an order, secondary flow becomes stronger, and two
focusing locations appear close to the centres of the Dean vortices. This location becomes
practically independent of Ca at even higher inertia. The inertial focusing positions move
progressively toward the exterior face with increasing channel width and decreasing
height. For wider channels, the equilibrium location is further toward the exterior face
than the vortex centre.
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1. Introduction

Microfluidic applications for sorting and separation of particles and biological cells have
seen tremendous growth in recent years (Stone & Kim 2001; Gossett et al. 2010; Karimi,
Yazdi & Ardekani 2013). Passive techniques utilized for this purpose generally exploit the
hydrodynamic forces that preferentially accumulate or ‘focus’ particles in specific regions.
The hydrodynamic mechanism underlying such focusing is a migration of particles across
the streamlines of the background flow. Such cross-stream migration may arise because
of the effect of inertia, particle deformability, presence of a wall, shear gradient and
streamline curvature, among others (Di Carlo 2009; Karimi et al. 2013; Zhou & Papautsky
2013; Martel & Toner 2014). Focusing by the inertial effects, commonly termed as
inertial focusing, was first reported for rigid particles in pipe flow by Segre & Silberberg
(1961, 1962), who observed that particles accumulate in an equilibrium annular region
between the pipe centre and the wall. Since then the phenomenon, also known as the
tubular pinch effect, has been extensively studied using theoretical, computational and
experimental approaches for flow in pipes as well as in two-dimensional (2-D) (planar)
confined pressure-driven flows (e.g. Repetti & Leonard 1964; Jeffrey & Pearson 1965;
Karnis, Goldsmith & Mason 1966; Cox & Brenner 1968; Ho & Leal 1974; Schonberg
& Hinch 1989; Asmolov 1999; Matas, Morris & Guazzelli 2004, 2009; Yu, Phan-Thien
& Tanner 2004; Yang et al. 2005; Shao, Yu & Sun 2008). These studies generally have
shown that the focusing annulus moves closer to the wall with increasing Reynolds number
(defined based on vessel dimension). For tubes at higher Reynolds numbers, a second
focusing annulus closer to the centre is also reported (Matas et al. 2004; Morita, Itano
& Sugihara-Seki 2017). For neutrally buoyant rigid particles suspended in a Newtonian
fluid, the equilibrium is attained primarily under the influence of the shear gradient of
the background flow, wall repulsion effect, particle rotation and Saffman lift force (Oliver
1962; Saffman 1965). The term inertial lift is often used to represent the net hydrodynamic
force generated from these mechanisms. The Saffman lift force is small for microfluidic
applications (Amini, Lee & Di Carlo 2014).

Of specific interest to microfluidic applications is the inertial focusing in microchannels
of square or rectangular cross-section. For such geometry, depending on channel
cross-section (viz. square or rectangular), the channel Reynolds number (hereafter denoted
as ReC), particle Reynolds number and particle-to-channel size ratio, different regions
of focusing have been reported which are significantly different from the axisymmetric
focusing in pipes. For relatively smaller ReC within the inertial regime, Choi, Seo & Lee
(2011) experimentally observed that rigid spherical particles focused in a ring. At higher
ReC, the ring breaks and four equilibrium positions appear that are located at the centres of
channel faces (Chun & Ladd 2006; Di Carlo et al. 2007; Bhagat, Kuntaegowdanahalli &
Papautsky 2008a, Di Carlo et al. 2009; Humphry et al. 2010; Miura, Itano & Sugihara-Seki
2014; Nakagawa et al. 2015; Kazerooni et al. 2017). Additional equilibrium positions
appearing near the channel corners and accumulation at an inner region at higher ReC are
also reported (Chun & Ladd 2006; Di Carlo et al. 2009; Miura et al. 2014; Nakagawa et al.
2015; Kazerooni et al. 2017). For channels with rectangular cross-sections of high aspect
ratio, the shear gradient effect along the longer side may weaken, resulting in primarily two
equilibrium positions at the centres of the longer sides of the channel (Bhagat et al. 2008a,
Bhagat, Kuntaegowdanahalli & Papautsky 2008b, 2009; Russom et al. 2009; Ciftlik, Ettori
& Gijs 2013; Martel & Toner 2014; Liu et al. 2015; Hood et al. 2016). An additional
equilibrium near the shorter face at higher ReC is also reported (Liu et al. 2015).

In recent years, microchannels with curved geometry, such as spiral and serpentine
channels, have shown greater promise in terms of more effective particle focusing
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compared with their rectilinear counterparts (Liu et al. 2019). In curved channels at finite
inertia, a secondary flow appears in the form of two counter-rotating vortices, often termed
Dean’s vortices (Dean 1928), which exert a drag on particles. Cross-stream migration and
the equilibrium position in such flows are then determined by the combined effects of
Dean’s drag and the inertial lift (Di Carlo et al. 2007; Di Carlo 2009; Gossett & Di Carlo
2009; Russom et al. 2009; Martel & Toner 2012, 2013, 2014; Karimi et al. 2013; Warkiani
et al. 2016; Harding, Stokes & Bertozzi 2019). Additionally, the shear gradient effect is
also altered as the streamwise velocity distribution becomes skewed toward the exterior
face (i.e. side with the largest radius of curvature) of the channel (Vriend 1981; Siggers
& Waters 2005). The secondary flow in curved channels provides several advantages over
rectilinear channels. In particular, equilibrium positions along the top and bottom walls
(i.e. parallel to the radial direction), and near the exterior face can be eliminated, and
single-point focusing can be achieved. When the inertial lift dominates (e.g. for larger
particle-to-channel size ratio), rigid particles are shown to focus near the centre of the
interior face. In contrast, as the Dean drag dominates over the inertial lift (e.g. for smaller
particle size), equilibria appear along the top and bottom walls and progressively move
away from the interior wall (Di Carlo 2009; Martel & Toner 2013; Harding et al. 2019).
Very small particles can be entrapped within the Dean vortices (Harding et al. 2019).

In many applications, the particles of interest, such as liquid drops and biological cells,
are deformable in nature. While the cross-streamline migration and focusing of rigid
particles are generally observed in the presence of inertia, for deformable particles they
can occur even in the absence of inertia, and are referred to as non-inertial migration
and focusing. This has been studied extensively in rectilinear vessels for liquid drops,
blood cells and biomimetic deformable particles such as capsules and vesicles, which
are liquid drops enclosed by elastic and lipid membranes, respectively (Chan & Leal
1979, 1981; Helmy & Barthes-Biesel 1982; Shapira & Haber 1990; Uijttewaal & Nijhof
1995; Magnaudet, Takagi & Legendre 2003; Griggs, Zinchenko & Davis 2007; Coupier
et al. 2008; Doddi & Bagchi 2008; Kaoui et al. 2008; Danker, Vlahovska & Misbah
2009; Kumar & Graham 2012; Farutin & Misbah 2013; Grandchamp et al. 2013; Nix
et al. 2014; Sing, Li & Sarkar 2014; Nix, Imai & Ishikawa 2016; Losserand, Coupier &
Podgorski 2019). The hydrodynamic mechanism underlying such non-inertial migration
can be attributed to an asymmetry in shape deformation caused by the shear gradient
of the flow or the presence of a wall. The influence of deformation generally causes a
migration toward a region of low shear, while the wall interaction causes a migration
away from the wall. As such, in confined flows in the absence of inertia, deformable
particles generally settle at the centreline of a rectilinear channel or tube. The migration
rate increases with increasing deformability, thereby allowing deformability-based particle
focusing and sorting in the non-inertial regime (Geislinger et al. 2012; Henríquez Rivera,
Zhang & Graham 2016).

Inertial migration of deformable particles has also been investigated in rectilinear
vessels or 2-D planar flows for liquid drops (e.g. Mortazavi & Tryggvason 2000;
Magnaudet et al. 2003), capsules (Kilimnik, Mao & Alexeev 2011; Shin & Sung 2011;
Krüger, Kaoui & Harting 2014; Raffiee, Dabiri & Ardekani 2017; Schaaf & Stark 2017)
and elastic particles (Alghalibi, Rosti & Brandt 2019). In this case, the migration and
equilibrium positions are determined by the combined influence of the inertial lift and
deformation. While the former tends to shift the equilibrium away from the centreline,
the latter causes it to shift in the opposite way. Generally, studies on capsule motion
showed that, for fixed ReC, the equilibrium position shifts away from the centreline with
decreasing deformability and capsule size. However, it remains almost independent of
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ReC for a given geometry. Moreover, the equilibria for capsules in square channels appear
mostly along the diagonals (Raffiee et al. 2017; Schaaf & Stark 2017). Despite a relatively
small number of studies on the inertial migration of capsules, it is apparent that there are
interesting differences in their focusing behaviour in comparison with rigid particles, and
in channels of square or rectangular cross-section in comparison with tubes with circular
cross-sections.

There have been even fewer studies on the inertial and non-inertial focusing of
deformable particles in curved microchannels. This specific topic deserves attention since
deformation is often significant for biological cells and biomimetic particles, and the
curved geometry can be utilized for focusing such particles under both inertial and
non-inertial conditions. However, the fundamental difference in the background flow that
occurs in a curved vessel in the inertial and non-inertial regimes must be noted. Unlike
in the inertial regime where secondary flow characterized by Dean’s vortices appears,
no such secondary flow exists in the non-inertial regime. Instead, the streamwise flow
itself becomes asymmetric about the vessel centreline and skewed toward the interior
side of the vessel (Dean 1928; Vriend 1981; Chadwick 1985; Wang & Bassingthwaighte
2003; Siggers & Waters 2005). In contrast, in the inertial regime the velocity profile
becomes skewed toward the exterior side. This change in the velocity profile is expected
to differently affect the focusing and migration behaviour in the inertial and non-inertial
regimes, in addition to the role played by the secondary flow. Additionally, the curvature
of the flow streamlines induces a migration of deformable particles toward the regions of
higher streamline curvature. This streamline curvature effect is absent for rigid particles
without inertia (Shafer, Laiken & Zimm 1974; Goh, Phan Thien & Atkinson 1984). Chan
& Leal (1979) predicted that, in the non-inertial regime, the streamline curvature effect
caused a liquid drop to migrate toward the inner cylinder in a 2-D rotating Couette
flow. Ghigliotti et al. (2011) predicted that deformable vesicles in a 2-D rotating flow
migrate toward the region of high streamline curvature in an unbounded flow and settle
at an intermediate radial location in flows bounded by two walls. Considering 3-D curved
vessels, such as curved microchannels, the focusing and migration depend on the complex
interplay of all the aforementioned mechanisms, namely, inertia, altered velocity skewness,
deformation, curvature and secondary flow. In the inertial regime in 3-D flows, Ye et al.
(2017) numerically studied the flow of red blood cells in curved tubes and the effect of
tube geometry on cell deformation. Ye et al. (2018) further studied the modification of the
secondary flow by red blood cells in U-shaped tubes. Despite these recent works, there
have been very few studies systematically exploring the focusing of deformable particles
in 3-D flows in curved vessels.

To bridge this knowledge gap, Ebrahimi, Balogh & Bagchi (2021) recently considered
a numerical study of the flow of deformable capsules in toroidal vessels of circular
cross-section. They predicted that, in the non-inertial regime, capsules settle at a radial
location between the inner side (highest curvature side) of the tube and the location of
the maximum streamwise velocity. Furthermore, the equilibrium location is independent
of capsule deformability, and it moves closer to the inner side with increasing vessel
curvature. In the inertial regime, the equilibrium position gradually moves toward the
outer side (lower curvature side) of the tube depending on fluid inertia and deformability.
At higher fluid inertia, when the secondary flow becomes stronger, capsules settle near the
centres of the Dean vortices.

In the present study, we extend the work of Ebrahimi et al. (2021) to consider focusing
of deformable capsules in curved microchannels of square and rectangular cross-sections.
The objective is to predict the cross-stream migration and equilibrium position of
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Exterior face

Interior face
2W

2H

RZ

O

RC

Figure 1. Schematic of a curved microchannel of rectangular cross-section. All lengths are shown in
dimensionless form scaled by capsule radius. Channel centreline (radius of curvature RC) is indicated by a
dash-dot curve.

capsules under the combined influence of deformability, channel curvature, cross-sectional
geometry and a broad range of inertia covering both the inertial (secondary flow) and
non-inertial regimes. Unlike in a vessel of circular cross-section, the aspect ratio of
microchannels, which affects the flow dynamics in both inertial and non-inertial regimes,
is also considered. No study has systematically addressed the cross-stream migration and
capsule equilibrium in curved microchannels under such a wide range of conditions.

2. Problem set-up and numerical methodology

We consider a closed-loop curved microchannel of square or rectangular cross-section, and
a constant centreline radius of curvature as shown in figure 1. The channel is centred at
the origin of the cylindrical polar coordinate system denoted by (R̃, Θ, Z̃), with the Z̃ = 0
plane being the symmetry (middle) plane. The dimensional parameters are denoted by ∼.
The channel width, which is the dimension in the radial direction, is 2W̃, and the height,
which is the dimension along the Z̃ axis, is 2H̃. The radius of curvature of the channel
centreline is R̃C and R̃C ± W̃ are the radii of the exterior and interior faces of the channel.

The fluid inside the channel is assumed to be incompressible and Newtonian, and follows
the continuity and the full Navier–Stokes equations including the inertial terms

∇ · ũ = 0, (2.1)

ρ
Dũ
Dt̃

= −∇p̃ + μ∇2ũ, (2.2)

where ũ is the fluid velocity, p̃ pressure, ρ density and μ viscosity. Here, variables in the
dimensional form are denoted with ∼. The fluid is driven by a steady streamwise pressure
gradient given by (

1

R̃C

)
dP̃
dΘ

= −μπ3Ũ0

16W̃
2
ξ

, (2.3)

where

ξ =
∑

n=1,3,5,...

(−1)(n−1)/2

n3

{
1 − sech

(
nπW̃

2H̃

)}
, (2.4)
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and Ũ0 is the centreline velocity that would occur for a unidirectional flow in a rectilinear
channel having the same width and height as of the curved channel (White 1991).

The flow of a capsule of an undeformed spherical shape of radius a0 is considered. The
capsule is modelled as a liquid drop surrounded by a 2-D hyperelastic membrane. The
fluid inside the capsule is assumed to have the same viscosity and density as the outside
fluid. Because of the elastic nature of the membrane and the internal fluid, the capsule
deforms under the motion of the suspending fluid. The capsule membrane is assumed to
undergo shearing deformation, area dilation and bending. The shearing deformation and
area dilation are modelled using the strain energy function developed by Skalak et al.
(1973),

WS = GS

4
[(I2

1 + 2I1 − 2I2) + CI2
2], (2.5)

where GS is the shear modulus of elasticity of the membrane, C is a dimensionless
parameter that controls the amount of membrane area dilation, I1 = ε2

1 + ε2
2 − 2 and

I2 = ε2
1ε

2
2 − 1 are the strain invariants of the Green strain tensor and ε1and ε2 are the

principal stretch ratios. The principal in-plane elastic tensions in the membrane are given
by

τ1 = 1
ε2

∂WS

∂ε1
and τ2 = 1

ε1

∂WS

∂ε2
. (2.6a,b)

The bending resistance is modelled by a force density following Zong-can & Helfrich
(1989) as

f b = Eb[(2km + c0)(2k2
m − 2kg − c0km) + 2ΔLBkm]n, (2.7)

where Eb is the bending modulus, km, kg and c0 respectively are the mean, Gaussian and
spontaneous curvatures of the membrane, ΔLB is the Laplace–Beltrami operator and n is
the unit vector normal to the capsule surface.

The computational domain is a cuboid encompassing the curved microchannel. A
rectangular mesh of uniform spacing is used to discretize the whole domain. A
sharp-interface immersed boundary method, namely, the ghost-node method, is used to
represent the microchannel geometry, and to impose the no-slip condition at the channel
walls. A staggered arrangement of the flow variables is considered in combination with
a projection-based method with a second-order finite-volume-based spatial differencing
and a second-order time differencing. Further details about the ghost-node method and the
flow solver are provided in Balogh & Bagchi (2017).

The capsule surface is discretized using triangular elements. A finite-element method
is used to compute the elastic forces due to shearing and area dilation, while the force
due to bending resistance is directly obtained from (2.7). The coupling between the
capsule deformation and the fluid motion is obtained using a continuous-forcing immersed
boundary method. In this approach, the net membrane force from shearing deformation,
area dilation and bending is included in the Navier–Stokes equations as a body force that is
finite at the instantaneous membrane location, and zero elsewhere. Once the fluid velocity
is obtained at any time by solving the Navier–Stokes and continuity equations, the velocity
of the capsule membrane points is obtained by interpolating the surrounding fluid velocity,
followed by their advection to obtain a new shape and location of the capsule. Further
details about the finite-element method and the continuous-forcing immersed boundary
method can be found in Doddi & Bagchi (2008) and Yazdani & Bagchi (2012, 2013).

The parameters of the problem are now discussed. The hydraulic diameter and radius,
D̃h and R̃h, of the channel are defined as D̃h = 2R̃h = 4H̃W̃/(H̃ + W̃). Lengths are made
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dimensionless by the undeformed capsule radius a0, velocities by the centreline velocity
in a rectilinear channel Ũ0 and time by a0/Ũ0. These are the relevant scales since the flow
around the capsule needs to be resolved, and the shear rate is not constant but varies over
the channel cross-section. We solve the Navier–Stokes equations in dimensionless form.
A straightforward choice for making the equations dimensionless is to use these scales. In
dimensionless form, the radial and vertical coordinates are denoted as R, Z, respectively;
the geometric parameters as RC(radius of curvature of channel centreline), W (channel
half-width), H (channel half-height), Dh (hydraulic diameter) and Rh (hydraulic radius).
The flow variables in the dimensionless form are denoted without the symbol ∼.

We further introduce a dimensionless radial distance defined as

R′ = (R − Rc)/W, (2.8)

such that R′ = −1, 0, 1 represent, respectively, the interior face, the channel centreline
and the exterior face.

Major dimensionless parameters are as follows:
Capillary number Ca = μŨ0/GS which represents the ratio of the viscous force to the

membrane elastic force;

capsule Reynolds number Rea = ρa0Ũ0/μ;
channel Reynolds number ReC = ρD̃hŨ0/μ = DhRea;
channel centreline curvature ratio κ = W/Rc; and
Dean number De = ReC

√
κ .

Note that the above definition of Rea directly arises from non-dimensionalization of the
Navier–Stokes equations. The range of Ca considered is from 0.02 to 10 representing
nearly rigid to highly deformable capsules, ReC from 0.06 to 320 covering non-inertial
to inertial regimes, and κ in the range of ∼0.2 to 0.9 representing microchannels of
high curvature. The radius of curvature is varied from RC = 4 to 15, and Dh from 6 to
18. Depending on the specific choice of geometric parameters, the Dean number ranges
from ∼0.03 to 286. The non-inertial regime is considered by fixing the capsule Reynolds
number Rea = 0.01; for varying RC, W, and H, this results in ReC and De both less than
0.1, so that the inertial effects can be assumed to be negligible. In contrast, the inertial
regime is taken as Rea � 0.1; this results in ReC generally O(1) and above. It may be
noted that above a critical De, more than two Dean vortices appear and the flow becomes
unstable. However, the highest De considered here is below this limit and it yields a
steady flow with two stable vortices. The dimensionless bending modulus E∗

b=Eb/a2Gs
is kept constant at 0.01, which is close to that of a red blood cell for which dimensional
Eb ∼ 10−19 J, a0 ∼ 3 μm and GS ∼ 3 N m−2.

Extensive validation of the methodology has been done in our previous studies,
and therefore, is not considered here. Specifically, the ghost-node method to model
deformable cellular flows in complex geometry is validated in Balogh & Bagchi (2017),
the finite-element method for capsule deformation in Doddi & Bagchi (2008) and capsule
motion through a torus of a circular cross-section at finite inertia in Ebrahimi et al. (2021).
The suitable choice of computational mesh resolution is also discussed in these prior
studies. Based on this, the flow domain is discretized with a dimensionless mesh size
2π/120, the capsule surface is discretized using 20482 triangular elements, and a timestep
of 10−3 is taken. The actual number of mesh points used for the flow domain varies
depending on the dimensions of the microchannel; examples are 6.3 × 106 points for
RC = 5, W = H = 4, and 57.4 × 106 for RC = 10, W = H = 9. The number of Eulerian
mesh points per capsule diameter is approximately 38. The number of Eulerian points
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across the channel width and height depends on their values; e.g. approximately 76 and
344 points across the width for W = 2 and 9, respectively. Additional validation for the
flow in curved microchannels relevant to the present study is given in the Results section.

Non-inertial focusing of capsules in curved microchannels of square cross-sections is
presented next in § 3.1, followed by rectangular cross-sections in § 3.2. Inertial focusing is
presented in § 3.3.

3. Results

3.1. Non-inertial focusing in curved channels of square cross-sections
Non-inertial migration of capsules in curved channels with square cross-sections
is considered first. Figure 2(a) presents the numerically predicted streamwise fluid
velocity component, denoted by US in dimensionless form, without a capsule over the
cross-section of a channel for a selected geometry. As seen, the velocity distribution in
the cross-sectional plane is asymmetric with respect to the channel centreline, and shifted
toward the interior face, unlike in a rectilinear channel where the distribution would be
symmetric. The secondary flow is negligible in this limit, and hence the Dean vortices are
not observed. The skewed velocity profile is a result of the constant streamwise pressure
gradient (1/R̃C)dP̃/dΘ used to drive the flow which causes a higher velocity of the fluid
in the vicinity of the interior face as it moves over a shorter length compared with that
near the exterior face. Note that the velocity distribution is, however, symmetric about the
middle plane (Z = 0) of the channel.

An analytical expression was obtained for the velocity field in curved microchannels
in the absence of inertia by Norouzi, Kayhani & Biglari (2010). From their work, the
leading-order solution for the dimensionless streamwise velocity US can be expressed
using the current variables as

US =
∞∑

m=1

m−3[(−1)m − 1]{αmI1(ζmR) + βmK1(ζmR) − R−1} sin(ζmZ + mπ/2), (3.1)

where

αm =
[

1
Ri

K1(ζmRo) − 1
Ro

K1(ζmRi)

]
/[I1(ζmRi)K1(ζmRo) − I1(ζmRo)K1(ζmRi)], (3.2)

βm =
[

1
Ro

I1(ζmRi) − 1
Ri

I1(ζmRo)

]
/[I1(ζmRi)K1(ζmRo) − I1(ζmRo)K1(ζmRi)]. (3.3)

Here, I1 and K1 are the modified Bessel functions of the first and second kinds,
respectively, ζm = mπ/2W, Ri = RC − W and Ro = RC + W.

Figure 2(b) compares the numerically predicted velocity profile and the analytical
expression given by (3.1) plotted as functions of R′ on the Z = 0 plane. As seen, the
predicted profile agrees well with the analytical expression.

Of interest is the location of the maximum streamwise fluid velocity (Umax) which is
also the location of zero shear rate. Figure 2(b) shows that this location lies between
the centreline (R′ = 0) and the interior face (R′ = −1), unlike in a rectilinear channel
where it would be at the centre. Hereafter, this location is denoted as R′

U . Of interest is
the dependence of R′

U on the curved channel geometry. We simulate flow by varying the
radius of curvature RC and cross-sectional dimensions (W = H). Figure 2(c) shows R′

U as
a function of the vessel curvature ratio κ = W/RC for different geometry. As seen, R′

U is
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Figure 2. Flow field in a curved channel in the non-inertial regime. (a) Streamwise fluid velocity contours in
the cross-sectional plane for RC = 5, W = H = 4. (b) Streamwise fluid velocity profile US on the symmetry
(middle) plane (Z = 0) plotted against R′. Solid red curve is the numerical result, and black dash-dot curve
is the analytical result given by (3.1). Vessel centreline (R′ = 0) and the location of the maximum streamwise
velocity (R′

U) are indicated. Interior and exterior faces are indicated. (c) Location of the streamwise velocity
maximum (R′

U) is shown as a function of channel curvature ratio κ . Here, black squares denote simulation data
and red triangles denote the analytical result obtained from numerical differentiation of (3.1). Straight lines are
linear fit through respective data. We vary RC = 5, 7 and 10, and W = H = 1 − 9.

negative in all simulations, indicating that it lies between the channel centreline and the
interior face. We further obtain the analytical result for R′

U by numerical differentiation
of (3.1). The analytical results show excellent agreement against the simulated data. As
the curvature is increased, this location progressively shifts further toward the interior
face. Furthermore, data for different curvature ratios collapse onto a straight line. This
linear dependence is in qualitative agreement with the flow in a curved tube of circular
cross-section at negligible inertia for which R′

U was analytically found as (Siggers &
Waters 2005)

R′
U = −3κ

8
+ O(κ3), (3.4)

where R′
U and κ for the tube are similarly defined using the tube radius Rt as (R − Rc)/Rt

and Rt/RC, respectively. In Ebrahimi et al. (2021) where we considered curved tubes, we
showed that our numerical results matched well against (3.4). Interestingly, a comparison
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of figure 2(c) and (3.4) suggests that, for the same curvature ratio, the velocity profile in a
channel is more skewed toward the interior face than that in a tube.

The non-inertial cross-stream migration of a deformable capsule is now presented.
Unless stated otherwise, the capillary number is fixed at Ca = 1, and the capsule is
released with its centre-of-mass located in the middle plane (Z = 0). Figure 3(a) shows
a representative trajectory of a capsule that is initially located near the exterior face. It
shows that the capsule moves in a spiralling trajectory and slowly migrates toward the
interior face. Figure 3(b) shows the radial coordinate of the capsule centre in terms of R′
and as a function of time for different initial locations. As seen here, for all cases, the
capsule migrates toward the interior face, and eventually settles at the same radial location
that is independent of the initial positions. This equilibrium location is not at the location
of zero shear, rather it lies between the location of Umax(R′ = R′

U) and the interior face
(R′ = −1). Figure 3(b) also compares the capsule trajectory in a rectilinear channel of the
same cross-section. For this, the simulation predicts that the capsule settles at the channel
centreline (R′ = 0) which is also the location of Umax, in agreement with previous studies.
Therefore, the equilibrium location in the curved channel is quite different from that in a
rectilinear channel, and is neither at the channel centreline nor at the location of zero shear
rate. This result is significant since there is no secondary flow to drive the capsule toward
the interior face in the absence of inertia.

The inset of figure 3(b) shows R′ as a function of the angle θ traversed by the capsule in
the X–Y plane for the case of R′(t = 0) = 0. When compared with R′ vs. t in figure 3(b),
the radial trajectory appears to be stretched as the capsule approaches the equilibrium.
This is because of the higher axial velocity near the equilibrium position which makes the
R′ vs. t curve appears compressed in this region.

It may also be noted that since the equilibrium position is not at the interior wall,
a capsule placed very close to the interior wall can migrate outward and settle at the
same equilibrium location. For the specific geometry considered in figure 3(b), the closest
location that the capsule can be placed to the interior wall is R′ = −0.75, which is actually
very close to the equilibrium position. We have done simulations with other geometries,
for example, RC = 7, W = H = 4, and observed that a capsule with initial position close
to the interior wall indeed moves outward to the same equilibrium position.

Shape evolution of a migrating capsule (Ca = 1) at different radial locations is shown
figures 3(d–h). Specific radial locations selected are identified using the velocity profile
shown in figure 3(c). Also compared is the shape evolution of a migrating capsule in
a rectilinear channel. In both geometries, highly asymmetric shapes are observed away
from the equilibrium locations. For the rectilinear channel, the capsule shape becomes
symmetric about the major axes in the cross-sectional plane upon reaching the equilibrium
location at the channel centreline. When projected on the Z = 0 plane, it shows the typical
bullet shape. In contrast, for the curved channel, the shape remains highly asymmetric
even after the capsule arrives at the equilibrium location (figure 3h). This increased shape
asymmetry even after reaching the equilibrium is due to a threefold effect. The equilibrium
position is closer to the interior wall. The streamline in this region has higher curvatures.
Also the velocity profile and velocity gradient (figure 3c) both change rapidly with respect
to R′ around this location compared with other regions. Thus, the increased asymmetry is
due to the proximity of interior wall, increased streamline curvature and rapid change in
velocity and its gradient near the equilibrium location. The shape is, however, symmetric
about Z = 0 due to the flow symmetry.

The radial migration of deformable capsules and their equilibrium in a curved channel
in the absence of inertia are determined by three underlying hydrodynamic mechanisms:
(i) the deformation-induced migration in the presence of a shear gradient that generally
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Figure 3. Non-inertial focusing of capsules in curved channels of square cross-sections. (a) A representative
capsule trajectory for RC = 5, W = H = 4 viewed along Z axis. Interior and exterior faces are shown as black
circles. The capsule is released closer to the exterior face and on the symmetry plane. It migrates cross-stream
toward the interior face while remaining on the symmetry plane, and eventually settles at a location close to the
interior face. (b) Evolution of the radial location of the capsule centre-of-mass for different initial locations (red,
black, green continuous lines). Final equilibrium location is indicated by R′

eq. Also shown is the migration of a
capsule in a rectilinear channel of same height and width (blue, dash-dot-dot). The inset shows R′ as an angular
plot for the same case shown in (b) using black line. (c) Velocity profiles in the middle plane as a function of R′
for curved and rectilinear channels. Locations are marked at which capsule shapes are compared. (d–h) Capsule
shapes are shown looking along the Z axis at different locations as indicated in (c). For the curved channels,
orientations are adjusted so that the radial direction is uniform as indicated in (d). Three-dimensional shapes
(with grey shades) correspond to that in the curved channel, and 2-D shapes showing cell perimeter correspond
to that in the rectilinear channel. Note that Ca = 1 in all figures unless stated otherwise.

drives the capsule from a region of higher shear rate to that of a lower shear rate,
(ii) the effect of the nearby wall that generally causes the capsule to move away from
the wall and (iii) the streamline curvature-induced migration that drives the capsule
from regions of lower to higher curvature (Shafer et al. 1974; Chan & Leal 1979;
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Goh et al. 1984; Ghigliotti et al. 2011). For a rectilinear channel, only the first two
mechanisms are present and they result in the capsule migration toward and settling at
the channel centreline. For a curved channel, each of the three mechanisms causes a
migration away from the exterior face in the region R′ > 0. In contrast, in the region
R′ < R′

U the deformation and wall effects both cause a migration toward the exterior
face, while the curvature effect causes a migration toward the interior face. Because
of these opposing effects, the capsule settles at a location between R′

U and the interior
face.

Effects of the radius of curvature RC and cross-section dimension (W = H) are shown
in figure 4. These parameters affect both the equilibrium position and the rate of migration.
Figure 4(a) shows the effect of RC while W = H is held fixed. As seen, as RC decreases,
the capsule migrates faster, and the equilibrium position moves further closer toward the
interior face. Figure 4(b) shows the effect of W = H while RC is fixed. It shows that, as
W = H increases, the migration rate becomes slower, but the equilibrium position moves
closer to the interior face. These trends are due to the occurrence of a higher streamline
curvature near the interior face with increasing RC and W, resulting in the dominance of
the streamline curvature effect which causes a migration toward and settling further closer
to the interior face. Note that the capsules take different times to reach the equilibrium
positions depending on RC and W. As RC increases, the curvature-induced migration
weakens, and capsules take longer to reach equilibrium. In the limit that RC → ∞, which
corresponds to a straight channel, the curvature-induced migration is absent.

Multiple simulations are performed by varying RC and W = H, and the resulting
equilibrium locations are presented in figure 4(c,d). Hereafter, the equilibrium radial
location is denoted as Req. Figure 4(c) shows Req − RC, which indicates how far a capsule
settles from the channel centreline, as a function of W. Also shown for comparison is
RU − RC, the distance of the location of Umax from the channel centreline. As seen
here, for all cases considered, Req − RC < 0, and (Req − RC) < (RU − RC). Therefore,
irrespective of channel dimensions, the capsule equilibrium location is further closer to
the interior face than the location of maximum streamwise velocity. The results further
show that the difference between (Req − RC) and (Req − RU) increases with increasing
W and decreasing RC, meaning that the capsule settles increasingly further away from
the location of zero shear. Figure 4(d) shows R′

eq = (Req − RC)/W as a function of the
curvature ratio κ . Similar to the linear dependence of R′

U on κ as observed earlier in
figure 2, a linear variation of R′

eq with respect to κ is also predicted. Note that R′
eq → 0

as κ → 0, which is the case of a rectilinear channel, and can be seen in the trend of
the numerical results. Also, the slope of R′

eq versus κ is higher than that of R′
U versus κ

implying that the capsule settles further away from the location of zero shear and toward
the interior face with increasing channel curvature and width.

The results presented so far are for a constant capillary number of Ca = 1. The influence
of Ca is considered next. Figure 5(a) presents the radial location in terms of R′ against time
for different values of Ca in the range 0.2 to 10. As seen, the equilibrium location is nearly
independent of Ca. The rate of migration, however, increases with increasing Ca as it is
generally the case in a unidirectional shear flow. The figure also shows the capsule shapes
near the equilibrium for different Ca. Although the equilibrium position is independent of
Ca, the shapes are not. This is because the shapes are directly affected by Ca – the higher
Ca, the greater the deformation. In contrast, the equilibrium position is dictated by several
competing mechanisms, i.e. shear gradient, and the curvature-induced migration. Since
these two mechanisms oppose each other in the interior region of the channel, the result is
an equilibrium position that is independent of Ca.
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Figure 4. Influence of radius of curvature RC and half-width W on the non-inertial focusing in curved
channels of square cross-sections. (a) Radial trajectories are shown in terms of R′ versus time for varying
RC = 4, 5, 7, 10, while W = H = 3 is fixed. (b) Radial trajectories for varying W = H = 3, 4, 6 are shown
while RC = 7 is kept fixed. (c) Equilibrium locations are shown in terms of (Req − RC) (solid lines) as functions
of W for RC = 5 (red, square), 7 (blue, triangle), 10 (green, circle). Also shown is the location of the streamwise
velocity maximum as (RU − RC) (dash lines). (d) Values of R′

eq (solid lines) and R′
U (dash lines) are shown

versus curvature ratio κ .

We now provide some scaling arguments based on previous and current results. Previous
studies have considered mathematical theory of cross-stream migration of deformable
particles in unidirectional shear flow in the non-inertial regime (e.g. Chan & Leal 1979;
Helmy & Barthes-Biesel 1982; Shapira & Haber 1990). We focus on the cross-stream
velocity of the capsule, also termed the migration or lateral velocity, denoted by Vm; the
equilibrium location corresponds to Vm = 0. Note that Vm is scaled by U0 as before. In
the limit of small deformation and in an unbounded 2-D Poiseuille flow, the migration
velocity of a liquid drop (Chan & Leal 1979) and a capsule (Helmy & Barthes-Biesel
1982) follows Vm ∼ E(η̃/W̃)(a0/W̃)3, where E is a dimensionless parameter that involves
properties of the particle that determine its deformability, e.g. surface tension or membrane
elasticity, and internal to external fluid viscosity ratio, W̃ is a characteristic length of the
flow and η̃ is the distance of the particle centre from the location of U0. Generally, E ∼ D,
where D is a measure of particle deformation, e.g. the Taylor deformation parameter. In the
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Figure 5. (a) Effect of Ca in the non-inertial regime. Shown here is the radial position as a function of time for
different Ca. Capsules migrate to the same radial location that is nearly independent of Ca. Here, RC = 5, W =
4. Also shown are the capsule shapes near the equilibrium position for different Ca. (b) Effect of various initial
Z-locations. Capsules are released at different initial Z locations that are marked as ‘O’. Trajectories are shown
in the cross-sectional plane. Irrespective of initial Z locations, capsules migrate to the Z = 0 plane and settle
at the same radial location indicated as Req. Here RC = 7, W = 6. (c) Capsule trajectories in the cross-section
plane in a rectilinear channel (W = H = 4).

limit of small deformation, D ∼ Ca. Note that these studies did not include the direct wall
interaction. Later, a numerical study by Doddi & Bagchi (2008) showed that for capsules
in a 2-D channel of half-height W̃, Vm ∼ F1(Ca)F2(ξ̃0/W̃)(a0/W̃)3, where F1 and F2 are
functions of Ca and ξ̃0/W̃, and ξ̃0 is the distance of the capsule centre from the nearest
wall. Additional studies (e.g. Coupier et al. 2008; Losserand et al. 2019) showed that in
a general shear flow (linear or parabolic) Vm ∼ E(a0/ξ̃0)

δa0G̃(ξ̃ )/U0, where G̃(ξ̃ ) is the
shear rate, ξ̃ is the coordinate in the cross-flow direction and the exponent δ is a constant.
In the case of linear shear flow, δ = 2. This form shows that the wall repulsion has a
stronger effect near the wall. From this general form, one can write for a 2-D Poiseuille
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flow in a channel Vm ∼ E(aδ+1
0 /ξ̃ δ

0 W̃)G where G(ξ̃ ) = G̃/G̃max is the dimensionless shear
rate and G̃max is the maximum (wall) shear rate. Following Chan & Leal 1979, Helmy &
Barthes-Biesel 1982, Shapira & Haber 1990 and Doddi & bagchi 2008 one may let δ = 2,
which gives Vm ∼ E(1/W3)(W/ξ)2G; here, all lengths are made dimensionless using a0.
This expression gives the relative strengths of different mechanisms causing migration of
a deformable particle in a wall-bounded parabolic flow: E for the deformation effect, G for
the velocity gradient effect, (W/ξ)2 for the wall repulsion.

As evident from above, there has been a significant mathematical investigation on the
migration velocity of deformable particles in unidirectional flow. But unfortunately there
exists no such study for curved vessels. Here, we present a scaling argument for the
migration velocity in curved flows borrowing from the above mathematical developments
and using our present numerical data. In a curved channel, there are migration due to
(i) particle deformation, (ii) velocity gradient, (iii) wall repulsion and (iv) curvature effect.
The first three can be taken care of by the above formulation, and we denote it as V(i)−(iii)

m ∼
E(1/W3)(W/ξ)2G. As the present numerical data suggest, the streamline curvature can
induce a migration of a deformable particle even if the flow is unbounded. We propose
this migration velocity arising purely from the curvature effect can be modelled by
replacing the terms representing velocity gradient and wall repulsion effect by a term that
is dependent on the curvature as V(iv)

m ∼ E(1/W3)κm, where the exponent m is a constant.
We now verify this expression using our numerical simulation data. Figure 6(a) shows Vm
as a function of κ for fixed values of Ca and W. Our data suggest a nonlinear dependence,
which can be approximated by taking m = 2. Then, in figure 6(b) we plot Vm as a function
of (1/W3)κ2, which gives an apparent linear scaling. Finally, figure 6(c) shows Vm as a
function of Ca. A nonlinear variation is observed since the deformation (and, Ca) is not
small. Note that we have assumed a similar dependence of V(i)−(iii)

m and V(iv)
m on E . This is

based on the present finding of figure 5(a) that the equilibrium locations are independent
of Ca. In the limit of small deformation in a unidirectional shear flow, the migration
velocity varies linearly with respect to Ca (Chan & Leal 1979; Helmy & Barthes-Biesel
1982). Since the curvature-induced migration must balance the shear-induced migration,
the former must also be linear with respect to Ca in this limit. Furthermore, since the
equilibrium location is independent of Ca, both the curvature-induced migration and
shear-induced migration must have the same scaling with respect to Ca. The net migration
velocity is then

Vm ∼ ±E
(

1
W3

)(
W
ξ

)2

G + E
(

1
W3

)
κ2, (3.5)

where ± is used for the first term to indicate that the migration caused by the velocity
gradient and wall repulsion can be either inward or outward, while that due to the curvature
is always inward. For R′ > R′

U , both terms have same sign, so that the net effect is additive
and toward the interior wall. For R′ < R′

U , they are opposite, resulting in the particle
equilibrium.

It may also be noted that it is not possible to isolate the effect of the four mechanisms
(i)–(iv) as noted above through our simulations. This is because a curved flow (bounded or
unbounded) will always have a velocity gradient. In contrast, a curved flow representing a
rigid body-like rotational fluid motion will not induce any deformation, and hence there is
no migration. Furthermore, the cross-stream migration is absent as Ca → 0.

The results presented so far are for capsules released at the middle plane (Z = 0)

of the channel. Since the velocity is symmetric about this plane, there cannot be any
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Figure 6. Migration velocity near the curved channel centre as a function of (a) κ , (b) κ2/W3 and (c) Ca.

out-of-plane motion, and the capsule remains in this plane while it radially migrates toward
the interior face. The influence of different initial Z locations is shown in figure 5(b) where
capsule trajectories in the cross-sectional plane are shown. For all cases, capsules migrate
to the Z = 0 plane and settle on this plane at the same equilibrium radial location Req.
Since there is no curvature effect in the Z direction, the capsule motion in Z is caused
by the wall effect and the shear gradient-induced deformation effect. Both of them drive
the capsule toward the Z = 0 plane (which is the location of the lowest shear rate with
respect to Z), while the curvature effect along R drives it to Req. Furthermore, because
of the curvature effect, the capsule migrates faster in the radial direction and arrives at
the equilibrium radial location earlier than it arrives at the Z = 0 plane. Also shown in
figure 5(c) are capsule trajectories in the cross-section plane in a rectilinear channel. For
this geometry, all trajectories converge to the channel centre, implying that the equilibrium
position is the channel centreline in a rectilinear channel irrespective of initial positions,
but it moves to a radially off-centred location toward the interior face with the introduction
of the channel curvature.

The present results for capsule migration and equilibrium locations in curved channels
of square cross-sections are qualitatively similar to those of curved tubes of circular
cross-sections. As predicted by Ebrahimi et al. (2021), for a curved tube also, capsules
migrate radially toward the inner side of the tube and settle at an equilibrium location that
is located increasingly away from the location of the maximum streamwise velocity and
closer to the inner side with increasing curvature ratio. As seen here for curved channels,
the capsule equilibrium position for curved tubes was also predicted to be independent
of Ca, and located on the Z = 0 plane, which is the plane of symmetry for the tube.
Figure 7 shows a quantitative comparison of the equilibrium locations for curved tubes
and channels. Despite the difference in geometry, the predicted equilibrium locations are
surprisingly very close in the two cases.

3.2. Non-inertial focusing in curved channels of rectangular cross-sections
In this section, curved channels of rectangular cross-sections are considered in the
non-inertial regime. For this purpose, we introduce the aspect ratio γ = W/H. Other
relevant geometric parameter is the curvature ratio κ = W/RC as defined before. The
influence of varying γ while keeping κ constant is considered first. Figure 8 shows
the velocity distribution and the location of the maximum velocity. The velocity
profile becomes more skewed toward the interior face with increasing γ . The trend of

929 A30-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

86
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.868


Inertial and non-inertial focusing

RU – RC

R
eq

 –
 R

C

–4 –3 –2 –1 0
–8

–6

–4

–2

0

κ

R
′ eq

0.2 0.4 0.6 0.8

–0.8

–0.6

–0.4

–0.2

(b)(a)

Figure 7. Comparison of equilibrium positions for curved channels of square cross-sections (red, solid line and
squares) and curved tubes of circular cross-section (black, dash line and circles) in terms of (a) R′

eq versus κ ,
and (b) Req − RC versus RU − RC. The data for the curved tubes are taken from Ebrahimi et al. (2021).

R′
U , however, is more complex. In general, R′

U moves closer to the interior wall as
γ increases (or H decreases) due to the confinement effect. In contrast, R′

U becomes
independent of H (and γ ) as channel height increases (or aspect ratio decreases). Variation
of R′

U with respect to H (and γ ) becomes greater as the channel width decreases.
Radial trajectories of capsules for different aspect ratio are shown in figure 9(a). For

all cases considered in the figure, capsules migrate toward the interior face. Noticeably,
differences exist between capsule trajectories at larger aspect ratio (i.e. smaller channel
height); but as γ decreases, trajectories become indistinguishable. Equilibrium radial
location R′

eq is shown in figure 9(b) as a function of H, and γ (inset). Also presented
in the figure the location of the streamwise velocity maximum that can be compared
with the capsule equilibrium location. The equilibrium is between the location of velocity
maximum and the interior face of the channel. The figure further shows that for smaller
channel heights (or higher γ ) the equilibrium location progressively moves closer to the
interior face with decreasing channel height (or increasing γ ). However, at larger values of
H (i.e. as γ → 0), the equilibrium locations asymptote to fixed values that are independent
of H or γ . This trend of capsule trajectory and the equilibrium location follows the trends
of R′

U and streamwise velocity profiles which become insensitive to H at larger values, as
seen previously in figure 8(d).

It may be noted in figure 9(b), that the curve for R′
U for RC = 7; W = 6 does not

asymptote with increasing H like other curves. This is because a higher value of W requires
a higher value of H to reach an asymptote. Other cases considered in the figure are for
W = 3, for which the asymptote is reached for H < 8. For W = 6; a much higher value
of H would be needed to see an asymptotic trend. Furthermore, for this specific case, R′

eq
reaches an asymptote before R′

U does, unlike other cases. This is because the increased
curvature ratio κ at this W causes a stronger curvature-induced inward migration of the
capsule. In this case, the curvature-induced migration is primarily balanced by the wall
repulsion, while the shear gradient has a weaker effect. Since confinement in H affects
weakly and indirectly via the alteration of the velocity profile, the balance of these two
mechanisms (which remain fixed due to the fixing of W and κ) results in the noted
behaviour.
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Figure 8. Effect of aspect ratio γ = W/H while keeping the curvature ratio κ = W/RC constant on the
velocity distribution in the non-inertial regime. Velocity contours are shown in the cross-sectional plane for
(a) γ = 1.5 and (b) 1/3, while κ = 3/5. (c) Streamwise velocity profile in Z = 0 plane as a function of R′ for
γ = 1.5 (green, dash-dot curve), 0.5 (black, continuous) and 1/3 (red, dash); = 3/5, RC = 5. (d) Location of
the streamwise velocity maximum R′

U as a function of channel height. Here RC = 7, W = 3 (black, continuous
curve), RC = 7, W = 6 (red, dash-dot), RC = 5, W = 3 (green, dash). Inset shows the same data plotted
against γ .

Capsule shapes are presented in figure 9(c–f ). Away from the equilibrium locations,
capsules attain crescent shapes irrespective of channel heights. Close to the equilibrium
locations, the shape resembles an asymmetric parachute for smaller channel heights, but a
bullet shape for larger heights. This difference in shape is due to the equilibrium location
moving closer to the interior face (and, hence, toward the region of a higher streamline
curvature) and increased velocity profile asymmetry with increasing aspect ratio.

Figure 9(a) further suggests that the rate of radial migration is dependent on γ , even
when migration along Z = 0 plane is considered and the curvature ratio is held fixed.
Although Z = 0 plane is the plane of symmetry, and the channel height is not expected
to make a significant effect on the radial migration along this plane, it is evident from
figure 9(a) that capsules migrate faster toward the equilibrium position with increasing
γ . This trend may also seem counter-intuitive as increasing confinement is expected
to retard the capsule motion. However, the higher migration rate is due to the greater
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Figure 9. Effect of varying the aspect ratio γ = W/H while keeping the curvature ratio κ = W/RC constant
on the non-inertial migration. Capsule motion in Z = 0 plane is considered. (a) Radial trajectory in terms of
R′ as a function of time is shown for different γ . (b) Capsule equilibrium location R′

eq (filled symbols) as
a function of channel height. Also shown for comparison is the location of streamwise velocity maximum
R′

U (open symbols). Here RC = 7, W = 3 (black, continuous curve), RC = 7, W = 6 (red, dash-dot),
RC = 5, W = 3 (green, dash). The inset shows the same data plotted against. Panels (c) and (e) show
capsule shapes for RC = 5, W = 3, H = 2 (γ = 1.5, κ = 3/5) near the channel centreline and equilibrium,
respectively, and panels (d) and (f ) show capsule shapes for RC = 5, W = 3, H = 9 (γ = 1/3, κ = 3/5) near
the channel centreline and equilibrium, respectively. (g) Time for capsules released at the channel centreline
to reach 95 % of the equilibrium distance as a function of H. RC = 7, W = 3 (black, continuous curve),
RC = 7, W = 6 (red, dash-dot), RC = 5, W = 3 (green, dash). The inset shows the same data as a function
of γ .

asymmetry in capsule shape, velocity profile and the equilibrium location being further
closer to the interior face and in a region of higher streamline curvature, all of which
result from the increasing aspect ratio as discussed above. Of interest, then, is the time
T0.95 taken by a capsule to travel 95 % of the radial distance from the channel centreline
to the equilibrium location, which is presented in figure 9(g). As seen, T0.95 becomes
shorter as the channel height decreases, but reaches an asymptote at larger heights. The
variation of T0.95 with respect to H (or γ ) is most prominent for channels of larger widths,
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because of the higher streamline curvature in such cases. This result is intriguing because
although the equilibrium location moves further away from the channel centreline and
toward the interior face with decreasing H, the capsule takes a shorter time to reach the
equilibrium. For practical microfluidic applications in the non-inertial regime, this result
is important since it implies that a rapid focusing of deformable particles, even when the
motion is restricted in the midplane, can be achieved with smaller channel heights (or
larger aspect ratio) for a given width.

Additional study for rectangular cross-section is done by varying W while keeping
H constant. These two dimensionless parameters also represent the blockage by the
capsule in the radial and normal directions, respectively, which differently affect
capsule migration. The curvature-induced migration is active only in the radial direction,
while migration in the normal direction is primarily dictated by the shear gradient. Where
possible, we present the data using γ and κ . The velocity field in the absence of the
capsule is first described. Figures 10(a)–10(c) show the results for the streamwise velocity
distribution as κ is varied. As seen, increasing κ causes the velocity profile to be more
skewed toward the interior face. This is because increasing the width at a fixed radius of
curvature causes a higher streamline curvature near the interior face. Also, the maximum
axial velocity increases with increasing width. The numerical velocity profile is compared
against the analytical expression ((3.1)) for a rectangular cross-section in figure 10(c)
which shows that they agree very well. The location R′

U of the maximum axial velocity
Umax is shown in figure 10(d) as a function of κ for different H. As seen, R′

U moves closer
to the interior face with increasing κ . In contrast, R′

U moves away from the interior face
with increasing H. Unlike for curved channels of square cross-sections, R′

U for rectangular
cross-sections does not show a linear dependence with respect to κ . A linear dependence
is not observed even when the data are plotted by redefining the curvature ratio using the
hydraulic radius as Rh/RC. Figure 10(e) shows R′

U as a function of κ for a given γ . Data
for different γ do not collapse onto a single line.

Capsule trajectory in terms of R′ versus time is shown in figure 11(a) for varying width.
Capsules are initially released at Z = 0 plane, since any other Z location would cause
migration toward Z = 0 as observed before for square cross-sections. For all cases seen in
the figure, radial migration toward the interior face and settling at an equilibrium location
are predicted. For fixed RC and H, capsules settle increasingly closer to the interior face
with increasing W. The equilibrium locations are presented in figure 11(b) in terms of
Req − RC. As seen, for fixed RC and H, values of Req decrease with increasing W implying
that capsules settle increasingly away from the channel centreline. Also indicated in the
figure are the equilibrium locations in channels of square cross-sections. The settling
distance from the channel centreline for rectangular cross-sections could be larger or
smaller than that for square cross-sections depending on the channel width. Figure 11(c)
presents R′

eq as a function of κ . The inset of figure 11(c) shows R′
eq and R′

U against κ for
a given aspect ratio. As seen here, R′

eq lies below R′
U . Therefore, similar to the results

of channels with square cross-sections, here also capsules settle at locations between the
maximum streamwise velocity and the interior face, where the shear rate is non-zero. R′

eq
versus κ shows a linear dependence.

Also, figure 11(c) shows that when R′
eq and R′

U are plotted for a given H, R′
U shows a

greater difference between different channel heights for a given κ than R′
eq. This difference

becomes of the similar magnitude when the data are plotted for a given aspect ratio instead
of H as shown in the inset. The difference arises because reducing the channel height
makes the velocity profile more skewed toward the interior wall; but the capsule migration
in the radial direction is governed by the relative strengths of the curvature, shear gradient
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Figure 10. Non-inertial flow in curved channels of rectangular cross-sections. (a,b) Streamwise velocity
contours for varying channel width at constant height: (a) RC = 7, H = 3, W = 6, (κ = 6/7, γ = 2); (b)
RC = 7, H = 3, W = 2. (c) Numerical velocity profiles at Z = 0 plane as a function of R′ for RC = 7, H =
3, W = 6 (κ = 6/7, γ = 2, solid black curve), RC = 7, H = 3, W = 4 (κ = 4/7, γ = 4/3, dash-dot-dot),
RC = 7, H = 3, W = 2 (κ = 3/7, γ = 2/3, dash-dot). Also shown is the analytical velocity given by (3.1) for
RC = 7, H = 3, W = 6 (κ = 6/7, γ = 2, dash, red curve). (d) Location of the maximum streamwise velocity
as a function of κ for different H: RC = 7, H = 3 (solid black), RC = 7, H = 4 (green, dash), RC = 7, H = 6
(red, dash-dot-dot), RC = 5, H = 4 (blue, dash-dot). (e) Value of R′

U as a function of κ for different γ .

and wall effects acting in the radial direction only; confinement in H has only indirect
effect via the alteration of the radial velocity profile.

The mechanisms that lead to the settling are similar to those discussed before. Since
increasing the channel width results in a higher streamline curvature as the interior face
is approached, a stronger curvature-induced inward migration ensues. In contrast, the
radial extent over which the deformation-induced outward migration happens is shortened
because of the increasing proximity of R′

U to the interior face. Their combined effect leads
to the capsule settling increasingly closer to the interior face as W increases.

The influence of channel width on the capsule shape evolution is considered next.
Figures 11(d)–11(f ) shows the shapes when the capsules are located near the centreline of
the channel. An asymmetric parachute shape is seen for the smallest width, but a crescent
shape is seen for the largest width considered. As the equilibrium location is approached
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Figure 11. Non-inertial migration of capsules in curved channels of rectangular cross-sections. Migration in
the Z = 0 plane is considered. (a) Radial coordinate of a migrating capsule is shown in terms of R′ as a
function of time for varying channel width as W = 4 (dash-dot), 5 (dash) and 6 (continuous curve) for a fixed
RC = 7, H = 6. (b) Equilibrium location from the channel centreline shown as Req − RC as a function of W for
various RC and H. Open circles are used to indicate data from square cross-sections. (c) Equilibrium location
R′

eq (filled symbols) presented as a function of κ and for various RC and H. For comparison, locations of
the streamwise velocity maximum R′

U are also shown using open symbols. RC = 7, H = 3 (black, continuous
line), RC = 7, H = 4 (green, dash), RC = 7, H = 6 (red, dash-dot-dot), RC = 5, H = 4 (blue, dash-dot). The
inset shows the data plotted against κ for a given aspect ratio. (d–f ) Shapes of a migrating capsule when
located at the centreline of the channel, and (g–i) at the equilibrium position; W = 2 (d,g), 4 (e,h), 6 (f ,i);
RC = 7, H = 3 are fixed.

(figure 11g–i), the shape transitions to an asymmetric bullet shape for channels with a
smaller width, but to an asymmetric parachute shape for a larger width. A greater degree
of asymmetry at a larger channel width is due to the increased streamline curvature neat
Req, a higher asymmetry in the fluid velocity profile, and the closer proximity of Req to the
interior face.

A few comments can be made now about the confinement effect. For a highly confined
channel, the presence of the capsule is expected affect the flow. The range of W considered
here is 2 to 6. The fluid velocity distribution in the channel in presence of the capsule
is shown in in the supplementary material are available at https://doi.org/10.1017/jfm.
2021.868 for W = 2 and 6. Even for the most confined case of W = 2, the velocity is
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Figure 12. (a) Secondary flow at finite inertia. Colour contours show the magnitude of secondary velocity UD
in a cross-sectional plane for ReC = 40, RC = 7, W = H = 4. (b) Maximum of the secondary velocity, scaled
by the maximum streamwise velocity, as a function of ReC, and De, for RC = 5, W = H = 4. (c) Streamwise
velocity profiles scaled by the maximum for each case on Z = 0 plane for different ReC. Here RC = 5, W =
H = 4. Corresponding Dean number De = √

0.8 ReC.

altered in a small region around the capsule, and remains unchanged everywhere else.
We do expect this, since even for this most confined case, the capsule to channel volume
fraction is approximately 0.004 (RC = 7, H = 3), implying a dilute flow. We have also
performed simulations at higher W = 10a0, and the same trend is observed, that is,
the capsules attain an equilibrium near the interior wall. The difference that arises for
different W is the rate of radial migration and the actual radial location of the equilibria
as discussed above. Even if the flow is unconfined (i.e. W/a0 → ∞), the 2-D simulation
of Ghigliotti et al. (2011) showed that capsules migrate toward the interior region of the
flow, in agreement with the present results. The confinement indeed plays a role, since
the capsule attains the equilibrium position because of the presence of the interior wall,
which imparts a repulsion from the wall as well as the velocity gradient that provides a
shear-induced migration away from the inner wall. On the contrary, in an unconfined flow
with curved streamlines, the capsule would continue to migrate toward the interior region
without attaining an equilibrium, because there is no wall repulsion and opposing velocity
gradient.
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3.3. Inertial focusing
We now consider capsule migration in the presence of inertia by taking the capsule
Reynolds number Rea � 0.1; accordingly, the channel Reynolds number ReC � 1. The
results will be discussed in terms of ReC; the corresponding Dean number can be obtained
as De = ReC

√
κ . The velocity field for square cross-sections is discussed first, followed

by capsule migration in such geometry. Then, migration in channels of rectangular
cross-sections will be considered. Unless stated otherwise, Ca = 1 is considered.

In the presence of inertia, a secondary flow develops that is directed from the interior
to the exterior face along the middle plane, but in the opposite direction along the top and
bottom walls, generating two counter-rotating Dean vortices, as shown in figure 12(a). The
strength of the secondary flow increases with increasing inertia, as shown in figure 12(b)
where the maximum of the secondary velocity UD obtained at the middle plane is
presented as a function of ReC and De. The predicted secondary velocity in the range
De � 10 agrees with the theoretical result that, in the leading order, UD ∼ O(De) (Siggers
& Waters 2005). Figure 12(c) shows the streamwise velocity profiles for different ReC. For
ReC � 10 velocity profiles are nearly indistinguishable from that at negligible inertia and
are skewed toward the interior face of the channel. For ReC � 10, the profiles become
blunt, and the location of the maximum streamwise velocity moves away from the interior
wall.

Inertial migration of capsules released at the channel centreline and on the midplane
(R = RC, Z = 0) is shown in figure 13(a). Here Ca = 1, and RC = 7, W = H = 4 are
kept fixed, but ReC is varied over two orders. It is seen that the direction of capsule
migration can be either towards the interior or exterior face. Accordingly, the equilibrium
position at finite inertia is dependent on ReC. In general, capsules settle closer to the
interior face at smaller ReC, while they settle further away at higher values. For the specific
geometry considered in figure 13(a), capsules are observed to migrate toward the interior
face for ReC < 2. Within this range, they settle at different radial locations that lie
increasingly away from the interior face as ReC increases. For ReC � 2, capsules migrate
toward the exterior face. For ReC � 8, capsules first migrate closer to the exterior face, but
do not settle there. Figure 13(b) shows that for this range of ReC, capsules leave the middle
plane (Z = 0) after initially staying on this plane for an extended time. Figure 13(c) shows
the capsule trajectory in the cross-sectional plane superimposed with the streamlines of
the secondary flow. As seen, the capsule remains in the midplane for some time, and
then leaves this plane to follow a spiralling trajectory in the same direction as the Dean
vortex. Eventually, it settles near the centre of one of the vortices. Figure 13(d) shows the
cross-sectional trajectories for capsules released at different locations with respect to the
middle plane. In all cases, the final equilibrium location is the same and near the centre
of the vortex. Evidently, such trends of capsule migration at finite inertia are significantly
different from those seen before in the absence of inertia.

Figure 14(a) shows capsule trajectories at different ReC for ReC ≥ 8, for which migration
to the vortex centre is observed. The location of the vortex centre is also shown in the
figure, which moves closer toward the exterior face and further away from the midplane
with increasing ReC. Accordingly, capsules settle further toward the exterior face and away
from the middle plane with increasing ReC.

What causes such trends in the capsule migration at finite inertia is the presence of
the secondary flow, in addition to the effects from capsule deformation, altered shear
gradient and the presence of the streamline curvature. As noted before, the deformation
effect causes a migration toward a region of low shear, the streamline curvature causes
a migration toward the interior wall, and the wall effect causes migration away from
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Figure 13. Inertial focusing in curved channels of square cross-sections. (a) Radial trajectories are shown for
varying channel Reynolds number as ReC = 0.08, 0.8, 2, 8, 80, for RC = 7, W = H = 4. (b) The Z coordinate
of capsule’s centre-of-mass is shown for ReC = 8 and 80. (c) Trajectory on the cross-sectional plane is shown
for ReC = 80 superimposed on streamlines of the secondary flow. (d) Trajectories on the cross-sectional plane
for different initial release locations are shown, all of which merge to the same final equilibrium location near
the centre of the Dean vortex.

the wall. It can be inferred from the last section (§ 3.1) that these three mechanisms result
in a capsule migration velocity Vm that is of the order of Vm � O(10−2) and toward the
interior face. At finite inertia, the shear gradient effect causes a migration away from the
zero shear location, just as it does for a rigid particle. In addition, the secondary flow
results in a ‘drag’, termed Dean’s drag, and drives the capsule toward the exterior wall and
to follow the spiralling trajectory toward the vortex centre. The final equilibrium location
then depends on the strengths of these competing mechanisms, which can be understood
in terms of their scaling as follows. Once again, however, we are faced with the problem of
how to separate these different mechanisms in a confined curved flow, since a curved flow
(except the pure rotational flow) will always have a velocity gradient. To isolate the inertial
lift, we perform simulations of capsule migration in the unidirectional flow in rectilinear
channels at varying ReC and Ca so that no curvature effect is present. These results are
shown in figure 15 and can be viewed against the theoretical work. Ho & Leal (1974)
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Figure 14. Migration of a capsule toward the vortex centre. (a) Influence of ReC on capsule trajectory and
equilibrium location in comparison with the location of the vortex centre is shown for RC = 5, W = H = 4.
Filled circles indicate the vortex centre for ReC = 8 (black), 40 (green), 80 (blue), 320 (red). (b–e) Capsule
shapes near respective equilibrium locations for different ReC; (b) ReC = 0.8, (c) ReC = 2, (d) ReC = 8 and
(e) ReC = 80.

derived the cross-stream migration velocity of a rigid sphere in 2-D Poiseuille flow in a
channel of width 2W̃ as

Vm ∼ Rea

(
a

W̃

)2

(1 − ξ̂ )2G1(ξ̂ ) − (1 − ξ̂ ) G2(ξ̂ ), (3.6)

where ξ̂ = ξ̃/W̃, ξ̃ is the distance of the sphere centre from the nearest wall, and G1 and G2

are functions of ξ̂ only. The first term represents the effect of the velocity gradient and wall,
and causes a migration toward the channel centre. The second term represents the effect
of the shear gradient and causes a migration toward the wall. A stale equilibrium occurs
at ξ̂/2 = 0.2 and 0.8, which are locations between the channel centre (ξ̂ = 0.5) and the
walls (ξ̂ = 0 or 1). The present simulation results for deformable capsules at finite inertia
as shown in figure 15 agree with this general trend of the equilibrium position. However,
the results further show that the equilibrium position is dependent on Rea (and, hence ReC)
and Ca, unlike (3.6). It moves toward the channel centre with increasing Ca, but toward
the wall with increasing ReC. Thus, (3.6) can be modified for a deformable capsule as
Vm ∼ Rea(a/W̃)2G(ξ̂ − ξ̂eq), with ξ̂eq(ReC, Ca) being the equilibrium position; Vm → 0
as ξ̂ → ξ̂eq. Although the numerical data presented in figure 15 are insufficient to conclude
the dependence of Vm on ReC and Ca, the figure shows that Vm due to the inertial lift effect
is ∼O(10−2 − 10−3) over a wide range of parameters, which is of the similar order as the
curvature-induced migration discussed above.

This scaling allows us to explain the observed direction of capsule migration in
curved channels. For weak secondary flows, e.g. UD ∼ O(10−3), the curvature-induced

929 A30-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

86
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.868


Inertial and non-inertial focusing

t

y

400 500 600 700
–1.0

–0.5

0

0.5

1.0

Ca = 10
Ca = 1
Ca = 0.1

ReC = 320

t
0 500 1000 1500

–1.0

–0.5

0

0.5

1.0

ReC = 80
ReC = 1
ReC = 0.1

Ca = 1
(b)(a)

Figure 15. Cross-stream migration of a capsule in a rectilinear channel of square cross-section
(RC = 5, W = 4) for different (a) Ca, and (b) ReC.

migration velocity Vm > UD; hence, this results in the migration toward and settling
closer to the interior wall. For moderate secondary flows, UD ∼ O(10−2); this yields
the net curvature-induced and inertial lift-induced Vm ∼ UD. For this, the equilibrium
locations increasingly move toward the exterior wall as UD increases with increasing ReC
(figure 12b). For these cases, the equilibrium locations still lie on the Z = 0 plane as
the deformation/shear gradient and curvature effects can balance against the Dean drag.
For stronger secondary flows for which UD � O(10−1), the Dean drag dominates, and
capsules released on the Z = 0 plane quickly move to the exterior wall, then leave the
plane to follow the secondary flow, and eventually settle near the vortex centre.

In general, capsules are observed to leave the middle plane for ReC � 5 − 10, as noted in
figure 13(a). However, a more precise determination of ReC at which this occurs is difficult.
In the range ReC ≈ 1 − 5, for which the secondary flow is weaker, a capsule tends to reside
in the Z = 0 plane for a long time. Any numerical error accrued during this time can
cause small variations in Z coordinate of the capsule centre. If the deformation-induced
migration in Z which tends to drive the capsule back toward the Z = 0 plane is not strong
enough, the capsule may eventually leave the middle plane.

Capsule shapes are presented in figure 14(b–e) for different ReC. Specific orientations
are not considered and views from one side are shown. For ReC <∼ 1, for which the capsules
settle closer to the interior face, the shapes are less asymmetric than that observed in
the non-inertial regime. This is because of the increasing distance between the settling
location and the interior face, so that the wall effect, streamline curvature effect and shear
gradient effect are all reduced. The shape asymmetry is further reduced at even higher
ReC. Furthermore, for ReC > 1, the difference in shapes at various ReC is small, which
further supports the notion that capsule migration in this regime is determined primarily
by the secondary flow.

Effect of capsule deformability at finite inertia is considered in figure 16, where
trajectories are shown for ReC = 0.8, 8 and 80 but Ca varying from 0.02 to 10. For
ReC = 0.8 (figure 16a) it is seen that the direction of capsule migration can be either
towards the interior or exterior face of the channel. Accordingly, the equilibrium position
at this ReC is dependent on Ca. This is in stark contrast to what was observed for the
non-inertial regime in § 3.1, where the equilibrium position was found to be independent
of Ca. In general, capsules settle closer to the interior face at larger values of Ca, but away
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from the interior face and closer to the exterior face at smaller values of Ca. This result
shows the competing effects of capsule deformation, inertial lift and channel curvature. At
this small ReC = 0.8, the secondary flow, although present, is relatively weak. For large
values of Ca, the deformation and the curvature effects are dominant over the inertial
lift, resulting in the migration toward the interior face. For smaller values of Ca, the
deformation and the curvature effects are weaker, and the inertial lift dominates, resulting
in the migration toward the exterior face. Figure 16(a) further suggests that the equilibrium
locations are very sensitive to Ca in the range Ca < 0.2 and at the small ReC, since all
underlying mechanisms of migration, namely, the deformation, inertial lift and curvature
effects are comparable. At a higher ReC � 5 − 10, as shown in figure 16(b–e) for ReC = 8
and 80 for which the secondary flow is stronger, the results become nearly independent of
Ca. For the large range of Ca considered here, it is observed that the capsules first migrate
toward the exterior face while remaining on the midplane. They remain at the fixed radial
locations on this plane for some time, and afterward leave the midplane and follow the
secondary flow direction to finally settle near the vortex centre. Thus, under the presence
of a strong secondary flow, the migration behaviour in general is independent of Ca. A
few subtle differences based on Ca can be noted for ReC = 8 in figure 16(b,c). First, the
capsule moves increasingly closer to the exterior face with decreasing Ca, before leaving
the midplane. This is because of the diminishing effects of the deformation and curvature
against the inertial lift and Dean’s drag. Second, the equilibrium locations, although close
to the vortex centre for all Ca, are weakly dependent on Ca. Specifically, capsules settle
increasingly away from the midplane, and closer to the vortex centre, with decreasing Ca.
While there is no curvature effect along the Z direction, the deformation effect along this
direction causes the capsule to settle closer to the midplane. This difference in the settling
locations, as well as how far a capsule moves toward the exterior face before leaving the
midplane, for different Ca diminishes with increasing ReC, as seen in figure 16(d–e) for
ReC = 80, due to Dean’s drag dominating over the deformation effect.

The focusing of capsules by the Dean vortex as predicted for curved channels is
qualitatively similar to that observed earlier for curved tubes (Ebrahimi et al. 2021). The
capsule equilibrium locations are also quantitatively very close in the two geometries for
the range of parameters considered. For example, for ReC = 40, RC = 5, Rh = 4, they
differ by less than 3 %. This is because the locations of the vortex centres are also observed
to be very close in the two geometries.

Influence of channel radius of curvature RC is also examined. Simulations are performed
over a range RC = 5 to 15, by keeping W = H and ReC fixed. We observe that the
location of the vortex centre with respect to the channel centreline (R = RC, Z = 0)

does not significantly change in this range; accordingly, the equilibrium locations of the
capsule measured relative to the channel centreline are very close even though the channel
curvature is altered. For example, for ReC = 80, W = 4, the equilibrium location relative
to the channel centreline varies by less than 2 % of the channel width as RC varies from 5
to 15.

The channel width, however, has a greater influence. To study this, we simulate capsule
migration in curved channels of fixed radius of curvature RC = 7, and fixed capsule
Reynolds number Rea = 10, but vary W = H in the range 3 to 6. The corresponding vortex
centres and the capsule equilibrium locations are shown in figure 17(a). As seen, with
increasing channel width, both of them move further toward the exterior face and further
away from the midplane, due to a stronger secondary flow caused by the simultaneous
increase in the channel Reynolds number (ReC varies from 60 to 120) as well as the
curvature ratio κ . The equilibrium locations in a curved channel are compared with
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Figure 16. Effect of capsule deformability in the inertial regime. Trajectories are shown at different Ca by
considering a weaker secondary flow in (a) for ReC = 0.8, and stronger secondary flows in (b,c) for ReC = 8,
and in (d,e) for ReC = 80. Line symbols for different Ca are same for all plots and indicated in (a). Radial
trajectories versus time are shown in (a,b,d), while cross-sectional trajectories are shown in (c,e).
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Figure 17. (a) Influence of channel width (square cross-section) on vortex centres (open symbols) and capsule
equilibrium locations (filled symbols). Here RC = 7 is fixed. (b) Comparison of equilibrium locations in a
curved channel (RC = 5) and in a rectilinear channel of the same W = H = 4. For the rectilinear channel, the
equilibrium locations lie on a squircle as indicated, whereas they are unique locations for the curved channel.

those in a rectilinear channel of an identical cross-section in figure 17(b). Simulations are
performed for capsule migration in rectilinear channels in the inertial regime by releasing
capsules from different initial locations. We observe that capsules first migrate toward a
specific location with respect to the channel centreline in the cross-sectional plane. The
collection of all these locations forms a squircle as shown in figure 17(b). This result
is similar to the ring-like focusing position of rigid particles observed by Choi et al.
(2011) at ReC = 12 in their experiment. We further observe that after arriving at the
squircle, a capsule can move along the perimeter. We refrain from determining whether
there are higher probabilities for capsule focusing at the centres of the four sides of the
squircle, as it is the case for rigid particles at higher ReC, or along the diagonals as
observed by Raffiee et al. (2017) and Schaaf & Stark (2017) for capsules. In contrast to
such infinite/multiple equilibrium locations in rectilinear channels, two unique focusing
locations occur in curved channels as indicated in the figure. Furthermore, for the range of
ReC ∼ 40 − 320, we find that the equilibrium locations in the rectilinear channel are not
dependent on ReC for a fixed cross-sectional geometry, in agreement with studies using
rigid particles (e.g. Schonberg & Hinch 1989; Kim & Yoo 2008), as well as deformable
capsules (Kilimnik et al. 2011; Raffiee et al. 2017; Schaaf & Stark 2017). In contrast, for
the curved channel, we predict that the equilibrium locations are dependent on ReC as
shown in the figure.

The small difference between the centres of the capsule and the Dean vortex can be
explained as follows. Generally, capsules settle further toward the exterior face in the radial
direction and closer to the middle plane in the Z direction compared with the vortex centre.
The offset in the radial direction is due to the centrifugal force which tends to act radially
outward. In contrast, the offset in the Z direction is due to the presence of deformation
which tends to act toward the middle plane.

Focusing in curved channels of rectangular cross-sections in the inertial regime is
considered next. For this, simulations are performed by varying channel width and height,
but keeping the hydraulic diameter, and hence, the channel Reynolds number constant
at ReC = 80. The radius of curvature is also kept fixed. As shown in figure 18(a) for
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Figure 18. Focusing in curved channels of rectangular cross-sections in the inertial regime. Here, channel
radius of curvature and hydraulic diameter (RC = 7, Dh = 8) are fixed. (a) Capsule trajectories in the
cross-sectional plane are shown for two different heights and widths. The black and red boxes show the channel
cross-section (W, H/2) for respective cases. (b) Vortex centres (open symbols) and capsule equilibrium
locations (filled symbols) are shown for different heights and widths, and for ReC = 80 (squares) and 320
(circles). The inset shows the data plotted using Z/H and R′. (c) Streamwise fluid velocity, scaled by the
corresponding maximum, extracted at the symmetry plane and plotted as a function of the radial distance.
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different cross-sections, capsules follow spiralling trajectories toward the centres of the
Dean vortices, as it is the case for the square cross-sections. Figure 18(b) shows the vortex
centres and capsule equilibrium locations in the cross-sectional plane for varying width
and height. The location of the vortex centre moves further toward the exterior face with
increasing width, and further away from the midplane with increasing height. The shift in
the radial direction becomes significant at higher ReC, for example, ReC = 320. As such,
the capsule equilibrium location also shifts further toward the exterior face with increasing
channel width, and further away from the midplane with increasing height (figure 18b). A
key result to note here is that, for channels of smaller widths but larger heights, the radial
location of the equilibrium is close that of the vortex centre. But with increasing width
and decreasing height, the equilibrium moves further away from the vortex centre and
more toward the exterior face. The distance between the vortex centre and the capsule
equilibrium increases with increasing ReC. This increasing distance is due to the manner
in which the streamwise velocity profile in the radial direction changes with increasing
channel width. As shown in figure 18(c), the streamwise velocity becomes more skewed
toward the exterior face with increasing width and decreasing height, causing the location
of zero shear rate/maximum streamwise velocity to increasingly move to that side. The
radial location of the streamwise velocity maximum lies further toward the exterior face
than the location of the vortex centre. As a result, the capsule deformation effect results
in the equilibrium position in the radial direction to lie between the vortex centre and the
exterior face. As for the Z location of the capsule equilibrium, it is observed to be slightly
closer to the midplane than the vortex centre, because of the deformation effect in the Z
direction which tends to drive the capsule toward the midplane.

4. Conclusions

Cross-stream migration and focusing of deformable capsules in curved microchannels
are presented under inertial and non-inertial regimes showing fundamentally different
behaviours in the two regimes that arise due to the interplay of inertia (or absence of
it), deformation, altered velocity skewness, streamline curvature and secondary flow.

The non-inertial regime is considered when both the capsule and channel Reynolds
numbers are small. In this regime, no secondary flow exists, and the streamwise velocity
is skewed toward the interior face of the channel with the location of zero shear occurring
closer to this face. The capsule migration in this regime is dictated by three mechanisms:
the deformation effect which tends to radially drive it toward the region of low shear; the
streamline curvature effect which tends to drive it toward the region of higher curvature;
and the wall effect causing a migration away from the wall. Under their combined effect,
the capsule settles at an equilibrium radial position that lies between the interior face and
the location of zero shear. As such, the shear rate at this equilibrium location is not zero, in
stark contrast to what generally is the case for the capsule migration in a rectilinear vessel.
This equilibrium position in the non-inertial regime is nearly independent of capsule
deformability, although the rate of migration increases with increasing deformability.
Furthermore, it lies at the central plane due to the symmetry of the velocity distribution
in the vertical direction. For capsules that are released away from the centre plane, a
two-step migration is observed that is comprised of a faster radial migration toward the
equilibrium location, followed by a slower migration toward the centre plane. This suggests
the dominant role of the curvature-induced migration over the shear gradient effect. The
focusing location progressively moves further toward the interior face with increasing
vessel curvature and width. When measured from the centreline of the channel and scaled
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by the channel width, the focusing location increases linearly with respect to the curvature
ratio. The channel height also affects the equilibrium: for smaller channel heights, the
equilibrium location progressively moves closer to the interior face with decreasing
channel height. However, at larger heights, the equilibrium locations do not depend on
it. Although the equilibrium location moves further away from the channel centreline with
decreasing heights, the capsule takes a shorter time to reach the equilibrium. This implies
that a rapid focusing of deformable particles, even when the motion is restricted to the
centre plane, can be achieved with smaller channel heights.

In the inertial regime, the secondary flow develops which becomes stronger with
increasing channel Reynolds number. The streamwise velocity profile also becomes
increasingly skewed toward the exterior face, altering the shear gradient. Then, the
capsule migration and focusing are dictated by the inertial lift, deformation, curvature
effect and secondary flow. For small but finite channel Reynolds numbers (ReC ∼ O(1)),
the equilibrium locations are very sensitive to ReC and capillary number Ca, due to
comparable deformation and curvature effects against the inertial lift and Dean’s drag.
In this range of ReC, and if Ca is large, the deformation and curvature effects dominate
over the inertial lift and Dean’s drag, resulting in a migration toward and focusing near
the interior face. For smaller Ca, the deformation and curvature effects are weaker, and
capsules progressively focus toward the exterior face with decreasing Ca and increasing
ReC.

As ReC increases by an order, the secondary flow becomes dominant, and capsules
on the centre plane are initially driven toward the exterior face where they can remain
for an extended time. The capsule moves increasingly closer to the exterior face with
decreasing Ca. However, this location is an unstable equilibrium, and capsules afterward
leave the centre plane to follow a spiralling trajectory in the direction of the secondary
flow. Eventually, they settle near the centre of the Dean vortex. This location is weakly
dependent on Ca, and slightly offset from the vortex centre toward the centre plane due
to the deformation effect along the vertical direction. This location is also slightly toward
the exterior face with respect to the vortex centre, due to the shear gradient effect of the
streamwise velocity profile that is skewed toward the exterior face at the finite inertia. With
increasing ReC, the secondary flow strengthens and the vortex centre moves progressively
toward the exterior face causing the capsule equilibrium location to also move further
toward the exterior face. As ReC further increases by an order, the equilibrium becomes
practically independent of Ca.

Both the vortex centre and the equilibrium position move progressively toward the
exterior face with increasing channel width and decreasing height. For wider channels,
the equilibrium location is further toward the exterior face than the vortex centre. This
difference in the radial locations increases with increasing ReC. This is due to the
increasingly skewed streamwise velocity toward the exterior face for increasing channel
widths, resulting in a shear gradient/deformation effect that drives the capsule further
toward the exterior face away from the vortex centre. In contrast, for channels of smaller
widths but larger heights, the radial locations of the equilibrium and vortex centre are
nearly identical.

The present results are summarized using phase diagrams in figure 19.
These results of deformable capsules in curved channels can be put in perspective

of those for rigid particles and rectilinear channels as reported in the literature. In the
non-inertial regime, a rigid spherical particle does not migrate cross-stream even in
the presence of streamline curvature. Also, a pure rotational flow does not induce a
capsule deformation, and hence any cross-stream migration. A single-point focusing is
predicted in this regime for deformable capsules that progressively shifts off-centre with
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Figure 19. Summary of results in terms of phase diagrams. (a–c) Show direction of capsule migration and
equilibrium locations in non-inertial and inertial (weak and strong secondary flows) in the cross-sectional plane.
Arrows indicate direction of capsule migration, solid thick lines indicate location of the stable equilibrium and
dashed thick lines indicate unstable equilibrium. (d) Phase diagram in terms of ReC and Ca. Filled squares
indicate migration toward interior wall, and open squares indicate migration toward exterior and/or toward the
vortex centre.

increasing curvature. In the inertial regime for rectilinear channels at a smaller ReC, rigid
particles focus along a ring (squircle) which transitions to four equilibria at the face
centres (Chun & Ladd 2006; Di Carlo et al. 2007, 2009; Bhagat et al. 2008a; Humphry
et al. 2010; Choi et al. 2011; Miura et al. 2014; Nakagawa et al. 2015; Kazerooni et al.
2017). On the contrary, deformable capsules are predicted to focus along the diagonals and
their equilibrium location shifts away from the centreline with decreasing deformability
but remains almost independent of ReC (Raffiee et al. 2017; Schaaf & Stark 2017). This
independence with respect to ReC is also reported for rigid particles in rectilinear channels
for up to a certain ReC (Schonberg & Hinch 1989; Kim & Yoo 2008). In curved channels,
focusing of rigid particles depends on the interplay of the inertial lift and secondary flow,
and transitions from a single-point focusing near the interior face to two equilibria along
the top and bottom walls and away from the interior face as the secondary flow strengthens
or particle size becomes smaller (Di Carlo 2009; Martel & Toner 2013; Harding et al.
2019). The present results for deformable capsules in curved channels in the inertial regime
show a single-point focusing near the interior face for ReC ∼ O(1) that is highly sensitive
to ReC and Ca, and moves toward the exterior wall with increasing ReC but decreasing Ca.
For ReC � O(10), two focusing locations appear that are close to the centres of the Dean
vortices. For the approximate range of ReC for which the rectilinear channels in the present
study show a nearly ReC-independent focusing, the curved channels in contrast show a
ReC-dependent focusing. Furthermore, the migration behaviour observed in the curved
channels is similar to that in curved tubes of circular cross-sections (Ebrahimi et al. 2021).
When represented using appropriate variables, the equilibrium locations in the curved
tubes are seen to be very close to those in the curved channels of square cross-sections of
the same hydraulic diameter.
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It may be noted that here we considered high channel curvature so that the influence of
curvature-induced migration is strong – this of course causes a faster migration reducing
the extensive simulation time since the entire channel is simulated. In many inertial
microfluidics applications, radii of curvature are small compared with other dimensions. A
high curvature, on the other hand, may be relevant for inner loops of spiral microchannels
that are also used in inertial microfluidics.
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