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Abstract. The need for accurate photometric redshifts estimation is a topic that has fundamen-
tal importance in Astronomy, due to the necessity of efficiently obtaining redshift information
without the need of spectroscopic analysis. We propose a method for determining accurate multi-
modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN)
and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is per-
formed.
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1. Introduction
Determination of distances for astronomical objects through redshift acquired in the

recent years an increasingly importance, having a fundamental role in cosmological re-
search. In fact, it is well known that redshift is a fundamental step of the cosmic distance
ladder. Redshift is traditionally obtained through spectroscopic analysis but due to long
integration times and costly instrumentation requirements, it is not possible to measure
it for all objects. Therefore, a convenient alternative is the estimation of photometric red-
shifts, e.g. based on measurements of pure photometry. However, the uncertainty of such
an approach is much higher than the measurement errors obtained from spectroscopy.
For this reason, the astronomical community has focused in the uncertainty quantifica-
tion of redshift estimates through probability density functions (PDFs), instead of using
simple point estimates. In this work we propose two neural network models based on
Mixture Density Networks (MDN) (Bishop 1994). We use a deep MDN as first architec-
ture, designed to use photometric features as inputs and to generate PDFs. The second
architecture is a combination of a Deep Convolutional Network (DCN) (LeCun et al.
1998) with a MDN with the purpose to obtain photo-z PDFs based on images as in-
put. We will show that this approach achieves better predictions due to its use of image
data that - in contrast to using pre-defined features - allows to capture more details of
the objects. We compare the results obtained with a commonly used tool in the related
literature, the Random Forest (RF) (Breiman 2001).

2. Deep learning algorithms
In the next two subsections we give a description of the deep learning algorithms used

for the experiments.
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# Type Size Maps Activ

1 input 28x28 / /

2 Conv 3x3 256 tanh

3 Pool 2x2 256 tanh

4 Conv 2x2 512 tanh

5 Pool 2x2 512 tanh

6 Conv 3x3 512 ReLu

7 Conv 2x2 1024 ReLu

8 MDN 500 / tanh

9 MDN 100 / tanh

10 output 15 / Eq. 2.1

Table 1. DCMDN architecture

2.1. Mixture Density Network
A Mixture Density Network (Bishop 1994) is the combination of a feed-forward neural
network and a Gaussian mixture model. The outputs of the network parametrize the
Gaussian mixture p(θ|x) =

∑n
j=1 ωjN (μj , σj ), i.e. they define the means, variances, and

weights. Thus the MDN produces a multi-modal PDF suitable for the case of photo-z,
which a flexible enough to represent a multi-modal behavior. The means, variances and
weights, are then obtained by the outputs z of the network:

μj = zμ
j , σj = exp(zσ

j ) , ωj =
exp(zω

j )
∑n

i=1 exp(zω
i )

. (2.1)

Normally the MDN uses negative log-likelihood as a loss function, but in this work we
use the continuous rank probability score (CRPS) (Gneiting et al. 2005) as loss function.
This is to obtain a trained MDN which produces PDFs both well calibrated and sharp
as measured by the CRPS, as explained in detail in Polsterer et al. (2016).

2.2. Deep Convolutional Network
A Deep Convolutional Network is a model in which several convolutional and sub-
sampling layers are coupled with a fully-connected network. This architecture is par-
ticularly meant to learn from raw image data. In our case, we want to estimate redshifts
directly from images, without the need to extract photometric features, so we couple a
DCN with a MDN, in order to produce photo-z PDFs directly from SDSS images. We
alternate convolutional and pooling layers to generate feature maps and generate a hier-
archically compressed representation of the input data. The output of the convolutional
network is then taken as input for the MDN which produces a multi-modal predictive
density for photo-z. Thereby the extraction of the feature maps is automatically done
by the network. Those obtained feature maps are then taken as inputs for the fully-
connected part. We choose a modified version of the LeNet-5 architecture (LeCun et al.
1998), properly coupled with the presented MDN (see Section 2.1), obtaining what we
call a Deep Convolutional Mixture Density Network (DCMDN). In Tab. 1 there is the
architecture of the DCMDN used for the experiments, designed to run on GPUs, using
a cluster equipped with Nvidia Titan X.
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Figure 1. Results of the predictions obtained with the MDN and the DCMDN, compared
with the RF results. For each experiment, three plots are given. The upper plots compare
the spectroscopic redshift with the predictive distributions produced by the models, where the
color indicates the summed probability density of the distributions. In the two lower plots, the
histogram of the PIT values and the histogram of the individual CRPS values, are shown. The
mean CRPS value is also given.

3. Experiments and Analysis
The data we use for the experiments are taken from the Sloan Digital Sky Survey

Quasar Catalog V (Richards et al. 2010), based on the 7-th data release of the Sloan
Digital Sky Survey (SDSS), consisting in 105, 783 spectroscopically confirmed quasars, in
a redshift range between 0.065 and 5.46. For the experiments we use a random subsample
of 50, 000 patterns. For each pattern we take the five ugriz magnitudes as input features
and the respective images in the same bands. Finally, we compare the performances of
MDN and DCMDN with the widely used RF.

The RF, in its original architecture, is not meant to produce PDFs. In order to obtain
a distribution, we first collect the predictions zt,n of each individual decision tree t in
the forest, for every n-th data item. We take T = 256 number of trees in the forest and
define the PDF for the RF by fitting a mixture of 5 Gaussian components to the outputs,
p(θ|x) =

∑5
j=1 ωjN (θ|(μj , σj )), as we described also in Section 2.1 for the MDN.

For the RF and the MDN we use as input the 5 magnitudes plus all the possible
color combinations, obtaining a 15-dimensional feature vector, respectively. The gener-
ated training and test set both contain 25, 000 patterns. The DCMDN is trained on the
images, that are obtained using the Hierarchical Progressive Surveys data partitioning
format (Fernique et al. 2015) and performing a proper cutout on client side, in order
to obtain the desired dimensions (28x28). Each pattern is originally a stack of 5 images
in the ugriz filters, where every pixel is converted from flux units to luptitudes (Lupton
et al. 1999). As done with the usual features, we additionally form the color images from
the ugriz images by taking all possible pairwise differences, thus obtaining a stack of 15
images; every object/pattern is then represented by a tensor of dimensions 15x28x28.
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In order to have a rotational invariant network, we perform data augmentation, taking
rotations of each image at 0, 90, 180, 270 degrees. By doing so, we obtain a training set
of 100, 000 images, a validation set of 50, 000 images and a test set of 50, 000 images.
Dropout is also applied to limit overfitting.

The results of the experiments are reported in Fig. 1. Following Polsterer et al. (2016),
we use two statistical tools: the CRPS as a score function, and the probability integral
transform (PIT) histogram (Gneiting et al. 2005), in order to obtain a visual estimation
of the quality of the produced PDFs. In the RF experiment, the model reaches a CRPS
of 0.20 and the PIT shows a bit of overdispersion. The performance of the MDN is a
bit worse than the RF in terms of the CRPS, with a score of 0.21, but exhibits a better
calibrated PIT. Using the DCMDN architecture we achieve the best results in terms of the
CRPS, with a score of 0.19. The resulting PIT is acceptable, although it is still showing
some underdispersion. The reason for the better overall performance of the DCMDN is
that the features-based approach use only a fraction of the available information. In fact,
in the process of features extraction a lot of information gets lost. Instead, using images,
the DCMDN is able to automatically determine thousands of features, leading to a better
prediction of the photo-z PDFs.

4. Conclusions
Main purpose of this work is to show a method to produce photo-z PDFs using deep

learning architectures. We generate very good probabilistic predictions based on features
or images as input, producing a Gaussian mixture model as output. Our proposed ar-
chitectures show better performances in the comparison carried out with a RF based
method. In particular, we show that the proposed DCMDN gives the best performance,
as it is able to use the entire information contained in the images. As showed by the
PIT analysis, some optimization with respect to calibration can still be done, in order
to deal with some dispersion phenomena. We firmly believe that the presented method
needs little improvements to become a standard in predicting photo-z PDFs. As regres-
sion problems are very common in Astronomy, this approach can easily be applied to
many other scientific topics.
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