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Abstract

We extend the classical setting of an optimal stopping problem under full information
to include problems with an unknown state. The framework allows the unknown state
to influence (i) the drift of the underlying process, (ii) the payoff functions, and (iii) the
distribution of the time horizon. Since the stopper is assumed to observe the underly-
ing process and the random horizon, this is a two-source learning problem. Assigning
a prior distribution for the unknown state, standard filtering theory can be employed to
embed the problem in a Markovian framework with one additional state variable repre-
senting the posterior of the unknown state. We provide a convenient formulation of this
Markovian problem, based on a measure change technique that decouples the underly-
ing process from the new state variable. Moreover, we show by means of several novel
examples that this reduced formulation can be used to solve problems explicitly.
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1. Introduction

In most literature on optimal stopping theory, the stopper acts under full information about
the underlying system. In some applications, however, information is a scarce resource, and
the stopper then needs to base her decision only on the information available upon stopping.
We study stopping problems of the type

sup
τ

E
[
g(τ, Xτ , θ )1{τ<γ } + h(γ, Xγ , θ )1{γ≤τ }

]
, (1)

where X is a diffusion process; here g and h are given functions representing the payoff if
stopping occurs before or after the random time horizon γ , respectively, and θ is a Bernoulli
random variable representing the unknown state. This unknown state may influence the drift
of the diffusion process X, the distribution of the random horizon γ and the payoff functions g
and h.

Cases with g(t, x, θ ) = g(t, θ ) and h(t, x, θ ) = h(t, θ ) are closely related to statistical prob-
lems, where the process X merely serves as an observation process but does not affect the
payoff upon stopping. A classical example is the sequential testing problem for a Wiener pro-
cess; see [21] for a perpetual version and [19] for a version with a random horizon. Cases with
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g(t, x, θ ) = g(t, x) and h(t, x, θ ) = h(t, x), on the other hand, where the unknown state does not
affect the payoff directly but only implicitly via the dynamics of X, have been studied mainly in
the financial literature. For example, American options with incomplete information about the
drift of the underlying process have been studied in [4] and [7], and a liquidation problem has
been studied in [5]. The related literature includes optimal stopping for regime-switching mod-
els (see [12] and [23]), studies of models containing change points [9, 13], a study allowing
for an arbitrary distribution of the unknown state [6], problems of stochastic control [16] and
singular control [2], and stochastic games [3] under incomplete information. Stopping prob-
lems with a random time horizon are studied in, for example, [1] and [17], where the authors
consider models with a random finite time horizon but with state-independent distributions; for
a study with a state-dependent random horizon, see [8].

In the current article, we study the optimal stopping problem using the general formulation
in (1), which is flexible enough to accommodate several new examples. In particular, the notion
of a state-dependent random horizon appears to be largely unstudied, even though it is a natural
ingredient in many applications. Indeed, consider a situation where the unknown state is either
‘good’ (θ = 1) or ‘bad’ (θ = 0) for an agent who is thinking of investing in a certain business
opportunity. Since agents are typically subject to competition, the business opportunity would
eventually disappear, and the rate at which it does so would typically be larger in the ‘good’
state than in the ‘bad’ state. The disappearance of a business opportunity is incorporated in our
set-up by choosing the compensation h ≡ 0.

In some applications it is more natural to have a random state-dependent horizon at which
the stopper is forced to stop (as opposed to missing out on the opportunity). For example,
in modelling of financial contracts with recall risk (see e.g. [11]), the party who makes the
recall would decide on a time point at which the positions at hand have to be terminated.
Consequently, problems with h = g can be viewed as problems of forced stopping. More gen-
erally, the random horizon can be useful in models with competition, where h ≤ g corresponds
to situations with first-mover advantage, and h ≥ g to situations with second-mover advantage.

We first apply classical filtering methods (see e.g. [18]) to the stopping problem (1), which
allows us to reformulate the stopping problem in terms of a two-dimensional state process
(X, �), where � is the probability of one of the states conditional on observations. Then a
measure-change technique is employed, where the dynamics of the diffusion process X under
the new measure are unaffected by the unknown state, whereas the Radon–Nikodým deriva-
tive can be fully expressed in terms of �. Finally, it is shown how the general set-up, with
two spatial dimensions, can be reduced further in specific examples. In fact, we provide three
different examples (a hiring problem, a problem of optimal closing of a short position, and a
sequential testing problem with random horizon) where it turns out that the spatial dimension
is one-dimensional so that the problems are amenable to further analysis. The examples are
mainly of motivational character, and in order not to burden the presentation with too many
details, we content ourselves by providing the reduction to one spatial dimension; a detailed
study of the corresponding one-dimensional problem can then be performed using standard
methods of optimal stopping theory.

2. Problem specification

We consider a Bayesian set-up where one observes a diffusion process X in continuous time,
the drift of which depends on an unknown state θ that takes values 0 and 1 with probabilities
1 − π and π , respectively, with π ∈ [0, 1]. Given payoff functions g and h, the problem is to
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stop the process so as to maximize the expected reward in (1). Here the random horizon γ has
a state-dependent distribution but is independent of the noise of X.

The above set-up can be realized by considering a probability space (�,F , Pπ ) that hosts a
standard Brownian motion W and an independent Bernoulli-distributed random variable θ with
Pπ (θ = 1) = π = 1 − Pπ (θ = 0). Additionally, we let γ be a random time (possible infinite)
independent of W and with state-dependent survival distribution

Pπ (γ > t | θ = i) = Fi(t),

where Fi is continuous and non-increasing with Fi(0) = 1 and Fi(t) > 0 for all t ≥ 0, i = 0, 1.
We remark that we include the possibility that Fi ≡ 1 for some i ∈ {0, 1} (or for both),
corresponding to an infinite horizon. We then have

Pπ = (1 − π )P0 + πP1, (2)

where P0(·) = Pπ (· | θ = 0) and P1(·) = Pπ (· | θ = 1).
Now consider the equation

dXt = μ(Xt, θ ) dt + σ (Xt) dWt. (3)

Here μ(·, ·) : R× {0, 1} →R is a given function of the unknown state θ and the current value
of the underlying process; we denote μ0(x) = μ(x, 0) and μ1(x) = μ(x, 1). The diffusion coef-
ficient σ (·) : R→ (0, ∞) is a given function of x, independent of the unknown state θ . We
assume that the functions μ0, μ1 and σ satisfy standard Lipschitz conditions so that the exis-
tence and uniqueness of a strong solution X is guaranteed. We are also given two functions

g(·, ·, ·) : [0, ∞) ×R× {0, 1} →R

and
h(·, ·, ·) : [0, ∞) ×R× {0, 1} →R,

which we refer to as the payoff functions. We assume that gi and hi are continuous for i =
0, 1, where we use the notation gi(·, ·) := g(·, ·, i) and hi(·, ·) := h(·, ·, i) to denote the payoff
functions on the event {θ = i}, i = 0, 1.

Let FX denote the smallest right-continuous filtration that makes X adapted, and let T X be
the set of FX-stopping times. Similarly, let FX,γ denote the smallest right-continuous filtration
to which both X and the process 1{·≥γ } are adapted, and let T X,γ be the set of FX,γ -stopping
times.

We now consider the optimal stopping problem

V = sup
τ∈T X,γ

Eπ

[
g(τ, Xτ , θ )1{τ<γ } + h(γ, Xγ , θ )1{γ≤τ }

]
. (4)

In (4), and in similar expressions throughout the paper, we use the convention that
h(τ, Xτ , θ ) := 0 on the event {τ = γ = ∞}. We further assume that the integrability condition

Eπ

[
sup
t≥0

{|g(t, Xt, θ )| + |h(t, Xt, θ )|}
]

< ∞

holds.
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Remark 1. The unknown state θ in the stopping problem (4) influences

(i) the drift of the process X,

(ii) the payoffs g and h, and

(iii) the survival distribution of the random horizon γ .

More precisely, on the event {θ = 0}, the drift of X is μ0(·), the payoff functions are g0(·, ·)
and h0(·, ·), and the random horizon has survival distribution function F0(·); on the event
{θ = 1}, the drift is μ1, the payoff functions are g1(·, ·) and h1(·, ·), and the random horizon
has survival distribution function F1(·).
Remark 2. In (4), the payoff on the event {τ = γ } is specified in terms of h. In some
applications, however, one may want to use the alternative formulation

U := sup
τ∈T X,γ

Eπ

[
g(τ, Xτ , θ )1{τ≤γ } + h(γ, Xγ , θ )1{γ<τ }

]
. (5)

If g ≥ h, then we have

U = sup
τ∈T X,γ

Eπ

[
g(τ, Xτ , θ )1{τ<γ } + g(γ, Xγ , θ )1{γ≤τ }

]

since τ ∧ γ ∈ T X,γ for every τ ∈ T X,γ , and thus the formulation (5) is contained in the
formulation (4).

Similarly, if g ≤ h, then

U = sup
τ∈T X,γ

Eπ

[
g(τ, Xτ , θ )1{τ<γ } + h(γ, Xγ , θ )1{γ≤τ }

] = V,

where the first equality uses that for a given stopping time τ , the time

τ ′ =
{

τ on {τ < γ }
∞ on {τ ≥ γ }

is also a stopping time. In the general case where no ordering between g and h is given, how-
ever, the formulation (5) is more involved; such cases are not covered by the results of the
current article.

3. A useful reformulation of the problem

In this section we rewrite the optimal stopping problem (4) with incomplete information
as an optimal stopping problem with respect to stopping times in T X and with complete
information.

First consider the stopping problem

V̂ = sup
τ∈T X

Eπ

[
g(τ, Xτ , θ )1{τ<γ } + h(γ, Xγ , θ )1{γ≤τ }

]
, (6)

where the supremum is taken over FX-stopping times. Since T X ⊆ T X,γ , we have V̂ ≤ V . On
the other hand, by a standard argument (see [1] or [17]), we also have the reverse inequality, so
V̂ = V . Indeed, first recall that for any τ ∈ T X,γ there exists τ ′ ∈ T X such that τ ∧ γ = τ ′ ∧ γ ;
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see [20, p. 378]. Consequently, τ = τ ′ on {τ < γ } = {τ ′ < γ } and τ ∧ γ = τ ′ ∧ γ = γ on {τ ≥
γ } = {τ ′ ≥ γ }, so

Eπ

[
g(τ, Xτ , θ )1{τ<γ } + h(γ, Xγ , θ )1{γ≤τ }

] =Eπ

[
g(τ ′, Xτ ′ , θ )1{τ ′<γ } + h(γ, Xγ , θ )1{γ≤τ ′}

]
,

from which V̂ = V follows. Moreover, if τ ′ ∈ T X is optimal in (6), then it is also optimal in (4).

Remark 3. Since we assume that the survival distributions are continuous, we have

Pπ (τ = γ < ∞) = 0

for any τ ∈ T X . Consequently, we can alternatively write

V̂ = sup
τ∈T X

Eπ

[
g(τ, Xτ , θ )1{τ≤γ } + h(γ, Xγ , θ )1{γ<τ }

]
.

To study the stopping problem (4), or equivalently the optimal stopping problem (6), we
introduce the conditional probability process

�t := Pπ

(
θ = 1 |FX

t

)
and the corresponding probability ratio process

	t := �t

1 − �t
. (7)

Note that �0 = π and 	0 = ϕ := π/(1 − π ), Pπ -a.s.

Proposition 1. We have

V = sup
τ∈T X

Eπ

[
g0(τ, Xτ )(1 − �τ )F0(τ ) + g1(τ, Xτ )�τ F1(τ ) (8)

−
∫ τ

0
h0(t, Xt)(1 − �t) dF0(t) −

∫ τ

0
h1(t, Xt)�t dF1(t)

]
.

Moreover, if τ ∈ T X is optimal in (8), then it is also optimal in (4).

Proof. Let τ denote a stopping time in T X . Using the tower property, we find that

Eπ

[
g(τ, Xτ , θ )1{τ<γ }

] =Eπ

[
Eπ

[
gi(τ, Xτ )1{τ<γ } |FX

τ

]]
=Eπ

[
Eπ

[
g(τ, Xτ , θ )1{τ<γ } |FX

τ , θ = 0
]
(1 − �τ )

+Eπ

[
g(τ, Xτ , θ )1{τ<γ } |FX

τ , θ = 1
]
�τ

]
=Eπ

[
g0(τ, Xτ )Pπ

(
τ < γ |FX

τ , θ = 0
)
(1 − �τ )

+ g1(τ, Xτ )Pπ

(
τ < γ |FX

τ , θ = 1
)
�τ

]
=Eπ

[
g0(τ, Xτ )(1 − �τ )F0(τ ) + g1(τ, Xτ )�τ F1(τ )

]
,

where for the last equality we recall that γ and τ are independent on the event {θ = i}, i = 0, 1.
Similarly, for the second term we use

Pπ

(
θ = 0, γ ≥ t |FX

τ

) = (1 − �τ )F0(t), Pπ

(
θ = 1, γ ≥ t |FX

τ

) = �τ F1(t),
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so that

Eπ

[
h(γ, Xγ , θ )1{γ≤τ }

] =Eπ

[
Eπ

[
h(γ, Xγ , θ )1{γ≤τ } |FX

τ

]]
= −Eπ

[∫ ∞

0
Eπ

[
h(γ, Xγ , θ )1{γ≤τ } |FX

τ , θ = 0, γ = t
]
(1 − �τ ) dF0(t)

+
∫ ∞

0
Eπ

[
h(γ, Xγ , θ )1{γ≤τ } |FX

τ , θ = 1, γ = t
]
�τ dF1(t)

]

= −Eπ

[∫ ∞

0
h0(t, Xt)1{t≤τ }(1 − �τ ) dF0(t)

+
∫ ∞

0
h1(t, Xt)1{t≤τ }�τ dF1(t)

]

= −Eπ

[∫ τ

0
h0(t, Xt)(1 − �t) dF0(t) +

∫ τ

0
h1(t, Xt)�t dF1(t)

]
,

where the last equality holds because � is a martingale. The optimal stopping problem (4)
therefore coincides with the stopping problem

sup
τ∈T X

Eπ

[
g0(τ, Xτ )(1 − �τ )F0(τ ) + g1(τ, Xτ )�τ F1(τ )

−
∫ τ

0
h0(t, Xt)(1 − �t) dF0(t) −

∫ τ

0
h1(t, Xt)�t dF1(t)

]
. �

It is well known (see e.g. [22, pp. 180–181] or [10, p. 522]) that the posterior probability is
given by

�t =
π

1−π
Lt

1 + π
1−π

Lt
,

where

Lt := exp

{∫ t

0

μ1(Xs) − μ0(Xs)

σ 2(Xs)
dXs − 1

2

∫ t

0

μ2
1(Xs) − μ2

0(Xs)

σ 2(Xs)
ds

}
.

Therefore, by an application of Itô’s formula, the pair (X, �) satisfies{
dXt = (μ0(Xt) + (μ1(Xt) − μ0(Xt))�t) dt + σ (Xt) dŴt,

d�t = ω(Xt)�t(1 − �t) dŴt,
(9)

where ω(x) := (μ1(x) − μ0(x))/σ (x) is the signal-to-noise ratio and

Ŵt :=
∫ t

0

dXt

σ (Xs)
−

∫ t

0

1

σ (Xt)
(μ0(Xs) + (μ1(Xs) − μ0(Xs))�s) ds

is the so-called innovation process; by P. Lévy’s theorem, Ŵ is a Pπ -Brownian motion. By
our non-degeneracy and Lipschitz assumptions on the coefficients, there exists a unique strong
solution to the system (9), and the pair (X, �) is a strong Markov process. Moreover, using
Itô’s formula, it is straightforward to check that the likelihood ratio process 	 in (7) satisfies

d	t = μ1(Xt) − μ0(Xt)

σ 2(Xt)
	t(dXt − μ0(Xt) dt). (10)
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4. A measure change

In the current section we provide a measure change that decouples X from �. This specific
measure change technique was first used in [15] and has since been used by several authors
(see [2], [5], [7], [14]).

Lemma 1. For t ∈ [0, ∞), let Pπ,t denote the measure Pπ restricted to FX
t . We then have

dP0,t

dPπ,t
= 1 + ϕ

1 + 	t
.

Proof. For any A ∈FX
t we have

Eπ [(1 − �t)1A] =Eπ [1{θ=0}1A] = (1 − π )E0[1A]

by (2). Consequently,
dP0,t

dPπ,t
= 1 − �t

1 − π
= 1 + ϕ

1 + 	t
. �

Since 1 − �τ = 1/(1 + 	t) and �t = 	t/(1 + 	t), it is now clear that the stopping problem
(4) (or equivalently problem (8)) can be written as

V = 1

1 + ϕ
sup

τ∈T X
E0

[
g0(τ, Xτ )F0(τ ) + g1(τ, Xτ )	τ F1(τ )

−
∫ τ

0
h0(t, Xt) dF0(t) −

∫ τ

0
h1(t, Xt)	t dF1(t)

]
,

where the expected value is with respect to P0, under which the process (X, 	) is strong
Markov and satisfies {

dXt = μ0(Xt) dt + σ (Xt) dWt

d	t = ω(Xt)	t dWt
(11)

(see (3) and (10)).
Next we introduce the process

	◦
t := F1(t)

F0(t)
	t, (12)

so that

V = 1

1 + ϕ
sup

τ∈T X
E0

[
F0(τ )

(
g0(τ, Xτ ) + g1(τ, Xτ )	◦

τ

)

−
∫ τ

0
h0(t, Xt) dF0(t) −

∫ τ

0

F0(t)

F1(t)
h1(t, Xt)	

◦
t dF1(t)

]
.

Note that the process 	◦ satisfies

d	◦
t = 1

f (t)
	◦

t df (t) + ω(Xt)	
◦
t dWt

under P0, where f (t) = F1(t)/F0(t).

Remark 4. The process 	◦ is the likelihood ratio given observations of the processes X and
1{·≥γ } on the event {γ > t}. Indeed, for t ≤ T , defining

�◦
t := Pπ

(
θ = 1 |FX

t , γ > t
) = Pπ

(
θ = 1, γ > t |FX

t

)
Pπ

(
γ > t |FX

t
) = �tF1(t)

�tF1(t) + (1 − �t)F0(t)
,
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we have

�◦
t = 	◦

t

	◦
t + 1

.

We summarize our theoretical findings in the following theorem.

Theorem 1. Let

v = sup
τ∈T X

E0

[
F0(τ )

(
g0(τ, Xτ ) + g1(τ, Xτ )	◦

τ

)

−
∫ τ

0
h0(t, Xt) dF0(t) −

∫ τ

0

F0(t)

F1(t)
h1(t, Xt)	

◦
t dF1(t)

]
, (13)

where (X, 	◦) is given by (11) and (12). Then V = v/(1 + ϕ), where ϕ = π/(1 − π ). Moreover,
if τ ∈ T X is an optimal stopping in (13), then it is also optimal in the original problem (4).

Remark 5. Under P0, the three-dimensional process (t, X, 	◦) is strong Markov, and the stop-
ping problem (13) can be naturally embedded in a setting allowing for an arbitrary starting
point (t, x, ϕ). In the sections below we consider examples that can be reduced to problems
that only depend on 	◦, where 	◦ is a one-dimensional Markov process, which simplifies the
embedding.

5. An example: a hiring problem

In this section we consider a (simplistic) version of a hiring problem. To describe this, con-
sider a situation where a company tries to decide whether or not to employ a certain candidate,
where there is considerable uncertainty about the candidate’s ability. The candidate is either of
a ‘strong type’ or of a ‘weak type’, and during the employment procedure, tests are performed
to find out which is the true state. At the same time, the candidate is potentially lost for the
company as he/she may receive other offers. Moreover, the rate at which such offers are pre-
sented may depend on the ability of the candidate; for example, a candidate of the strong type
could be more likely to be recruited to other companies than a candidate of the weak type.

To model the above hiring problem, we let hi ≡ 0, i = 0, 1, and

g(t, x, θ ) =
{

−e−rtc if θ = 0,

e−rtd if θ = 1,

where c and d are positive constants representing the overall cost and benefit of hiring the
candidate, respectively, and r > 0 is a constant discount rate. To learn about the unknown state
θ , tests are performed and represented as a Brownian motion

Xt = μ(θ )t + σWt

with state-dependent drift

μ(θ ) =
{

μ0 if θ = 0,

μ1 if θ = 1,

where μ0 < μ1. We further assume that the survival probabilities F0 and F1 decay exponen-
tially in time, that is,

F0(t) = e−λ0t, F1(t) = e−λ1t,
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where λ0, λ1 ≥ 0 are known constants. The stopping problem (4) under consideration is thus

V = sup
τ∈T X,γ

Eπ

[
e−rτ (d1{θ=1} − c1{θ=0}

)
1{τ<γ }

]
,

where π = Pπ (θ = 1).
By Theorem 1, we have

V = 1

1 + ϕ
sup

τ∈T X
E0

[
e−(r+λ0)τ (	◦

τ d − c
)]

,

where the underlying process 	◦ is a geometric Brownian motion satisfying

d	◦
t = −(λ1 − λ0)	◦

t dt + ω	◦
t dWt.

Clearly, the value of the stopping problem is

V = d

1 + ϕ
sup

τ∈T X
E0

[
e−(r+λ0)τ

(
	◦

τ − c

d

)]
= d

1 + ϕ
VAm(ϕ),

where VAm is the value of the American call option with underlying 	◦ starting at 	◦
0 = ϕ and

with strike c/d. Standard stopping theory gives that the corresponding value is

V =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

db1−η

η(1 + ϕ)
ϕη, ϕ < b,

d

1 + ϕ

(
ϕ − c

d

)
, ϕ ≥ b,

where η > 1 is the positive solution of the quadratic equation

ω2

2
η(η − 1) + (λ0 − λ1)η − (r + λ0) = 0,

and b = cη/(d(η − 1)). Furthermore,

τ := inf{t ≥ 0 : 	◦
t ≥ b}

is an optimal stopping time. More explicitly, in terms of the process X, we have

τ = inf

{
t ≥ 0 : Xt ≥ x + σ

ω

(
ln

(
b

ϕ

)
+ (λ1 − λ0)t

)
+ μ0 + μ1

2
t

}
,

where ω := (μ1 − μ0)/σ .

6. An example: closing a short position

In this section we study an example of optimal closing of a short position under recall risk;
see [11]. We consider a short position in an underlying stock with unknown drift, where the
random horizon corresponds to a time point at which the counterparty recalls the position.
Naturally, the counterparty favours a large drift, and we thus assume that the risk of recall is
greater in the state with a small drift. A similar model (but with no recall risk) was studied
in [5].
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Let the stock price be modelled by geometric Brownian motion with dynamics

dXt = μ(θ )Xt dt + σXt dWt,

where the drift is state-dependent with μ(0) = μ0 < μ1 = μ(1), and σ is a known constant. We
let g(t, x, θ ) = h(t, x, θ ) = x e−rt and consider the stopping problem

V = inf
τ∈T X,γ

Eπ [e−rτ∧γ Xτ∧γ ],

where
Fi(t) := Pπ (γ > t | θ = i) = e−λit,

with λ0 > 0 = λ1 and
Pπ (θ = 1) = π = 1 − Pπ (θ = 0).

Here r is a constant discount rate; to avoid degenerate cases, we assume that r ∈ (μ0, μ1).
Then the value function can be written as V = v/(1 + ϕ), where

v = inf
τ∈T X

E0

[
e−rτ F0(τ )Xτ

(
1 + 	◦

τ

) + λ0

∫ τ

0
e−rtF0(t)Xt

(
1 + 	◦

t

)
dt

]
, (14)

with d	◦
t = λ0	

◦
t dt + ω	◦

t dWt and 	◦
0 = ϕ. Here ω = (μ1 − μ0)/σ .

Another change of measure will remove the occurrences of X in (14). In fact, let P̃ be a
measure with

dP̃

dP0

∣∣∣∣
Ft

= e−(σ 2/2)t+σWt ,

so that W̃t = −σ t + Wt is a P̃-Brownian motion. Then

v = x inf
τ∈T X

Ẽ

[
e−(r+λ0−μ0)τ (1 + 	◦

τ

) + λ0

∫ τ

0
e−(r+λ0−μ0)t(1 + 	◦

t

)
dt

]
, (15)

with
d	0

t = (λ0 + σω)	0
t dt + ω	0

t dW̃.

The optimal stopping problem (15) is a one-dimensional time-homogeneous problem, and
is thus straightforward to analyse using standard stopping theory. Indeed, setting

v̄ := v

x
= inf

τ∈T X
Ẽ

[
e−(r+λ0−μ0)τ (1 + 	◦

τ

) + λ0

∫ τ

0
e−(r+λ0−μ0)t(1 + 	◦

t

)
dt

]
,

the associated free-boundary problem is to find (v̄, B) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω2ϕ2

2
v̄ϕϕ + (λ0 + μ1 − μ0)ϕv̄ϕ − (r + λ0 − μ0)v̄ + λ0(1 + ϕ) = 0, ϕ < B,

v̄(ϕ) = 1 + ϕ, ϕ ≥ B,

v̄ϕ(B) = 1,

(16)

and such that v̄ ≤ 1 + ϕ. Solving the free-boundary problem (16) gives

B = η(r − μ0)(μ1 − r)

(1 − η)(r + λ0 − μ0)(λ0 + μ1 − r)
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and

v̄(ϕ) =

⎧⎪⎨
⎪⎩

r − μ0

(1 − η)(r + λ0 − μ0)

(
ϕ

B

)η

− λ0

μ1 − r
ϕ + λ0

r + λ0 − μ0
, ϕ < B,

1 + ϕ, ϕ ≥ B,

where η < 1 is the positive solution of the quadratic equation

ω2

2
η(η − 1) + (λ0 + μ1 − μ0)η − (r + λ0 − μ0) = 0.

Note that v̄ is concave since it satisfies the smooth-fit condition at B and since η < 1, so v̄(ϕ) ≤
1 + ϕ. A standard verification argument then gives that

V = x

1 + ϕ
v̄(ϕ),

and
τB := inf{t ≥ 0 : 	◦

t ≥ B} = inf{t ≥ 0 : 	t ≥ B e−λ0t}
is optimal in (14).

7. An example: a sequential testing problem with a random horizon

Consider the sequential testing problem for a Wiener process, i.e. the problem of deter-
mining as quickly, and accurately, an unknown drift θ from observations of the process

Xt = θ t + σWt.

Similar to the classical version (see [21]), we assume that θ is Bernoulli-distributed with
Pπ (θ = 1) = π = 1 − Pπ (θ = 0), where π ∈ (0, 1). In [19], the sequential testing problem has
been studied under a random horizon. Here we consider an instance of a testing problem which
further extends the set-up by allowing the distribution of the random horizon to depend on the
unknown state.

More specifically, we assume that when θ = 1, then the horizon γ is infinite, i.e. F1(t) = 1
for all t; and when θ = 0, the time horizon is exponentially distributed with rate λ, i.e. F0(t) =
e−λt. Mimicking the classical formulation of the problem, we study the problem of minimizing

Pπ (θ = d) + cEπ [τ ]

over all stopping times τ ∈ T X,γ and FX,γ
τ -measurable decision rules d with values in {0, 1}.

By standard methods, the above optimization problem reduces to a stopping problem

V = inf
τ∈T X,γ

Eπ

[
�̂τ ∧ (1 − �̂τ ) + cτ

]
,

where
�̂t := Pπ

(
θ = 1 |FX,γ

t
)
.

Moreover, the process �̂ satisfies

�̂t =
{

�◦
t , t < γ,

0, t ≥ γ,
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where

�◦
t = �t

�t + (1 − �t) e−λt
= Pπ

(
θ = 1 |FX

t

)
Pπ

(
θ = 1 |FX

t
) + (

1 − Pπ

(
θ = 1 |FX

t
))

e−λt
,

and it follows that

V = inf
τ∈T X,γ

Eπ

[
�̂τ ∧ (1 − �̂τ ) + cτ

]
= inf

τ∈T X,γ
Eπ

[(
�◦

τ ∧ (
1 − �◦

τ

))
1{τ<γ } + c(τ ∧ γ )

]
= inf

τ∈T X,γ
Eπ

[(
�◦

τ ∧ (
1 − �◦

τ

) + cτ
)
1{τ<γ } + cγ 1{γ≤τ }

]
.

In other words, gi(t, π ) = π ∧ (1 − π ) + ct and hi(t, π ) = ct for i ∈ {0, 1}. Following the
general methodology leading up to Theorem 1, we find that

V = inf
τ∈T X

Eπ

[(
�◦

τ ∧ (
1 − �◦

τ

) + cτ
)
((1 − �τ )F0(τ ) + �τ ) − c

∫ τ

0
t(1 − �t) dF0(t)

]

= inf
τ∈T X

Eπ

[(
�◦

τ ∧ (
1 − �◦

τ

) + cτ
)
((1 − �τ )F0(τ ) + �τ ) − cτ (1 − �τ )F0(τ )

− c
∫ τ

0
F0(t) d(t(1 − �t))

]

= inf
τ∈T X

Eπ

[(
�◦

τ ∧ (
1 − �◦

τ

))
((1 − �τ )F0(τ ) + �τ ) + c

∫ τ

0
((1 − �t)F0(t) + �t) dt

]

= 1

1 + ϕ
inf

τ∈T X
E0

[
F0(τ )

(
	◦

τ ∧ 1
) + c

∫ τ

0
F0(t)

(
1 + 	◦

t

)
dt

]
.

Here 	◦ := �◦/(1 − �◦) satisfies

d	◦
t = λ	◦

t dt + ω	◦
t dWt,

where ω = 1/σ .
Standard stopping theory can now be applied to solve the sequential testing problem with a

random horizon. Setting

v(ϕ) := inf
τ∈T X

E0

[
F0(τ )

(
	◦

τ ∧ 1
) + c

∫ τ

0
F0(t)

(
1 + 	◦

t

)
dt

]
,

where 	◦
0 = ϕ, one expects a two-sided stopping region (0, A] ∪ [B, ∞), and v to satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2
ω2ϕ2vϕϕ + λϕvϕ − λv + c(1 + ϕ) = 0, ϕ ∈ (A, B),

v(A) = A,

vϕ(A) = 1,

v(B) = 1,

vϕ(B) = 0,

for some constants A, B with 0 < A < 1 < B. The general solution of the ODE is easily seen to
be

v(ϕ) = C1ϕ
−2λ/ω2 + C2ϕ + c

λ
− c

λ + 1
2ω2

ϕ ln (ϕ),

https://doi.org/10.1017/jpr.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.52


Stopping problems with an unknown state 527

where C1, C2 are arbitrary constants. Since the stopping region is two-sided, explicit solutions
are not expected. Instead, using the four boundary conditions, equations for the unknowns C1,
C2, A, and B can be derived using standard methods; we omit the details.
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