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Introduction. In [8] the author studied the question of the primitivity of an Ore
extension R[x, 8], where 8 is a derivation of the ring R. If a is an automorphism of R
then it can be shown that R[x, a] is primitive if the following conditions are satisfied: (i)
no power a", s ̂  1, of a is inner; (ii) the only ideals of R invariant under a are 0 and R.
These conditions are also known to be necessary and sufficient for the skew Laurent
polynomial ring R[x, x~\ a] to be simple [9]. The object of this paper is to find conditions
which are sufficient for R[x, x~l, a] to be primitive. The results obtained are remarkably
similar to those of [8]. Two logically independent conditions are each found to be
sufficient for the primitivity of R[x, x"1, a]. Of these, one is also shown to be sufficient for
R[x, a] to be primitive. Included in the examples illustrating these results are some
applications to the theory of primitive group rings. The basic techniques involved are also
applied to produce a counterexample to the converse of a theorem of Goldie and Michler
[3] on when R[x, x'1, a] is a Jacobson ring.

The author wishes to express his thanks to Dr. C. R. Jordan for a number of helpful
suggestions during the preparation of this paper.

1. Throughout, R will denote a ring with identity, a will be an automorphism of R
and R[x, x~\ a] will denote the skew Laurent polynomial ring, i.e. the ring of polyno-
mials over R in an indeterminate x and its inverse, with multiplication subject to the
relation

xr = a(r)x for all reR.

An ideal / of R is said to be an a-ideal of R if a (7) = /. An a-ideal / of R is said to
be a-prime if for all a-ideals A,B of R, AB c I implies A s I o r B c / . R is said to be
a-prime if the ideal 0 is a-prime.

The following result is easily proved.

PROPOSITION 1 (cf. [3, Lemmas 1.1, 1.3, 1.7], [7, Lemmas 1.3, 1.4]). Let S =
R[x, x~\ a], let I be an ideal of S and let J be an a-ideal of R. Then

(i) IC\R is an a-ideal of R and JS is an ideal of S;

(Hi) // I is prime then IC\R is a-prime and if J is a-prime then JS is prime.
For any ring T the Jacobson radical of T is denoted J(T). If / is an ideal of T, we

denote by J{I) the ideal of T such that / ( / ) / / = J(T/i). ^T(/) will denote the set
{c € T: [c + t] is a regular element of T/i).

PROPOSITION 2. Let S = R[x, x'1, a]. If R is right noetherian and a-prime then
J(S) = 0.
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Proof. This follows from [6, Theorem 2].

2. a-primitive rings and aG rings.
n

DEFINITION. Let S = R[x,x~1,a] and let f(x)= £ a^'eS, with fl^O and am^0.
i=m

Then the length of /(x) is the non-negative integer n-m.

DEFINITION. The automorphism a is said to be stiff on I? if for all non-zero ideals / of
R[x,x~\al

DEFINITION. The automorphism a is said to be rigid on R if the mapping 0 from the
set of ideals of R[x, x~\ a] to the set of a-ideals of JR defined by 6(I) = inR, for all
ideals / of R[x, x~l, a], is a bijection.

LEMMA 1. (i) 1/ there exists a central element z of R such that {an(z)-z)ecSR(0) for
all n > 0 then a is stiff on R;

(ii) if there exists a central element z of R such that (an(z) — z) is a unit for all n>0
then a is rigid on R.

Proof, (i) Let / be a non-zero ideal of S. Let f(x) be a non-zero element of / of minimal
n

length, /(x) = £ djx', a^^O, an^ 0. Since /(x)xr e / for all integers r, it is clear that m may
i = m

n

be assumed to be 0. Suppose that n > 0. Let g(x) = f(x)z - zf(x) = £ a^a^z) - z)x\ By the

choice of z,g(x) # 0 but g(x) e / and the length of g(x) is less than the length of f(x), which
contradicts the choice of /(x). Hence n = 0 and 0 / / (x ) = aoe R. Thus a is stiff on R.

(ii) It is sufficient to show that I = (inR)S for all ideals / of S, where S =
R[x, x~\a]. If I is an ideal of S then, by (i), a is stiff on R/(inR). It follows from
Proposition l(ii) that I=(inR)S.

DEFINITION. R is said to be a-primitive if there exists a maximal right ideal M of R
such that M contains no non-zero a-ideals of R.

THEOREM 1 (cf. [8, Theorem 1]. 1/ R is a-primitive and a is stiff on R then
R[x, x"1, a] is primitive.

Proof. The proof is a precise analogue of that of [8, Theorem 1].

DEFINITION. R is said to be aG if it is a-prime and the intersection of the non-zero
a-prime ideals of R is non-zero.

THEOREM 2 (cf. [8, Theorem 2]). If R is right noetherian, R is aG and a is stijf on R
then R[x, x~\ a] is primitive.

Proof. Let 7 denote the intersection of the non-zero a-prime ideals of R and let P be
a non-zero primitive ideal of S, where S = R[x, x~x, a]. Since a is stiff, it follows from
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Proposition 1 that I^PDR. Consequently either S is primitive or I s J(S). But / ^ 0 and
J(S) = 0 by Proposition 2. Hence S is primitive.

If D is a division ring which is not algebraic over its centre then the ordinary Laurent
polynomial ring D[x, x~l] is primitive. Consequently the condition that a is stiff on R is
not necessary for R[x, x~l, a] to be primitive. Example 1 (resp. Example 2) below is of a
ring R with automorphism a satisfying the conditions of Theorem 2 (resp. Theorem 1)
but not those of Theorem 1 (resp. Theorem 2). Thus the statements "i? is aG" and "i? is
a-primitive" are logically independent and neither is necessary for R[x, x ~ \ a ] to be
primitive.

EXAMPLE 1 (cf. [8, Example 1]). Let R = fe[[y]] be the power series ring over a field k
of characteristic 0. Let a be the k-automorphism of R such that a(y) = 2y. The non-zero
ideals of JR are of the form y'R, r>0, and are all a-invariant. It follows that the only
non-zero a-prime ideal of R is yR and hence that R is aG. For n>0 , a"(y) — y =
(2n - l)y G ^R(0) and so, by Lemma l(i), a is stiff on R. It follows from Theorem 2 that
R[x, x~\ a] is primitive. However, the only maximal ideal of the commutative ring R is
an a-ideal, so that R is not a-primitive.

EXAMPLE 2 (cf. [8, Example 2]). Let R = k(t)[y] be the polynomial ring in an
indeterminate y over the field of rational functions in an indeterminate t over a field k of
characteristic 0. Let a be the fe-automorphism such that a(t) = 2t and a(y) = 2y. Let M
be the maximal ideal (y-l) i? . Then for all integers /, ai(M) = (2iy-l)R, so that

H a'(M) = 0 and M contains no non-zero a-ideals. Thus R is a-primitive. For n>0,
i>—oo

a n (y) -y = (2"-l)ye<<?R(0) and so, by Lemma l(i), a is stiff on R. It follows from
Theorem 1 that R[x, x~l, a] is primitive. R is not aG because for all \ek, (y-\t)R is a
non-zero a-prime ideal and Oiy-X^R^O since k is infinite.

EXAMPLE 3 (cf. [8, Example 3]). Let R = k[y~\ be the polynomial ring over a field k of
characteristic 0 and a the k-automorphism of R such that a(y) = 2y. R is a-primitive

because f] a ' ( (y-l) i?) = 0 as in Example 2. R is aG because the only non-zero
I--OO

a-ideals of R are those of the form yrR, r>0 , so that yR is the only non-zero a-prime
ideal of R. As in the previous examples a is stiff on R, so that, by Theorem 1 or Theorem
2, R[x, x~l, a] is primitive.

3. Primitivity of R[x, a ] . The object of this section is to show that R[x,a] is
primitive whenever the conditions of Theorem 2 hold. By adapting the argument given in
[5, p. 22] for the case where R is a field it is easy to prove the following.
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PROPOSITION 3 [9]. / / the only a-ideals of R are 0 and R and if a" is an outer
automorphism for all n>0 , then:

(i) every ideal of R[x, a] contains a power of x;
(ii) R[x, a] is primitive;

(iii) R[x, x~l, a] is simple.

LEMMA 2. // there exists a central element z of R such that an(z)-z e ^R(0) for all
n>0 then for all non-zero prime ideals P of R[x, a] either xePorPDRisa non-zero
a-prime ideal of R.

Proof. Let P be a non-zero prime ideal of R[x, a] such that xiiP and let f(x) =
anx

n + .. , + a ^ + ao be a non-zero element of minimal degree in P. By [3, Lemma 1.2],
xe<^R[x.a](P) so that a o ^ 0 . The argument of Lemma l(i) now shows that f(x) = aoe
PHR so that POR^O. Finally PC\R is a-prime by [3, Lemmas 1.2, 1.3].

THEOREM 3. If R is right noetherian, R is aG, and {an(z)~ z)e ^R(0) for some central
zeR and all n>0, then R[x, a] is primitive.

Proof. Let I denote the intersection of the non-zero a-prime ideals of R. Suppose
that R[x, a] is not primitive and let P be a primitive ideal of R[x, a]. If x&P then, by
Lemma 2, PHR is a non-zero a-prime ideal of R and hence I^PHR. It follows that

x,a]). But by [6, Theorem 2], J(R[x, a]) = 0. Thus R[x,a] is primitive.

If R and a are as in Example 2 or Example 3 then the hypotheses of Theorem 3 are
satisfied and R[x, a] is primitive. In neither of these examples are the conditions of
Proposition 3 satisfied. The next example is of a ring R and automorphism a satisfying
the conditions of Proposition 3 but not those of Theorem 3.

EXAMPLE 4. Let K = k(t) be the field of rational functions over a field k of charac-
teristic 0. Let 8 be the derivation d/dt and let R be the Ore extension K[y, 8]. R is known
to be simple, see e.g. [2, Theorem 3.2], and clearly JKA{0} is the set of units of R. Let a be
the fc-automorphism of K such that a(t) = t + 1. Extend the action of 8 and a to R by
setting 8(y) = 0 and a(y) = y. Since 6a = a8, a is then an automorphism of R. To see that
a" is outer for all n > 0 let ceif\{0} and let j3 be the inner automorphism, /3(r) = c~Vc
for all reR. In particular j3(y) = c~1yc = y+ c~1S(c). Since for n>0 , a"(y) = y + n and
there does not exist ceK\{0} such that 8(c) = nc, it follows that a" is outer for all n > 0.
R is simple and so, by Proposition 3 (ii), R[x, a] is primitive. However, the conditions of
Theorem 3 are not satisfied since the centre of R is k and a acts as the identity on k. By
Proposition 3(ii), R[x, x~\ a] is simple and hence a is stiff on R. It follows .that the
converse of Lemma 1.1 (i) is false.

4. Application to group rings. Let k be a field and G a group having a normal
subgroup H such that GIH is an infinite cyclic group, generated by xH, say. Let a be the
k-automorphism of the group ring kH defined by setting a(h) = xhx'1 for all h e H. Then
kG — kH[x, J T \ a] and the results of §2 apply. In particular we have the following result,
where for h e G, Cc(h) = {g e G : hg = gh}.
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THEOREM 4. Let k, G, H and a be as above. If kH is prime and a-primitive, and there
exists heH such that CG(h) = H then kG is primitive.

Proof. For n>l, xj£CG(h), so an(h)-h^0. Since h is central in H and a is an
automorphism, a"(h) — h is central and hence, since kH is prime, an(h)-/i6<iffcH(0). By
Lemma l(i), a is stiff on kH. It follows by Theorem 1 and the above remarks that kG is
primitive.

EXAMPLE 5. Let G = Cx~Ca, be the restricted wreath product of two infinite cyclic
groups. G is a cyclic extension of H where H is the restricted direct product of a
countable number of infinite cyclic groups. For a given field k, kH is then the Laurent
polynomial ring over fc in a countable set of commuting indeterminates {Xj}je?. If a is the
k-automorphism of kH such that a(Xi) = xi+1 for all ieZ then kG = kH[x, x~l, a]. We
claim that kG is primitive for all fields fc.

Consider first the case where fc is countable, possibly finite. It is clear that any
non-zero a-ideal / of kH has non-zero intersection with k[xu x2,..., xn] for some
n = n(I). Let k~ denote the algebraic closure of fc. Then for each r ^ 1 the set of r-tuples
(Aj, A2, . . . , Ar), A; e fc\{0} is countable. The union of these sets, taken over all r> 1, is
countable and hence there exists a sequence (/i)iB.i, /X;efc\{0}, such that for every
positive integer r and r-tuple (A1; A2, . . . , Ar), A;efc\{0}, there exists / > 1 such that

kl = fi,, A2 = /x,+1,. . . , Ar = ju,,+r+1. For i<0 let & = 1. Let M= £MukH, where for the

integers i,j such that i < /, Mfj = {fe fc[x;, . . . , x,-] : / (m, . . . , /u,.) = 0}. By Hilbert's Nullstel-
lensatz [1, Proposition 2, p. 351], each MM is a maximal ideal of fc[xj, . . . ,x , ] and it
follows that M is a maximal ideal of kH. Suppose that there exists a non-zero a -ideal / of
kH such that I^M. Then for some positive integer n there exists non-zero / =
f(xu x2,..., x n ) e / n fc[xj, x 2 , . . . , x j . Since <*'(/) e M for all i, a1 (f) e M^+i^ for all i
and hence

a'(/)(/Xi,..., ^ + ^ 0 = 0 for all i.

Equivalently,

-.,M*+1-i) = 0 for all i. (1)

Now let N be any maximal ideal of k[xu x 2 , . . . , xn]. By the Nullstellensatz, either
x ^ . . .xneN or there exists an n-tuple (A1; A2, . . . , AJ, Aje/c\{0}, such that, for
g e k[xu x 2 , . . . , x j , g e N iff g(A1; A2, . . . , An) = 0. In the latter case there exists / ̂  1
such that Ax = /x,, A2 =/u,,+1,..., An = jn,+n_1 so that by (1), feN. It follows that
0^XiX2 . . . xJeN for every maximal ideal N of fc[xj, x 2 , . . . , xn]. But the Jacobson
radical of K[xu x 2 , . . . , x j is zero, which gives a contradiction. Thus M contains no
non-zero a-ideal of kH and kH is a-primitive. Since kH is a commutative domain and
CG(x\) = H, it follows from Theorem 4 that kG is primitive

Now let fc be an arbitrary field and / the prime subfield of fc. Then IG is primitive by
the above. It follows from [10, Theorem 2] that kG is primitive. We note that for the case
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where the transcendence degree of k over / is infinite kG is known to be primitive by [10,
Corollary 13].

EXAMPLE 6. Let H = {xlt x2) be a free abelian group of rank 2 and let a be the
automorphism of H such that a(xl) = x2 and a(x2) = x1x2. Let G be the semidirect
product Hxa(x), where (x) is infinite cyclic. We claim that if k is a field of characteristic
zero then kH is a-primitive and hence that kG is primitive.

Consider first the case where k = Q, the field of rational numbers. Let M =
(xi — 2)QH + (x2-2)QH, a maximal ideal of QH. Suppose that there exists a non-zero
a-ideal / of QH such that I^M. Then there exists non-zero /(x1; x2)eQ[x1; x2] such that
an(f(xl,x2))eM for all n>0 , i.e. f(an(xi), an(x2)) = 0 for all n>0 . In general, an(x1) =
xu(B-i)xu(») a n d a»(X2) = xj(»)x»(»+»> where u(0) = 0 and, for i > l , u(i) is the ith
Fibonacci number. Thus /(2"("-1)2u(n), 2"(n)2u(n+1)) = 0 for all n > 0, i.e. /(2u(tl+1), 2u(tt+2)) =
0 for all n>0 . It follows from Lemma 3 below that / = 0 , which gives a contradiction.
Thus QH is a-primitive, and since QH is a commutative domain and Ca(x1) = H it
follows from Theorem 3 that QG is primitive. Since {g e G : {y"1 gy : y e G} is finite} = {1}
it follows from [10, Theorem 2] that kG is primitive for all fields k of characteristic 0.

LEMMA 3. For i>\ let u(i) denote the i-th Fibonacci number and let / = /(x1)x2)€
Q[xi, x2] be such that /(2u<n), 2"("+n) = 0 for all n > 1. Then f = 0.

Proof. For n > l let A(n) = «(n + l)/u(n). It is known that A(n)-»A = (l + V5)/2 as
n -»°° (see e.g. [4, Chapter X]). Define an order > on the set of monomials x\x\, p,q > 0 as
follows:

x{xl>x\xs
2 iff p + kq>r+\s.

Since A is irrational, > is a total order. Suppose / > 0 . Then for some integer (>1

where /jeQ\{0} for l < i < f and x?(i)x^o<xp0)x50) whenever l<=i</<(. For n > l ,

f(2" " , 2U n + ) = i_fi2p

= T f- 2"(") (p(' ' )+x(")i (0)

( 1-1 \

1 J. V / " f / f \T"(n)(p(O+X(n)q(i)-(p(l)+\(n)q(«))) I f)\

But p(i) + Aq(i)<p(f) + Aq(O for l < i < ( - l and, as n->°°, A(n)-»A and u(w)-»oo.
Hence

r - l

X "(")(p(i)+x(")<i(O~(p(O+x('')<1(')))Z J ( / / / ) 2 " ( n ) ( p ( 0 + x ( n ) < ! ( 0 -(P(O+X(n)q(O))_>Q a s „_»<».

It follows from (2) that there exists JV such that for all n>N, /(2"(n),2u(n+1))^0.
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5. Jacobson rings. A ring R is said to be a Jacobson ring if every prime ideal is the
intersection of primitive ideals. Goldie and Michler [3, Theorem 1.12] have shown that if
a is an automorphism of a right noetherian Jacobson ring R then R[x, x~\ a] is also a
right noetherian Jacobson ring. Using the ideas of §2 we prove the following result,
providing counterexamples to the converse of [3, Theorem 1.12].

THEOREM 5. Let R be right noetherian. If a is rigid on R then S = R[x,x~i,a] is a
Jacobson ring.

Proof. Let P be a prime ideal of S. Then by Proposition 1, PHR is a-prime and
(PDi?)S is an ideal of S. But a is rigid and hence P = {PDR)S. By Proposition 1 (ii),

S S R _,
p IX'X 'ai'

It follows by Proposition 2 that J(P) = P, i.e. that P is the intersection of primitive ideals.
Thus S is a Jacobson ring.

EXAMPLE 7. Let R = k(t)[[y]] be the power series ring in an indeterminate y over the
field of rational functions in an indeterminate t over a field k of characteristic 0. Let a be
the fc-automorphism of R such that a(t) = 2t and a(y)=y. Then for n ^ l , an(t)-t =
(2n — l)t is a unit and so, by Lemma 1 (ii), a is rigid on R. It follows from Theorem 4 that
R[x, x~\ a] is Jacobson. However, since R is a local domain, it is certainly not a Jacobson
ring.
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