ON QUASI-ORTHODOX SEMIGROUPS WITH INVERSE TRANSVERSALS

by T. S. BLYTH and M. H. ALMEIDA SANTOS*

(Received 20th September 1995)

An inverse transversal of a regular semigroup S is an inverse subsemigroup S° that contains precisely one inverse of each element of S. Here we consider the case where S is quasi-orthodox. We give natural characterisations of such semigroups and consider various properties of congruences.

1991 Mathematics subject classification: 20M17.

An inverse transversal of a regular semigroup S is an inverse subsemigroup T with the property that $|T \cap V(x)| = 1$ for every $x \in S$, where V(x) denotes the set of inverses of $x \in S$. In what follows we shall write the unique element of $T \cap V(x)$ as x° , and T as $S^{\circ} = \{x^{\circ}; x \in S\}$. Then in S° we have $(x^{\circ})^{-1} = x^{\circ \circ}$, so that $x^{\circ} = x^{\circ \circ \circ}$ for every $x \in S$. Fundamental properties of the unary operation $x \mapsto x^{\circ}$ in such a semigroup are

- (a) [4] $(\forall x, y \in S)$ $(xy)^{\circ} = (x^{\circ}xy)^{\circ}x^{\circ} = y^{\circ}(xyy^{\circ})^{\circ} = y^{\circ}(x^{\circ}xyy^{\circ})^{\circ}x^{\circ};$
- (β) [2] ($\forall x, y \in S$) $(xy^{\circ})^{\circ} = y^{\circ\circ}x^{\circ}$, $(x^{\circ}y)^{\circ} = y^{\circ}x^{\circ\circ}$;
- (y) [7] I = $\{e \in S; e = ee^\circ\}$ and $\Lambda = \{f \in S; f = f^\circ f\}$ are sub-bands of S;
- (δ) [5] S is orthodox if and only if $(\forall x, y \in S)$ $(xy)^{\circ} = y^{\circ}x^{\circ}$.

The sub-bands I and Λ , which are respectively left regular and right regular, are such that $I \cap \Lambda$ is the semilattice $E(S^\circ)$ of idempotents of S° . Together with the inverse subsemigroup S° , they form the building bricks in the structure theorems of Saito [5].

In this paper we shall be concerned primarily with the case where S is quasiorthodox. Yamada [8] has defined a semigroup S to be *quasi-orthodox* if there is an inverse semigroup Γ and a surjective morphism $\varphi: S \to \Gamma$ such that, for every idempotent $e \in \Gamma$, the pre-image of e under φ is a completely simple subsemigroup of S. A regular semigroup S is quasi-orthodox if and only if the subsemigroup $\langle E(S) \rangle$ is completely regular.

Saito [6] has proved that if S is regular with an inverse transversal S° then the following statements are equivalent:

* The second-named author gratefully acknowledges support from INVOTAN, and Research Grant PBIC/ C/MAT/2141/96 from JNICT (Portugal).

- (1) S is quasi-orthodox;
- (2) $(\forall x, y \in S)$ $(xy)^{\circ}(xy)^{\circ\circ} = y^{\circ}x^{\circ}x^{\circ\circ}y^{\circ\circ};$
- (3) $(\forall x, y \in S)$ $(xy)^{\circ\circ}(xy)^{\circ} = x^{\circ\circ}y^{\circ\circ}y^{\circ}x^{\circ}.$

Since Green's relations \mathcal{L} and \mathcal{R} on S are given by

$$(x, y) \in \mathcal{L} \Leftrightarrow x^{\circ}x = y^{\circ}y, \quad (x, y) \in \mathcal{R} \Leftrightarrow xx^{\circ} = yy^{\circ},$$

it follows immediately that

(ϵ) S is quasi-orthodox if and only if

$$(\forall x, y \in S)$$
 $((xy)^{\circ}, y^{\circ}x^{\circ}) \in \mathcal{H}.$

In the same paper, Saito proved that if S is quasi-orthodox then S is orthodox if and only if S° is weakly multiplicative, in the sense that $(\Lambda I)^{\circ} \subseteq E(S^{\circ})$. Now if S is orthodox it follows by (δ) and (ϵ) that S is quasi-orthodox. Since $i^{\circ} \in E(S^{\circ})$ for every $i \in I$ and $l^{\circ} \in E(S^{\circ})$ for every $l \in \Lambda$, it is clear that if S is orthodox then S° is weakly multiplicative. Hence the following statements are equivalent:

- (1) S is orthodox;
- (2) S is quasi-orthodox and S° is weakly multiplicative.

Example 1. Let S be the set of real singular 2×2 matrices having a non-zero entry in the (1, 1)-position, and let M consist of S with the 2×2 zero matrix adjoined. Then, as we have shown in [1], M is a regular semigroup and relative to the definitions

$$\begin{bmatrix} a & b \\ c & a^{-1}bc \end{bmatrix}^{\circ} = \begin{bmatrix} a^{-1} & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}^{\circ} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

the set

$$M^{\circ} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}; x \neq 0 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

is an inverse transversal of M.

Consider the subset Q of M given by

$$Q = \left\{ \begin{bmatrix} x & x \\ x & x \end{bmatrix}, \begin{bmatrix} x & 0 \\ x & 0 \end{bmatrix}, \begin{bmatrix} x & x \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}; x \neq 0 \right\}.$$

It is readily seen that Q is a subsemigroup of M. Since Q is clearly closed under the operation $A \mapsto A^\circ$ we have that Q is regular with

$$Q^{\circ} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}; x \neq 0 \right\}$$

an inverse (in fact, a group) transversal of Q. Since $E(Q^{\circ})$ is a singleton and since each of $(AB)^{\circ}(AB)^{\circ\circ}$ and $B^{\circ}A^{\circ}A^{\circ\circ}B^{\circ\circ}$ belong to $E(Q^{\circ})$, it follows that $(AB)^{\circ}(AB)^{\circ\circ} = B^{\circ}A^{\circ}A^{\circ\circ}B^{\circ\circ}$ and therefore Q is quasi-orthodox. That Q is not orthodox can be seen from the observation that $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ belong to E(Q) but $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \notin E(Q)$.

In what follows we shall require certain properties of congruences. For this purpose, we let Con S be the lattice of congruences on the semigroup S, and denote by $\overline{\text{Con }S}$ the sublattice of °-congruence, i.e., congruences ϑ with the property that $(x, y) \in \vartheta$ implies $(x^\circ, y^\circ) \in \vartheta$. In [2, Theorem 1] we have shown that if $X \in \{I, S^\circ, \Lambda\}$ then Con $X = \overline{\text{Con } X}$.

Of particular interest are those congruences on $X \in \{I, S^\circ, \Lambda\}$ that are *special* in the sense that they can be extended to °-congruences on S. In [2, Theorem 8] we have shown that $i \in \text{Con I}$ is special if and only if

$$(i, j) \in \iota \Rightarrow (\forall x \in S) \quad (xi(xi)^\circ, xj(xj)^\circ) \in \iota.$$

In what follows, for $X \in \{I, S^\circ, \Lambda\}$ we shall denote Green's relations on X by \mathcal{L}_X , \mathcal{R}_X , and \mathcal{H}_X . By a result of Hall [3] we have that \mathcal{L}_X , \mathcal{R}_X , \mathcal{H}_X are respectively the restrictions to X of \mathcal{L} , \mathcal{R} , \mathcal{H} on S.

Theorem 1. If S is a regular semigroup with an inverse transversal S[°] then $\mathcal{L}_1 \in \text{Con I}$ and

$$(i, j) \in \mathcal{L}_{1} \Leftrightarrow i^{\circ} = j^{\circ}.$$

Moreover, \mathcal{R}_{I} reduces to equality.

Proof. Since I is left regular, \mathcal{L}_{I} is a congruence and \mathcal{R}_{I} reduces to equality. Now, since I is orthodox with $E(S^{\circ})$ a semilattice transversal, we have

$$(i, j) \in \mathcal{L}_{I} \Rightarrow i^{\circ} = (ij)^{\circ} = j^{\circ}i^{\circ} = i^{\circ}j^{\circ} = (ji)^{\circ} = j^{\circ}.$$

Conversely, let $i, j \in I$ be such that $i^{\circ} = j^{\circ}$. Since $i = ii^{\circ}$ and $i^{\circ}i = i^{\circ}$ we have $(i, i^{\circ}) \in \mathcal{L}_1$. Consequently, $i^{\circ} = j^{\circ}$ implies that $(i, j) \in \mathcal{L}_1$.

Corollary. \mathcal{L}_{I} is special if and only if, for all $i, j \in I$,

$$i^{\circ} = j^{\circ} \Rightarrow (\forall x \in S) \quad (xi)^{\circ \circ} (xi)^{\circ} = (xj)^{\circ \circ} (xj)^{\circ}.$$

We shall denote by μ the biggest idempotent-separating congruence on S°. For every idempotent-separating congruence π on S° we let Θ_{π} be the relation defined on S by

$$(a, b) \in \Theta_{\pi} \Leftrightarrow (a^{\circ}, b^{\circ}) \in \pi.$$

Theorem 2. If S is a regular semigroup with an inverse transversal S° then the following statements are equivalent:

- (1) S is quasi-orthodox;
- (2) \mathcal{L}_{I} is special;
- (3) \mathcal{R}_{Λ} is special;
- (4) $\Theta_{\mu} \in \overline{\operatorname{Con}} S.$

Proof. (1) \Rightarrow (2): If (1) holds then

$$(xi)^{\circ\circ}(xi)^{\circ} = x^{\circ\circ}i^{\circ\circ}i^{\circ}x^{\circ} = x^{\circ\circ}i^{\circ}x^{\circ}.$$

Then (2) follows by the Corollary to Theorem 1.

(2) \Rightarrow (1): For every $y \in S$, we have $(yy^{\circ})^{\circ} = y^{\circ \circ}y^{\circ} = (y^{\circ \circ}y^{\circ})^{\circ}$. If (2) holds, then it follows by the Corollary to Theorem 1 that

$$(\forall x, y \in S) \qquad (xyy^{\circ})^{\circ \circ}(xyy^{\circ})^{\circ} = (xy^{\circ \circ}y^{\circ})^{\circ \circ}(xy^{\circ \circ}y^{\circ})^{\circ}.$$

Now, on the one hand,

$$(xyy^{\circ})^{\circ\circ}(xyy^{\circ})^{\circ} = (xyy^{\circ})^{\circ\circ}(yy^{\circ})^{\circ}(xyy^{\circ}(yy^{\circ})^{\circ})^{\circ}$$
$$= (xyy^{\circ})^{\circ\circ}y^{\circ\circ}y^{\circ}(xyy^{\circ})^{\circ}$$
$$= (y^{\circ}(xyy^{\circ})^{\circ})^{\circ}y^{\circ}(xyy^{\circ})^{\circ}$$
$$= (xy)^{\circ\circ}(xy)^{\circ};$$

and, on the other hand,

$$(xy^{\circ\circ}y^{\circ})^{\circ\circ}(xy^{\circ\circ}y^{\circ})^{\circ} = x^{\circ\circ}y^{\circ\circ}y^{\circ}y^{\circ}y^{\circ}x^{\circ} = x^{\circ\circ}y^{\circ\circ}y^{\circ}x^{\circ}.$$

Thus $(xy)^{\circ\circ}(xy)^{\circ} = x^{\circ\circ}y^{\circ\circ}y^{\circ}x^{\circ}$ and so S is quasi-orthodox.

(1) \Leftrightarrow (3): This is similar.

(1) \Rightarrow (4): Suppose that (1) holds and that $(a, b) \in \Theta_{\mu}$. Then for every $e \in E(S^{\circ})$ we have $a^{\circ}ea^{\circ\circ} = b^{\circ}eb^{\circ\circ}$. Since $e = e^{\circ} = e^{\circ\circ}$ for every $e \in E(S^{\circ})$, it follows that, for every $x \in S$,

$$(ax)^{\circ}e(ax)^{\circ\circ} = (ax)^{\circ}e^{\circ}e^{\circ\circ}(ax)^{\circ\circ}$$
$$= (eax)^{\circ}(eax)^{\circ\circ}$$
$$= x^{\circ}(ea)^{\circ}(ea)^{\circ\circ}x^{\circ\circ} \qquad by (1)$$
$$= x^{\circ}a^{\circ}ea^{\circ\circ}x^{\circ\circ}$$
$$= x^{\circ}b^{\circ}eb^{\circ\circ}x^{\circ\circ}$$
$$= (bx)^{\circ}e(bx)^{\circ\circ}.$$

Also,

$$(xa)^{\circ}e(xa)^{\circ\circ} = (exa)^{\circ}(exa)^{\circ\circ}$$

= $a^{\circ}(ex)^{\circ}(ex)^{\circ\circ}a^{\circ\circ}$ by (1)
= $b^{\circ}(ex)^{\circ}(ex)^{\circ\circ}b^{\circ\circ}$ since $(ex)^{\circ}(ex)^{\circ\circ} \in E(S^{\circ})$
= $(xb)^{\circ}e(xb)^{\circ\circ}$.

Consequently, $\Theta_{\mu} \in \text{Con } S$. Clearly, if $(a, b) \in \Theta_{\mu}$ then $(a^{\circ}, b^{\circ}) \in \Theta_{\mu}$. Hence $\Theta_{\mu} \in \overline{\text{Con }} S$.

(4) \Rightarrow (1): If $\Theta_{\mu} \in \overline{\text{Con } S}$ then, observing that $(x, x^{\circ \circ}) \in \Theta_{\mu}$ for every $x \in S$, we have that $(xy, x^{\circ \circ}y^{\circ \circ}) \in \Theta_{\mu}$ for all $x, y \in S$ and therefore

$$(xy)^{\circ}x^{\circ\circ}x^{\circ}(xy)^{\circ\circ} = (x^{\circ\circ}y^{\circ\circ})^{\circ}x^{\circ\circ}x^{\circ}(x^{\circ\circ}y^{\circ\circ})^{\circ\circ}.$$

Clearly, the right hand side reduces to $y^{\circ}x^{\circ}x^{\circ\circ}y^{\circ\circ}$. As for the left hand side, this can be written $(x^{\circ}xy)^{\circ}x^{\circ}(xy)^{\circ\circ} = (xy)^{\circ}(xy)^{\circ\circ}$. Hence we see that S is quasi-orthodox.

Theorem 3. Let S be a regular semigroup with an inverse transversal S^o and let π be an idempotent-separating congruence on S^o. Then the following statements are equivalent:

- (1) $\Theta_{\pi} \in \overline{\operatorname{Con}} S$;
- (2) $(\forall x, y \in S)$ $((xy)^\circ, y^\circ x^\circ) \in \pi;$
- (3) $(\forall i \in I) (\forall l \in \Lambda)$ $((li)^\circ, l^\circ i^\circ) \in \pi$.

Proof. (1) \Rightarrow (2): Clearly, for every $x \in S$, we have $(x, x^{\circ \circ}) \in \Theta_{\pi}$ so if (1) holds we have $(xy, x^{\circ \circ}y^{\circ \circ}) \in \Theta_{\pi}$ whence $((xy)^{\circ}, y^{\circ}x^{\circ}) \in \pi$.

(2) \Rightarrow (3): This is clear.

(3) \Rightarrow (1): If (3) holds, we observe that, for $i, j \in I$ and $l, m \in \Lambda$,

$$i^{\circ} = j^{\circ}, l^{\circ} = m^{\circ} \Rightarrow ((li)^{\circ}, (mj)^{\circ}) \in \pi.$$

Hence, if $(x, y) \in \Theta_{\pi}$ we have $(x^{\circ}x^{\circ\circ}, y^{\circ}y^{\circ\circ}) \in \pi$ and therefore, since π is idempotentseparating, $x^{\circ}x^{\circ\circ} = y^{\circ}y^{\circ\circ}$. Applying the above observation we deduce that, for every $a \in S$,

 $((x^{\circ}xaa^{\circ})^{\circ}, (y^{\circ}yaa^{\circ})^{\circ}) \in \pi.$

Since $(x^{\circ}, y^{\circ}) \in \pi$ it follows that

$$((xa)^{\circ}, (ya)^{\circ}) = (a^{\circ}(x^{\circ}xaa^{\circ})^{\circ}x^{\circ}, a^{\circ}(y^{\circ}yaa^{\circ})^{\circ}y^{\circ}) \in \pi$$

and therefore $(xa, ya) \in \Theta_{\pi}$. Similarly, we can show that $(ax, ay) \in \Theta_{\pi}$, and therefore $\Theta_{\pi} \in \text{Con } S$. It now follows from the definition of Θ_{π} that $\Theta_{\pi} \in \text{Con } S$.

Corollary. S is quasi-orthodox if and only if μ is such that

$$(\forall x, y \in S)$$
 $((xy)^\circ, y^\circ x^\circ) \in \mu.$

Proof. This follows immediately by Theorem 2.

In order to proceed, we require some general facts concerning °-congruences. In [2] we have established the general form of such congruences. Specifically, we define a triple $(\iota, \pi, \lambda) \in \text{Con I} \times \overline{\text{Con }} S^{\circ} \times \text{Con } \Lambda$ to be

(a) balanced if $\iota|_{E(S^{\circ})} = \pi|_{E(S^{\circ})} = \lambda|_{E(S^{\circ})}$;

(b) *linked* if for all $i_1, i_2 \in I$, all $x_1, x_2 \in S^\circ$, and all $l_1, l_2 \in \Lambda$,

$$(i_{1}, i_{2}) \in \iota, (l_{1}, l_{2}) \in \lambda \Rightarrow \begin{cases} (l_{1}i_{1}(l_{1}i_{1})^{\circ}, l_{2}i_{2}(l_{2}i_{2})^{\circ}) \in \iota & [\alpha] \\ ((l_{1}i_{1})^{\circ}, (l_{2}i_{2})^{\circ}) \in \pi & [\beta] \\ ((l_{1}i_{1})^{\circ}(l_{1}i_{1}, (l_{2}i_{2})^{\circ}) \in \iota & [\alpha] \end{cases}$$

$$((l_1l_1) l_1l_1, (l_2l_2) l_2l_2) \in \mathcal{X} \quad [\gamma]$$

$$(i_1, i_2) \in \iota, (x_1, x_2) \in \pi \Rightarrow (x_1 i_1 x_1^\circ, x_2 i_2 x_2^\circ) \in \iota$$
 [δ]

$$(l_1, l_2) \in \lambda, (x_1, x_2) \in \pi \Rightarrow (x_1^{\circ} l_1 x_1, x_2^{\circ} l_2 x_2) \in \lambda \qquad [\epsilon]$$

The set BLT(S) of balanced linked triples forms a lattice that is isomorphic to $\overline{\text{Con }S}$. Every $\vartheta \in \overline{\text{Con }S}$ is of the form $\Psi(\iota, \pi, \lambda)$ where $(\iota, \pi, \lambda) \in \text{BLT}(S)$ and

 $(a,b) \in \Psi(\iota,\pi,\lambda) \Leftrightarrow (aa^{\circ},bb^{\circ}) \in \iota, \quad (a^{\circ},b^{\circ}) \in \pi, \quad (a^{\circ}a,b^{\circ}b) \in \lambda.$

Concerning the special congruences on $X \in \{I, S^\circ, \Lambda\}$ we have also established in [2] the following results:

(A) if $i \in \text{Con I}$ is special then the biggest extension of i to a °-congruence on S is the congruence $\hat{i} \in \overline{\text{Con S}}$ given by

$$(a, b) \in \hat{\imath} \Leftrightarrow (\forall i \in I) \quad (ai(ai)^\circ, bi(bi)^\circ) \in \imath;$$

(B) a dual result if $\lambda \in \text{Con }\Lambda$ is special;

(C) $\pi \in \text{Con } S^\circ$ is special if and only if

$$(x, y) \in \pi \Rightarrow (\forall i \in I) (\forall l \in \Lambda) \quad ((lxi)^\circ, (lyi)^\circ) \in \pi.$$

In this case the biggest extension of $\pi \in \text{Con } S^\circ$ to a °-congruence on S is the congruence $\hat{\pi} \in \text{Con } S$ given by

$$(a, b) \in \hat{\pi} \Leftrightarrow (\forall i \in I) (\forall l \in \Lambda) \quad ((lai)^{\circ}, (lbi)^{\circ}) \in \pi.$$

In view of Theorem 2, when S is quasi-orthodox there are balanced linked triples of the form $(\mathcal{L}_1, -, -)$ and $(-, -, \mathcal{R}_{\lambda})$. Since, by Theorem 1, \mathcal{L} and \mathcal{R} reduce to equality on $E(S^\circ)$, the middle components of any such triples must be idempotent-separating congruences on S° . Conversely, any balanced linked triple of the form (ι, π, λ) in which π is idempotent-separating is such that $\iota \subseteq \mathcal{L}_1$ and $\lambda \subseteq \mathcal{R}_{\Lambda}$. In fact, since in such a triple $\iota|_{E(S^\circ)}$ is equality we have, by Theorem 1,

$$(i_1, i_2) \in \iota \Rightarrow i_1^\circ = i_2^\circ \Rightarrow (i_1, i_2) \in \mathcal{L}_1,$$

so that $\iota \subseteq \mathcal{L}_{I}$, and similarly $\lambda \subseteq \mathcal{R}_{\Lambda}$.

In order to establish the existence of balanced linked triples of the form $(\mathcal{L}_{I}, -, \mathcal{R}_{\Lambda})$ or, equivalently, the existence of °-congruences on S that simultaneously extend \mathcal{L}_{I} and \mathcal{R}_{Λ} , we require the following general result.

Theorem 4. Let S be a regular semigroup with an inverse transversal S°. Given special congruences $i \in \text{Con I}$ and $\lambda \in \text{Con }\Lambda$, there exists a balanced linked triple of the form $(i, -, \lambda)$ if and only if $i \subseteq \hat{\lambda}|_{I}$ and $\lambda \subseteq \hat{\iota}|_{\Lambda}$. In this case, the biggest such triple has middle component $\hat{\iota}|_{S^{\circ}} \cap \hat{\lambda}|_{S^{\circ}}$.

Proof. Suppose that $i \in \text{Con I}$ and $\lambda \in \text{Con }\Lambda$ are such that there is a balanced linked triple of the form $(i, -, \lambda)$. Observe that, by $[\alpha]$, if $(l_1, l_2) \in \lambda$ then for every $i \in I$, $(l_1i(l_1i)^\circ, l_2i(l_2i)^\circ) \in i$ and therefore $(l_1, l_2) \in \hat{i}|_{\Lambda}$. Thus $\lambda \subseteq \hat{i}|_{\Lambda}$, and similarly $i \subseteq \hat{\lambda}|_{I}$.

Conversely, $\hat{\imath}$ corresponds to the balanced linked triple $(\imath, \hat{\imath}|_{s^{n}}, \hat{\imath}|_{\lambda})$, and $\hat{\lambda}$ corresponds to the balanced linked triple $(\hat{\lambda}|_{I}, \hat{\lambda}|_{s^{n}}, \lambda)$. Therefore, if the stated conditions hold, $\hat{\imath} \cap \hat{\lambda}$ corresponds to the balanced linked triple $(\imath, \hat{\imath}|_{s^{n}} \cap \hat{\lambda}|_{s^{n}}, \lambda)$.

Finally, for any balanced linked triple (ι, π, λ) , it follows by $[\delta]$ that, for $x_1, x_2 \in S^\circ$,

$$(x_1, x_2) \in \pi \Rightarrow (\forall i \in \mathbf{I}) \quad (x_1 i (x_1 i)^\circ, x_2 i (x_2 i)^\circ) = (x_1 i x_1^\circ, x_2 i x_2^\circ) \in i$$
$$\Rightarrow (x_1, x_2) \in \hat{i}|_{S}$$

and so $\pi \subseteq \hat{\imath}|_{S^{\circ}}$. Similarly, $\pi \subseteq \hat{\lambda}|_{S^{\circ}}$ and we conclude that the biggest balanced linked triple of the form $(\imath, -, \lambda)$ has $\hat{\imath}|_{S^{\circ}} \cap \hat{\lambda}|_{S^{\circ}}$ as its middle component.

To see that, when S is quasi-orthodox, there exist balanced linked triples of the form $(\mathcal{L}_1, -, \mathcal{R}_{\Lambda})$ we may use Theorem 4 as follows. By Theorem 2 we can consider $\widehat{\mathcal{L}}_1$ and $\widehat{\mathcal{R}}_{\Lambda}$. Now, by (A) and Theorem 1, we have

$$(a, b) \in \mathcal{L}_{I} \Leftrightarrow (\forall i \in I) \quad (ai(ai)^{\circ}, bi(bi)^{\circ}) \in \mathcal{L}_{I}$$
$$\Leftrightarrow (\forall i \in I) \quad (ai)^{\circ\circ}(ai)^{\circ} = (bi)^{\circ\circ}(bi)^{\circ}$$
$$\Leftrightarrow (\forall i \in I) \quad a^{\circ\circ}i^{\circ}a^{\circ} = b^{\circ\circ}i^{\circ}b^{\circ},$$

and similarly,

$$(a, b) \in \widehat{\mathcal{R}_{\Lambda}} \Leftrightarrow (\forall l \in \Lambda) \quad a^{\circ}l^{\circ}a^{\circ\circ} = b^{\circ}l^{\circ}b^{\circ\circ}.$$

Since $E(S^{\circ}) = \{i^{\circ}; i \in I\} = \{l^{\circ}; l \in \Lambda\}$, we deduce from these expressions that

$$(a, b) \in \widehat{\mathcal{L}}_1 \Leftrightarrow (a, b) \in \widehat{\mathcal{R}}_{\Lambda}.$$

It follows that $\widehat{\mathcal{L}}_{I} = \widehat{\mathcal{R}}_{\Lambda}$. Consequently $\mathcal{L}_{I} = \widehat{\mathcal{L}}_{I}|_{I} = \widehat{\mathcal{R}}_{\Lambda}|_{I}$ and similarly $\mathcal{R}_{\Lambda} = \widehat{\mathcal{L}}_{I}|_{\Lambda}$. Thus, by Theorem 4, balanced linked triples of the form $(\mathcal{L}_{I}, -, \mathcal{R}_{\Lambda})$, and hence °-congruences on S that simultaneously extend \mathcal{L}_{I} and \mathcal{R}_{Λ} , exist.

We now determine precisely the nature of middle components in such triples.

Theorem 5. Let S be a quasi-orthodox semigroup with an inverse transversal S°. Then $(\mathcal{L}_1, \pi, \mathcal{R}_\Lambda) \in BLT(S)$ if and only if π is idempotent-separating on S° and $\Theta_{\pi} \in \overline{Con} S$.

Proof. \Rightarrow : If $(\mathcal{L}_{I}, \pi, \mathcal{R}_{\Lambda}) \in BLT(S)$ then, by the above observations, π is idempotent-separating and $(\mathcal{L}_{I}, \pi, \mathcal{R}_{\Lambda})$ is the biggest balanced linked triple of the form $(-, \pi, -)$. Consequently, $\hat{\pi} = \Psi(\mathcal{L}_{I}, \pi, \mathcal{R}_{\Lambda})$ and therefore

$$(x, y) \in \hat{\pi} \Leftrightarrow x^{\circ}x^{\circ\circ} = y^{\circ}y^{\circ\circ}, (x^{\circ}, y^{\circ}) \in \pi, x^{\circ\circ}x^{\circ} = y^{\circ\circ}y^{\circ}$$
$$\Leftrightarrow (x^{\circ}, y^{\circ}) \in \pi$$

and so $\hat{\pi} = \Theta_{\pi}$. Hence $\Theta_{\pi} \in \overline{\text{Con}} S$.

 \Leftarrow : If π is idempotent-separating on S° and $\Theta_{\pi} \in \overline{\text{Con } S}$ then it is readily seen that $\Theta_{\pi}|_{I} = \mathcal{L}_{I}, \Theta_{\pi}|_{S} = \pi$, and $\Theta_{\pi}|_{\Lambda} = \mathcal{R}_{\Lambda}$. Consequently $\Theta_{\pi} = \Psi(\mathcal{L}_{I}, \pi, \mathcal{R}_{\Lambda})$. □

Corollary. Let S be a quasi-orthodox semigroup with an inverse transversal S° . Then

(1) the biggest idempotent-separating congruence μ on S° is special with $(\mathcal{L}_{I}, \mu, \mathcal{R}_{\Lambda})$ the biggest balanced linked triple of the form $(\mathcal{L}_{I}, -, \mathcal{R}_{\Lambda})$;

(2) the biggest extension of μ in $\overline{\text{Con}} S$ is $\Psi(\mathcal{L}_1, \mu, \mathcal{R}_{\Lambda}) = \Theta_{\mu}$.

Proof. This follows from Theorems 2, 4 and 5 on observing that $\widehat{\mathcal{L}}_{1}|_{S^{*}} = \widehat{\mathcal{R}}_{\lambda}|_{S^{*}} = \mu$. \Box

In what follows we shall denote by ζ the °-congruence on S generated by the set $\{(a, a^{\circ\circ}); a \in S\}$.

Theorem 6. Let S be a quasi-orthodox semigroup with an inverse transversal S°. Then the smallest balanced linked triple of the form $(\mathcal{L}_1, -, \mathcal{R}_{\Lambda})$ has middle component $\zeta|_{S^*}$.

Proof. Let T be the set of idempotent-separating congruences π on S° such that $\Theta_{\pi} \in \overline{\text{Con }S}$. Then for every $a \in S$ we have $(a, a^{\circ \circ}) \in \bigcap_{\pi \in T} \Theta_{\pi}$. It follows that $\zeta \subseteq \bigcap_{\pi \in T} \Theta_{\pi}$. For every $\pi \in T$ we then have $\zeta \subseteq \Theta_{\pi}$ and so $\zeta|_{S} \subseteq \Theta_{\pi}|_{S} = \pi$. Hence $\zeta|_{S}$ is idempotent-separating. Now

$$(a,b) \in \zeta \Leftrightarrow (a^{\circ\circ},b^{\circ\circ}) \in \zeta \Leftrightarrow (a^{\circ},b^{\circ}) \in \zeta \Leftrightarrow (a,b) \in \Theta_{\zeta|_{\mathbf{C}}}.$$

Consequently, $\zeta = \Theta_{\zeta|_{S^*}}$ and therefore $\zeta|_{S^*} \in T$. It follows that $\zeta|_{S^*} = \min T$ whence we obtain the result by Theorem 5.

We can now describe the balanced linked triples of the form $(\mathcal{L}_1, -, \mathcal{R}_{\Lambda})$.

Theorem 7. Let S be a quasi-orthodox semigroup with an inverse transversal S°. Then $(\mathcal{L}_1, \pi, \mathcal{R}_\Lambda) \in BLT(S)$ if and only if π belongs to the interval $[\zeta|_{S}, \mu]$ of Con S°.

Proof. \Rightarrow : If $(\mathcal{L}_1, \pi, \mathcal{R}_\Lambda) \in BLT(S)$ then, by Theorem 5, π is idempotent-separating, so $\pi \subseteq \mu$. By Theorem 6, $\zeta|_{S^*} \subseteq \pi$.

 \Leftarrow : If $\pi \in [\zeta|_{S^*}, \mu]$ then π is necessarily idempotent-separating and therefore the triple $(\mathcal{L}_I, \pi, \mathcal{R}_\Lambda)$ is balanced. Now since, by the Corollary to Theorem 5, $(\mathcal{L}_I, \mu, \mathcal{R}_\Lambda) \in BLT(S)$ the triple $(\mathcal{L}_I, \pi, \mathcal{R}_\Lambda)$ satisfies the conditions [α], [γ], [δ], [ε] the last two of which follow from the fact that $\pi \subseteq \mu$. Since $(\mathcal{L}_I, \zeta|_{S^*}, \mathcal{R}_\Lambda) \in BLT(S)$ and $\zeta|_{S^*} \subseteq \pi$, the triple $(\mathcal{L}_I, \pi, \mathcal{R}_\Lambda)$ also satisfies [β]. Hence $(\mathcal{L}_I, \pi, \mathcal{R}_\Lambda) \in BLT(S)$.

Corollary 1. Every $\pi \in [\zeta|_{s^*}, \mu]$ is special.

Corollary 2. The °-congruences on S that simultaneously extend \mathcal{L}_1 and \mathcal{R}_{Λ} are precisely those of the form $\Psi(\mathcal{L}_1, \pi, \mathcal{R}_{\Lambda})$ where $\pi \in [\zeta|_{S^*}, \mu]$.

Example 2. Concerning the semigroup Q of Example 1, we can describe the congruence ζ as follows. For every $X \in Q$ let x_{11} be the entry in the (1, 1)-position. Define a relation ρ on Q by

$$(A, B) \in \rho \Leftrightarrow (\exists n \in \mathbb{Z}) \quad a_{11} = 2^n b_{11}.$$

It is easily seen that ρ is a °-congruence on Q that identifies A and $A^{\circ\circ}$ for every $A \in Q$. Consequently, $\zeta \subseteq \rho$. Observe now that since the congruence ζ identifies the matrices

$$\begin{bmatrix} x & x \\ x & x \end{bmatrix}, \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$$

we see, on pre-multiplying by $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, that ζ identifies the matrices

$$\begin{bmatrix} 2x & 2x \\ 2x & 2x \end{bmatrix}, \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$$

and, by recursion, identifies the matrices

$$\begin{bmatrix} 2^n x & 2^n x \\ 2^n x & 2^n x \end{bmatrix}, \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}.$$

If, therefore, $(A, B) \in \rho$ we have $a_{11} = 2^n b_{11}$ where we can assume that the integer n is non-negative, and consequently

$$A \stackrel{\zeta}{=} \begin{bmatrix} 2^n b_{11} & 0 \\ 0 & 0 \end{bmatrix} \stackrel{\zeta}{=} \begin{bmatrix} b_{11} & 0 \\ 0 & 0 \end{bmatrix} \stackrel{\zeta}{=} B.$$

Hence $\rho \subseteq \zeta$ and therefore $\zeta = \rho$.

We shall denote by $\omega_{s^{\circ}}$ the relation of equality on S° . As the following result shows, the °-congruence ζ can be used to provide a measure of the distinction between quasiorthodox and orthodox.

Theorem 8. Let S be a quasi-orthodox semigroup with an inverse transversal S°. Then S is orthodox if and only if $\zeta|_{S} = \omega_{S}$.

Proof. \Rightarrow : If S is orthodox then we have the identity $(xy)^\circ = y^\circ x^\circ$ and so it follows by Theorem 3 that $\omega_{S^\circ} \in T$. Since $\zeta|_{S^\circ} = \min T$ we deduce that $\zeta|_{S^\circ} = \omega_{S^\circ}$.

 \Leftarrow : If ζ|_{S⁰} = ω_{S⁰} then Θ_{ω_S} ∈ Con S and Theorem 3 gives the identity $(li)^\circ = l^\circ i^\circ$. Thus $(\Lambda I)^\circ \subseteq E(S^\circ)$ and so S[°] is weakly multiplicative. Consequently, S is orthodox.

Corollary. If S is orthodox then $(\mathcal{L}_1, \pi, \mathcal{R}_\Lambda) \in BLT(S)$ if and only if π is idempotent-separating.

Proof. This follows by Corollary 1 of Theorem 7.

REFERENCES

1. T. S. BLYTH and M. H. ALMEIDA SANTOS, A simplistic approach to inverse transversals, *Proc. Edinburgh Math. Soc.* 39 (1996), 57-69.

2. T. S. BLYTH and M. H. ALMEIDA SANTOS, Congruences associated with inverse transversals, *Collectanea Mathematica*, memorial volume for Paul Dubreil, 46 (1995), 35–48.

3. T. E. HALL, Congruences and Green's relations on regular semigroups, *Glasgow Math. J.* 13 (1972), 167–175.

4. D. B. MCALISTER and R. MCFADDEN, Semigroups with inverse transversals as matrix semigroups, Quart. J. Math. Oxford 25 (1984), 455-474.

5. TATSUHIKO SAITO, Construction of regular semigroups with inverse transversals, Proc. Edinburgh Math. Soc. 32 (1989), 41-51.

6. TATSUHIKO SAITO, Quasi-orthodox semigroups with inverse transversals, Semigroups Forum 36 (1987), 47-54.

7. XILIN TANG, Regular semigroups with inverse transversals, preprint.

8. M. YAMADA, Structure of quasi-orthodox semigroups, Mem. Fac. Sc., Shimane Univ. 14 (1980), 1-18.

MATHEMATICAL INSTITUTE UNIVERSITY OF ST ANDREWS SCOTLAND DEPARTAMENTO DE MATEMÁTICA F.C.T. Universidade Nova de Lisboa Portugal