RESEARCH ARTICLE

On the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces

O. Mata-Gutiérrez¹, L. Roa-Leguizamón^{2,∗} and H. Torres-López³

1Departamento De Matemáticas, Centro Universitario De Ciencias Exactas E Ingenierías, Universidad De Guadalajara, Avenida Revolución 1500, Guadalajara, Jalisco, México

 2 Departamento De Matemáticas, Universidad De Los Andes, Carrera 1 #18A-12, 111 711, Bogota, Colombia

3Conacyt - U. A. Matemáticas, U. Autónoma De Zacatecas, Calzada Solidaridad Entronque Paseo A La Bufa, C.P. 98000 Zacatecas, Zac., México

[∗]Corresponding author. E-mail: leonardo.roa@cimat.mx

Received: 25 February 2022; **Revised:** 19 December 2022; **Accepted:** 4 January 2023; **First published online:** 2 February 2023

Keywords: elementary transformation, moduli of vector bundles, moduli of sheaves, Hilbert scheme

2020 Mathematics Subject Classification: *Primary* - 14D20, *Secondary* - 14J60

Abstract

The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme of the moduli space of torsion-free sheaves on surfaces. Let *X* be a nonsingular irreducible complex surface, and let *E* be a vector bundle of rank *n* on *X*. We use the *m*-elementary transformation of *E* at a point $x \in X$ to show that there exists an embedding from the Grassmannian variety $\mathbb{G}(E_x, m)$ into the moduli space of torsion-free sheaves $\mathfrak{M}_{X,H}(n; c_1, c_2 + m)$ which induces an injective morphism from $X \times M_{X,H}(n; c_1, c_2)$ to Hilb $\mathfrak{M}_{X,H}(n; c_1, c_2 + m)$

1. Introduction

Let *X* be a nonsingular irreducible complex projective variety of dimension *d*. Let *E* be a vector bundle of rank *n* and fixed Chern classes $c_i \in H^{2i}(X, \mathbb{Z})$ on X. The *m*-elementary transformation E' of E at the point *x* ∈ *X* is defined as the kernel of a surjection $\alpha : E \longrightarrow \mathcal{O}_x^m$ which fits the exact sequence

$$
0 \to E' \to E \to \mathcal{O}_x^m \to 0. \tag{1.1}
$$

It is not hard to check that the class of such extensions is parameterized by $\mathbb{G}(E_{r}, m)$. This elementary transformation coincides with those defined by Maruyama, when *X* is a curve (see, [\[17\]](#page-14-0)) but differs when dim $X > 2$, because the point $x \in X$ is not a divisor anymore.

Maruyama used his definition of elementary transformation to construct vector bundles on nonsingular projective varieties. Since then these elementary transformations have been a powerful tool in order to get topological and geometric properties of the moduli space of sheaves, for instance:

When *X* is a curve and $m = 1$, the elementary transformation *E'* of *E* is a vector bundle. Moreover, if *E* is a general stable vector bundle then *E* is stable, and under this condition, Narasimhan and Ramanan used elementary transformations to determine certain subvarieties (called Hecke cycles) in the moduli space of vector bundles on curves, see $[20, 21]$ $[20, 21]$ $[20, 21]$. These Hecke cycles are contained in a component of the Hilbert scheme of the moduli space of vector bundles on curves (called Hecke component). Hence, Narasimhan and Ramanan computed a bound for the dimension of the Hecke component and proved that is nonsingular in those points defined by Hecke cycles. Moreover, when *X* is a curve and $m \geq 2$, Brambila-Paz and Mata-Gutiérrez in [\[2\]](#page-14-1) generalized the construction of Hecke cycles using Grassmannians and defined Hecke Grassmannians. They proved that the corresponding Hecke component is nonsingular and a bound for its dimension was given.

^C The Author(s), 2023. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust.

In case that *X* is a surface and *m* = 1, Coskun and Huizenga [\[3\]](#page-14-2) used elementary transformations to determine a component of the moduli space of vector bundles of rank two and compute a bound for its dimension. Also, Costa and Miró-Roig used priority sheaves and elementary transformations in the sense of Maruyama in order to establish maps between certain moduli spaces over \mathbb{P}^2 with the same rank and different Chern classes (see [\[7\]](#page-14-3)).

The aim of this paper is to consider the case when *X* is a surface and $m \geq 1$, we use *m*-elementary transformations to determine Hecke cycles in the moduli space of stable torsion-free sheaves and determine geometrical aspects of a component of its Hilbert scheme. Specifically, we prove the following result (see Theorem [3.10\)](#page-12-0):

Theorem 1.1. *The Hilbert scheme* Hilb $_{\mathfrak{M}_{X,H(n);C1,C2+m}}$ *of the moduli space of stable torsion-free sheaves has an irreducible component of dimension at least* $2 + \dim M_{X,H}(n; c_1, c_2)$.

The proof of this Theorem follows some ideas and techniques of $[2, 20]$ $[2, 20]$ $[2, 20]$. For a fixed vector bundle *E* and a point $x \in X$, we determine a closed embedding ϕ _{*z*}: $\mathbb{G}(E_x, m) \mapsto \mathfrak{M}_{X,H}(n; c_1, c_2 + m)$ (see Proposition [3.4\)](#page-6-0). We use the closed embedding ϕ _z to define the injective morphism

$$
\psi: X \times M_{X,H}(n; c_1, c_2) \longrightarrow \text{Hilb}_{\mathfrak{M}_{X,H}(n; c_1, c_2+m)}
$$

$$
z \mapsto \phi_z(\mathbb{G}(E_x, m)).
$$

Additionally, we establish the following morphism

$$
\Phi: \mathbb{G}(\mathcal{U},m) \to \mathfrak{M}_{X,H}(n;c_1,c_2+m)
$$

where *U* denotes the universal family parameterized by $M_{X,H}(n; c_1, c_2)$. This morphism allows us to determine an irreducible projective variety of $\mathfrak{M}_{X,H}(n; c_1, c_2 + m) - M_{X,H}(n; c_1, c_2 + m)$ and we get the following result (see Theorem [3.6\)](#page-8-0):

Theorem 1.2. Let m, n natural integers with $1 \le m < n$. Then $\mathfrak{M}_{X,H}(n; c_1, c_2) - M_{X,H}(n; c_1, c_2 + m)$ con*tains an irreducible projective variety Y of dimension* $3 + \dim M_{X,H}(n; c_1, c_2)$ *such that the general* $element F \in Y$ *fits into exact sequence*

$$
0 \to F \to E \to \mathcal{O}_{X,x} \otimes W \to 0,
$$

where $E \in M_{X,H}(n; c_1, c_2)$, $W \in \mathbb{G}(E_x, m)$ and $x \in X$. In particular, if $n = 2$ then Φ is injective and Y is a *divisor.*

As an application of the previous result, we compute the Hilbert polynomial of the Hilbert scheme $Hilb_{\mathfrak{M}_{X,H(n;\,c_1,c_2)}}^P$ which contains the cycle $\phi_z(\mathbb{G}(E_x,m))$ when *X* is the projective plane. In particular, we prove the following (see Theorem [4.3\)](#page-13-0);

Theorem 1.3. Assume that $c_1 = -1$ (resp. $c_1 = 0$) and that $c_2 \ge 2$ (resp. $c_2 \ge 3$ is odd). Let $L = a\epsilon + b\delta$, $(resp. a\varphi + b\psi)$ be an ample line bundle in $Pic(\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2))$. Then, HG is the component of the Hilbert *scheme* Hilb*^P* ^MP² (2; *^c*1,*c*2) *where P is the Hilbert polynomial defined as;*

$$
P(m) = \chi(\mathbb{P}(E_x), \phi_z^*(a\epsilon + b\delta)) = \chi(\mathbb{P}(E_x), \mathcal{O}_{\mathbb{P}(E_x)}(mb)).
$$

(resp.
$$
P(m) = \chi(\mathbb{P}(E_x), \phi_z^*(a\varphi + b\psi)) = \chi(\mathbb{P}(E_x), \mathcal{O}_{\mathbb{P}(E_x)}(m(c_2 - 1)b))).
$$

The paper is organized as follows: Section [2](#page-1-0) contains a brief summary of the main results of Grassmannians of vector bundles, moduli space of torsion-free sheaves, and *m*-elementary transformations. In Section [3,](#page-4-0) we give some technical results which allow us to prove our main results: Theorems [1.1](#page-1-1) and [1.2.](#page-1-2) In Section [4,](#page-12-1) an application of the previous results is indicated for the Hilbert scheme of moduli space of rank 2 sheaves on the projective plane.

2. Preliminaries

Let *X* be a nonsingular irreducible complex projective algebraic surface. This section contains a brief summary about stable torsion-free sheaves on surfaces, and we recall some basic facts on Grasmannians of vector bundles and *m*-elementary transformations see [\[9,](#page-14-4) [10,](#page-14-5) [14\]](#page-14-6) for more details.

2.1. Grassmannian

We will collect here the principal properties of Grassmannians of vector bundles necessary for our purpose. For a fuller treatment, we refer the reader to [\[8,](#page-14-7) [25\]](#page-15-2).

Let *E* be a vector bundle of rank *n* on *X*. Let $p_E : \mathbb{G}(E, m) \to X$ be the Grassmannian bundle of rank *m* quotients of *E* whose fiber at $x \in X$ is the Grassmannian $\mathbb{G}(E_x, m)$ of *m*-dimensional quotients of E_x , that is

$$
\mathbb{G}(E,m) = \{(x, W) \mid x \in X, E_x \to W \to 0\}.
$$

Let

$$
0 \to S_E \to p^*E \to Q_E \to 0
$$

be the tautological exact sequence over $\mathbb{G}(E, m)$ where S_E and Q_E denote the universal subbundle of rank $n - m$ and universal quotient of rank *m*, respectively. The tangent bundle of $\mathbb{G}(E, m)$ is the vector bundle $T\mathbb{G}(E,m) = Hom(S_E, Q_E)$ and hence $T_x\mathbb{G}(E,m) = Hom(S_E, Q_E)$. Moreover, we have the following exact sequence:

$$
0 \to T_{p_E} \to T\mathbb{G}(E,m) \to p_E^*TX \to 0
$$

where T_{p_E} is the relative tangent bundle to the fibers and $T_{p_E} = S_E^* \otimes Q_E$.

2.2. Torsion-Free sheaves

Let *H* be an ample divisor on *X*. For a torsion-free sheaf $\mathcal E$ on *X* with Chern classes $c_i \in H^{2i}(X, \mathbb Z)$, $i = 1, 2$ one sets

$$
\mu_H(\mathcal{E}) := \frac{\deg_H(\mathcal{E})}{\text{rk}(\mathcal{E})}, \quad P_m(\mathcal{E}) := \frac{\chi(\mathcal{E} \otimes H^m)}{\text{rk}(\mathcal{E})},
$$

where deg_H(\mathcal{E}) is the degree of \mathcal{E} defined by $c_1(\mathcal{E})$. *H* and $\chi(\mathcal{E} \otimes H^m)$ denotes the Hilbert polynomial defined by $\sum_{i=1}^{\infty} (-1)^{i} h^{i}(X, \mathcal{E} \otimes H^{m}).$

Definition 2.1. Let H be an ample divisor on X. A torsion-free sheaf $\mathcal E$ on X is H-stable (resp. stable) if *for all nonzero subsheaf* $\mathcal{F} \subset \mathcal{E}$

$$
\mu_H(\mathcal{F}) < \mu_H(\mathcal{E}) \quad (resp. \ P_m(\mathcal{F}) < P_m(\mathcal{E})).
$$

We want to emphasize that both notions of stability depend on the ample divisor we fix on the underlying surface *X* and it is easily seen that *H*-stability implies stability.¹

Recall that any *H*-stable (resp. stable) torsion-free sheaf is simple, i.e. if $\mathcal E$ is *H*-stable (resp. stable), then dim $Hom(\mathcal{E}, \mathcal{E}) = 1$. We will denote by $M_{X,H}(n; c_1, c_2)$ the moduli space of *H*-stable vector bundles on *X* of rank *n* and fixed Chern classes c_1 , c_2 and by $\mathfrak{M}_{X,H}(n; c_1, c_2)$ the moduli space of stable torsionfree sheaves on *X*. Since locally free is an open property and *H*-stability implies stability, it follows that $M_{X,H}(n; c_1, c_2)$ is an open subset of $\mathfrak{M}_{X,H}(n; c_1, c_2)$. In general an universal family on $X \times M_{X,H}(n; c_1, c_2)$

¹The *H*-stability is frequently called Mumford–Takemoto stability and the stability is called Gieseker–Maruyama stability.

(resp. on $X \times \mathfrak{M}_{X,H}(n; c_1, c_2)$) does not exist, the existence of such universal family is guaranteed by the following criterion.

Lemma 2.2. [\[14,](#page-14-6) Corollary 4.6.7] *Let X be a nonsingular surface and let H be an ample divisor on X. Let n*, c_1 , c_2 *fixed values for the rank and Chern classes. If* $gcd(n, c_1.H, \frac{1}{2}c_1.(c_1 - K_X) - c_2) = 1$ *, then there is an universal family on* $X \times M_{X,H}(n; c_1, c_2)$ (resp. $X \times \mathfrak{M}_{X,H}(n; c_1, c_2)$).

2.3. m-elementary transformations.

Definition 2.3. Let E be a locally free sheaf on X of rank n and Chern classes c_1, c_2 and let

$$
0 \to E' \to E \to \mathcal{O}_x^m \to 0 \tag{2.1}
$$

be an exact sequence of sheaves, where $\mathcal{O}^m_x = \bigoplus_{i=1}^m \mathcal{O}^x$ *is the sum of skyscraper sheaf with support on* $x \in X$. The coherent sheaf E' is called the m-elementary transformation of E at $x \in X$.

Notice that even though E is locally free, its elementary transformation E' is a torsion free sheaf not locally free. Moreover if *E* is *H*-stable then *E* is also *H*-stable. However, if *E* is stable then *E* is not necessarily stable (see for instance [\[6,](#page-14-8) Remark 1]).

The *m*-elementary transformations have been used for several authors to construct many vector bundles on a higher dimensional projective variety and to determine topological and geometric properties of the moduli space of sheaves. For instance, Maruyama did a general study of elementary transformations of sheaves in his master's and doctoral theses [\[16,](#page-14-9) [17\]](#page-14-0). In [\[20\]](#page-15-0) Narasimhan and Ramanan used elementary transformations of vector bundles on curves to introduce certain subvarieties in the moduli space of vector bundles which they called Hecke cycles. Brambila-Paz and the first author also used *m*-elementary transformations to describe a nonsingular open set of the Hilbert scheme of the moduli space of vector bundles on a curve [\[2\]](#page-14-1). Coskun and Huizenga have used elementary transformations to study priority sheaves since that they are well-behaved under elementary modifications [\[3](#page-14-2)[–5\]](#page-14-10).

We now collect some other basic properties related with *m*-elementary transformations in the following result.

Proposition 2.4. *Let H be an ample divisor on X. Let E be a vector bundle on X of rank n and Chern classes* c_1 , c_2 , and let E' be a m-elementary transformation of E at $x \in X$, *i.e.* we have

$$
0 \to E' \to E \to \mathcal{O}_x^m \to 0. \tag{2.2}
$$

Then,

 (k) $rk(E') = n$, $c_1(E') = c_1$, $c_2(E') = c_2 + m$ and $\chi(E') = \chi(E) - m$.

- *(ii) E is a torsion-free sheaf not locally free.*
- *(iii) If E is H-stable, then E is H-stable. Hence, E is stable.*

Proof.

- (i) The proof follows directly from the exact sequence and Riemann–Roch Theorem.
- (ii) Clearly E' is torsion free since E is a vector bundle. Now, suppose that E' is locally free, by [\[10,](#page-14-5) Chapter 4, Lemma 3], it follows that $E = E'$ which is impossible because $c_2(E') = c_2 + m$. Therefore E' is a torsion-free sheaf not locally free.
- (iii) Let F be subsheaf of E' and assume that E is H-stable. It is clear that F is a subsheaf of E and by item (*i*), it follows that

$$
\mu_H(F) < \mu_H(E) = \mu_H(E').
$$

Hence E' is H -stable and therefore stable.

 \Box

Remark 2.5. *The class of extensions [\(2.2\)](#page-3-0) are parameterized by* $\mathbb{G}(E_x, m)$ *. Furthermore, any* $W \in$ $\mathbb{G}(E_\kappa,m)$ defines a surjective linear transformation $\tilde{\alpha}_W: E_\kappa \to W \to 0$ which determines a surjective *morphism of sheaves* $\alpha_W : E \to \mathcal{O}_x^m$. *If* E^W *denotes* ker(α_W) *then we have the exact sequence:*

$$
0 \to E^W \to E \to \mathcal{O}_x^m \to 0. \tag{2.3}
$$

The following result will be used in the next sections:

Lemma 2.6. *Let E be a vector bundle on X* and let \mathcal{O}_x *be the skyscraper sheaf with support on* $x \in X$ *. Then, for any integer* $m \geq 1$ *we have*

$$
Ext^i\left(\mathcal{O}_x^m,E\right)=0, \quad i\neq 2.
$$

For a deeper discussion of *m*-elementary transformations, we refer to reader to [\[2,](#page-14-1) [3\]](#page-14-2).

2.4. Hecke cycles on the moduli space of vector bundles on curves.

Let *X* be a smooth projective curve, and let $x \in X$ be a point. For any vector bundle *E* on *X*, the *m*-elementary transformation

$$
0 \to E' \to E \to \mathcal{O}_x^m \to 0 \tag{2.4}
$$

determines a vector bundle E', where $deg(E') = deg(E) - m$ and $rk(E') = rk(E)$. If E is general in the moduli space $M_X(n, d)$ of stable vector bundles of rank *n* and degree *d*, then *E'* is stable (see [\[2,](#page-14-1) Proposition [2.4\]](#page-3-1)).

In [\[20\]](#page-15-0) Narasimhan and Ramanan considered the *m*-elementary transformations of type

$$
0 \to E' \to E \to \mathcal{O}_x \to 0
$$

to prove that, for a general $E \in M_X(n, d)$ (for an explicit description of the general open set in $M_X(n, d)$) see $[20, \text{Lemma 5.5}])$ $[20, \text{Lemma 5.5}])$, the pair (E, x) determines a closed embedding

$$
\Phi_{(E,x)} : \mathbb{P}\left(E_x^*\right) \to M_X(n, d-1). \tag{2.5}
$$

(see, [\[20,](#page-15-0) Lemma 5.8]) and therefore $\mathbb{P}(E_x^*)$ can be considered as a subscheme of the moduli space $M_X(n, d - 1)$. These projective subschemes are called Hecke cycles. Every Hecke cycle determines a point in the Hilbert scheme Hilb_{*Mx*(*n*,*d*−1)}. Narasimhan and Ramanan proved that there is an open subscheme in $M_X(n, d)$ which is isomorphic to an open subscheme of Hilb_{$M_X(n, d-1)$} (see, [\[20,](#page-15-0) Theorem 5.13]).

Later, in [\[2\]](#page-14-1) the authors generalize the ideas of Narasimhan and Ramanan and they considered *m*-elementary transformations, $m > 1$ in order to prove that, if $E \in M_X(n, d)$ is general (for an explicit description of the general open set in $M_X(n, d)$ see [\[2,](#page-14-1) Proposition [2.4\]](#page-3-1)), then *E'* is stable. Moreover, every pair (*E*, *x*) determines a closed embedding

$$
\Phi_{(E,x)} : \mathbb{G}(E_x, m) \to M_X(n, d-m) \tag{2.6}
$$

(see [\[2,](#page-14-1) Proposition 3.1]) and therefore $\mathbb{G}(E_x, m)$ can be considered as a Grassmannian subvariety in the moduli space $M_X(n, d - m)$ which is called *m*-Hecke cycles. Hence, they concluded that Hilb_{*M*(*n,d*−*m*) has} an irreducible component \mathcal{HG} of dimension $(n^2 - 1)(g - 1) + 1$ where every *m*-Hecke cycle determines a smooth point (see, $[2,$ Theorem [1.1\]](#page-1-1)).

The principal significance of [\[20,](#page-15-0) Lemma 5.8] and [\[2,](#page-14-1) Proposition 3.1] is that the morphisms [\(2.5\)](#page-4-1) and [\(2.6\)](#page-4-2) are closed embeddings. It allows determine *m*-Hecke cycles and geometric and topological properties of the Hilbert scheme Hilb_{*Mx*(*n*,*d*−*m*).}

3. On the moduli space of torsion free sheaves

The aim of this section is to define an embedding from $\mathbb{G}(E_x, m)$ into the moduli space $\mathfrak{M}_{X,H}(n; c_1, c_2 +$ *m*) of torsion-free sheaves. Generalizing some techniques of [\[2,](#page-14-1) [20\]](#page-15-0) we establish a closed embedding $\phi_z : \mathbb{G}(E_x, m) \to \mathfrak{M}_{X,H}(n; c_1, c_2 + m)$ and an injective algebraic morphism $\Psi : X \times M_{X,H}(n; c_1, c_2) \to$ $Hilb_{\mathfrak{M}_{X,H}(n;c_1,c_2+m)}$, where $z=(x, E) \in X \times M_{X,H}(n;c_1,c_2)$ and $Hilb_{\mathfrak{M}_{X,H}(n;c_1,c_2+m)}$ denotes the Hilbert scheme of the moduli space $\mathfrak{M}_{X,H}(n; c_1, c_2)$. Moreover, we construct an irreducible variety properly contained in $\mathfrak{M}_{X,H}(n; c_1, c_2 + m) - M_{X,H}(n; c_1, c_2 + m).$

The following Lemma deals with *m*-elementary transformations, specifically we compute the dimension of the morphisms of a *m*-elementary transformation E' of E . The important point to note here is that *E* is a vector bundle. Here and subsequently, *E* denotes a vector bundle on *X*.

Lemma 3.1. *Let H be an ample divisor on X. Let E be a torsion-free sheaf of rank n and let E be an H*-stable vector bundle of rank n. If $c_1(E') = c_1(E)$, then dim $Hom(E', E) \leq 1$.

Proof. Let $f: E' \to E$ be a not zero homomorphism. By [\[10,](#page-14-5) Proposition 7, Chapter 4] the morphism *f* is injective and hence we have the sequence

$$
0 \to E' \to E \to E/E' \to 0.
$$

By [\[12,](#page-14-11) Proposition 6.4.], we have the following long exact sequence

$$
0 \to \text{Hom}(E/E', E) \to \text{Hom}(E, E) \to \text{Hom}(E', E) \to
$$

Ext¹(E/E', E) \to Ext¹(E, E) \to Ext¹(E', E) \to \cdots

Note that E/E' has support in a finite number of points because $c_1(E) = c_1(E')$, hence $Hom(E/E', E) =$ 0. On the other hand Lemma [2.6,](#page-4-3) implies that $Ext^1(E/E', E) = 0$. Since *E* is a *H*-stable vector bundle, it follows that

$$
\dim \text{Hom}(E, E) = \dim \text{Hom}(E', E) = 1
$$

as we desired.

Set $z := (x, E) \in X \times M_{X,H}(n; c_1, c_2)$ and let *m* be a fixed natural number with $m < n$. Let $\pi_E : \mathbb{G}(E, m) \to X$ be the Grassmannian bundle associated to *E* and for any $x \in X$ denote by $\mathbb{G}(E_x, m)$ the Grassmannian of *m*-quotients of E_x . On $\mathbb{G}(E, m)$, we have the tautological exact sequence

$$
0 \to S_E \to \pi_E^* E \to Q_E \to 0,
$$
\n(3.1)

 \Box

where S_E is the universal subbundle and Q_E is the universal quotient bundle. Note that for any $x \in X$, if we restrict (3.1) to $\mathbb{G}(E_x, m)$ then we obtain

$$
0 \to S_{E_x} \to \mathcal{O}_{\mathbb{G}} \times E_x \to \mathcal{Q}_{E_x} \to 0. \tag{3.2}
$$

Let us denote by $\mathbb{G}(z) := \mathbb{G}(E_x, m)$. Consider on $X \times \mathbb{G}(z)$, the surjective morphism $\alpha : p_1^*E \longrightarrow$ $p_1^* \mathcal{O}_x \otimes p_2^* \mathcal{Q}_{E_x}$ associated to the canonical surjective morphism $\alpha_x : \mathcal{O}_\mathbb{G} \times E_x \to \mathcal{Q}_{E_x}$ in [\(3.2\)](#page-5-1) under the isomorphism:

$$
H^{0}\left(X \times \mathbb{G}(z), p_{1}^{*}E^{*} \otimes p_{1}^{*}\mathcal{O}_{x} \otimes p_{2}^{*}\mathcal{Q}_{E_{x}}\right) \cong H^{0}\left(\mathbb{G}(z), p_{2*}(p_{1}^{*}E^{*} \otimes p_{1}^{*}\mathcal{O}_{x}) \otimes \mathcal{Q}_{E_{x}}\right)
$$

\n
$$
\cong H^{0}\left(\mathbb{G}(z), p_{2*}p_{1}^{*}(E_{x}^{*}) \otimes \mathcal{Q}_{E_{x}}\right)
$$

\n
$$
\cong H^{0}\left(\mathbb{G}(z), \left(\mathcal{O}_{\mathbb{G}} \times E_{x}^{*}\right) \otimes \mathcal{Q}_{E_{x}}\right)
$$

\n
$$
\cong H^{0}\left(\mathbb{G}(z), \mathcal{H}om\left(\mathcal{O}_{\mathbb{G}} \times E_{x}, \mathcal{Q}_{E_{x}}\right)\right),
$$

where the second isomorphism is given by projection formula (see, [\[19\]](#page-15-3), p. 76). Here, taking the kernel of the surjective morphism $\alpha : p_1^*E \longrightarrow p_1^*\mathcal{O}_x \otimes p_2^*Q_{E_x}$, we get the exact sequence

$$
0 \longrightarrow \mathcal{F}_z \longrightarrow p_1^* E \longrightarrow p_1^* \mathcal{O}_x \otimes p_2^* \mathcal{Q}_{E_x} \longrightarrow 0 \tag{3.3}
$$

on $X \times \mathbb{G}(z)$.

Lemma 3.2. *Let* $z = (x, E) \in X \times M_{X,H}(n; c_1, c_2)$ *and* $W \in \mathbb{G}(z)$ *, then*

$$
\mathcal{T}or^1\left(\mathcal{O}_{\{x\}\times\mathbb{G}},\mathcal{O}_{X\times\{W\}}\right)=0.
$$

Proof. Restricting the exact sequence

$$
0 \to I_{\{x\} \times \mathbb{G}} \to \mathcal{O}_{X \times \mathbb{G}} \to \mathcal{O}_{\{x\} \times \mathbb{G}} \to 0
$$

to $X \times \{W\}$, we get

$$
0 \to \mathcal{T}or^1(\mathcal{O}_{\{x\}\times\mathbb{G}}, \mathcal{O}_{X\times\{W\}}) \to I_{\{x\}\times\mathbb{G}}|_{X\times\{W\}} \to \mathcal{O}_X \to \mathcal{O}_x \to 0
$$

As is well-known $p_1^* I_x \cong I_{x \times G}$ and $I_{x \times G}|_{x \times \{W\}} \cong I_x$. Then it follows that

$$
\mathcal{T}or^1\left(\mathcal{O}_{\{x\}\times\mathbb{G}},\mathcal{O}_{X\times\{W\}}\right)=0.
$$

With the above notation and as consequence of Lemma [3.2,](#page-6-1) we have the following result.

Proposition 3.3. *If E is H-stable, then F^z is a family of stable torsion-free sheaves parameterized by* $\mathbb{G}(z)$.

Proof. Let $W \in \mathbb{G}(z)$. Restricting the exact sequence [\(3.3\)](#page-5-2) to $X \times \{W\}$, we get the exact sequence

$$
0 \longrightarrow E^W \longrightarrow E \longrightarrow \mathcal{O}_x \otimes W \longrightarrow 0 \tag{3.4}
$$

over *X*. Hence, E^W is a torsion-free sheaf of rank *n* called the *m*-elementary transformation of *E* in *x* defined by W. Since $c_1(\mathcal{O}_x \otimes W) = 0$ and *E* is *H*-stable, it follows that E^W is *H*-stable and therefore stable with $c_1(E^W) = c_1(E)$ (see Proposition [2.4\)](#page-3-1). Moreover, by Whitney sum and $c_2(\mathcal{O}_x \otimes W) = -\dim (W) = -m$ we get $c_2(E^W) = c_2(E) + m$ which completes the proof. $-m$ we get $c_2(E^W) = c_2(E) + m$ which completes the proof.

The classification map of \mathcal{F}_z is given by

$$
\phi_z : \mathbb{G}(z) \to \mathfrak{M}_{X,H}(n; c_1, c_2 + m)
$$

$$
W \mapsto E^W,
$$

where E^W was defined in the above Proposition. The following result shows that the morphism ϕ_z is a closed embedding. For the proof of the proposition, we follow the techniques and ideas of [\[20,](#page-15-0) Lemma 5.10], and [\[2,](#page-14-1) Proposition 3.1] who proved a similar result for vector bundles on curves.

Proposition 3.4. For any point $z = (x, E) \in X \times M_{X,H}(n; c_1, c_2)$, the morphism $\phi_z : \mathbb{G}(z) \to$ $\mathfrak{M}_{X,H}(n; c_1, c_2 + m)$ *is a closed embedding.*

Proof. We first prove that the morphism ϕ_z is injective. Assume that there exist $W_1, W_2 \in \mathbb{G}(z)$ such that $\psi: E^{W_1} \to E^{W_2}$ is an isomorphism, we claim that $W_1 = W_2$. Recall that for any $i = 1, 2$, we have the following exact sequence

$$
0 \longrightarrow E^{W_i} \stackrel{f_i}{\longrightarrow} E \stackrel{\alpha_i}{\longrightarrow} \mathcal{O}_x \otimes W_i \longrightarrow 0
$$

By Lemma [3.1](#page-5-3) we have dim Hom(E^{W_1}, E) = 1, it follows that there exist $\lambda \in \mathbb{C}^*$ such that $\lambda f_1 = f_2 \circ \psi$. Hence, $\text{Im} f_{1,x} = \text{Im} f_{2,x}$ which implies $W_1 = W_2$. Therefore, ϕ_z is injective.

We now proceed to show the injectivity of the differential map $d\phi$ _{*z*}: $T_w\mathbb{G}(z) \to \mathfrak{M}_{X,H}(n; c_1, c_2 + m)$. By [\[20,](#page-15-0) Lemma 5.10], its infinitesimal deformation map in $W \in \mathbb{G}(z)$ is, up to the sign, the composition of the natural map $T_w \mathbb{G}(z) \to \text{Hom}(E^w, \mathcal{O}_x \otimes W)$ with the boundary map Hom $(E^w, \mathcal{O}_x \otimes W) \to$ $Ext¹(X, E^W, E^W)$ given by the long exact sequence

 $0 \to \text{Hom}(E^W, E^W) \to \text{Hom}(E^W, E) \to \text{Hom}(E^W, \mathcal{O}_X \otimes W) \to \text{Ext}^1(E^W, E^W) \to \cdots$

obtained from [\(3.4\)](#page-6-2). Notice that Hom $(E^W, E^W) \cong \mathbb{C}$ because E^W is an *H*-stable free torsion sheaf. Moreover, $Hom(E^W, E) \cong \mathbb{C}$ by Lemma [3.1.](#page-5-3) Therefore, the coboundary morphism

$$
\delta: \text{Hom}\left(E^W, \mathcal{O}_x \otimes W\right) \to \text{Ext}^1\left(E^W, E^W\right)
$$

is injective.

As in [\[2,](#page-14-1) [20\]](#page-15-0), a consequence of the above result is that we determine a collection of closed subschemes in $\mathfrak{M}_{X,H}(n;c_1,c_2+m)$ and a collection of points in its Hilbert scheme (see, [\[20,](#page-15-0) Definition 5.12]). From a stable vector bundle *E* on X, we constructed the family \mathcal{F}_z of stable torsion-free sheaves. Analogously, if we start with a family $\mathcal E$ of stable vector bundles on X parameterized by T , then we can construct a family of of stable torsion-free sheaves $\mathcal F$. In the next paragraphs, we describe the construction when $\mathcal E$ is the universal family of stable vector bundles parameterized by $M_{X,H}(n; c_1, c_2)$.

Let *H* be an ample divisor on *X*. As is well-known if gcd $(n, c_1.H, \frac{1}{2}c_1.(c_1 - K_X) - c_2) = 1$, then there exists a universal family *U* of vector bundles parameterized by $M_{X,H}(n; c_1, c_2)$ (see Lemma [2.2\)](#page-3-2). Under this conditions, we will determine a family $\mathcal F$ of stable torsion-free sheaves parameterized by $\mathbb G(\mathcal U,m)$ which extends to \mathcal{F}_z (see Proposition [3.3\)](#page-6-3).

Let *U* be the universal family of vector bundles parameterized by $M_{X,H}(n; c_1, c_2)$, hence $p : U \to X \times Y$ $M_{X,H}(n; c_1, c_2)$ is a vector bundle. We denote by $\pi_U : \mathbb{G}(\mathcal{U}, m) \to X \times M_{X,H}(n; c_1, c_2)$ the Grassmannian bundle of quotients associated to *U*. An element of $\mathbb{G}(\mathcal{U}, m)$ is a pair $((x, E), W)$, where $(x, E) \in X \times$ $M_{X,H}(n; c_1, c_2)$ and $W \in \mathbb{G}(E_x, m)$. The tautological exact sequence over $\mathbb{G}(\mathcal{U}, m)$ is

$$
0 \to S_{\mathcal{U}} \to \pi_{\mathcal{U}}^* \mathcal{U} \stackrel{\alpha}{\to} Q_{\mathcal{U}} \to 0, \tag{3.5}
$$

where Q_U denotes the universal quotient bundle of rank *m* over $\mathbb{G}(\mathcal{U}, m)$. We now consider the graph of the following composition

$$
\mathbb{G}(\mathcal{U},m) \xrightarrow{\pi_{\mathcal{U}}} X \times M_{X,H}(n;c_1,c_2) \xrightarrow{p_1} X,
$$

 $\Gamma := \Gamma_{p_1 \circ \pi_U}$ as a subvariety of $X \times \mathbb{G}(\mathcal{U}, m)$. Then we have the following result.

Lemma 3.5. *Let* $g \in \mathbb{G}(\mathcal{U}, m)$ *. Then*

- (*a*) $\mathcal{T}or^1(I_{X\times\{g\}}, \mathcal{O}_\Gamma) = 0.$
- *(b) There exists a canonical surjective morphism of sheaves*

$$
(id \times p_2 \circ \pi_{\mathcal{U}})^* \mathcal{U} \to \mathcal{O}_\Gamma \otimes p_{\mathbb{G}(\mathcal{U})}^* \mathcal{Q}_{\mathcal{U}} \to 0, \tag{3.6}
$$

over $X \times \mathbb{G}(\mathcal{U}, m)$, *determined by* α , *where* $p_{\mathbb{G}(U)}$: $X \times \mathbb{G}(\mathcal{U}, m) \rightarrow \mathbb{G}(\mathcal{U}, m)$ *and* $p_2: X \times$ $M_{X,H}(n; c_1, c_2) \rightarrow M_{X,H}(n; c_1, c_2)$ *are the respective second projections.*

Proof. Taking $\beta := p_{\text{G}(U)}|_{\Gamma}$ as the restriction of the projection, we have the following commutative diagram

where $i : \Gamma \to X \times \mathbb{G}(\mathcal{U})$ is the inclusion map, hence $I_{X \times g}|_{\Gamma} = i^* p^*_{\mathbb{G}(\mathcal{U})}(I_g) = \beta^*(I_g)$.

From the exact sequence

$$
0 \to I_g \to \mathcal{O}_{\mathbb{G}(\mathcal{U})} \to \mathcal{O}_g \to 0,
$$

we get

$$
0 \to \beta^*(I_g) \to \beta^*(\mathcal{O}_{\mathbb{G}(\mathcal{U})}) \to \beta^*(\mathcal{O}_g) \to 0,
$$

Therefore, $\mathcal{T}or^1(I_{X\times\{g\}}, \mathcal{O}_\Gamma) = 0$ and this prove (*a*).

 \Box

Now, to prove (*b*) consider the surjective map $\alpha : \pi_{\mathcal{U}}^* \mathcal{U} \to \mathcal{Q}_{\mathcal{U}}$ given in [\(3.5\)](#page-7-0) and notice that $\beta^* \alpha : \beta^* \pi_{\mathcal{U}}^* \mathcal{U} \to \beta^* \mathcal{Q}_{\mathcal{U}}$ is also surjective. Since $\beta^* \pi_{\mathcal{U}}^* \mathcal{U} \cong (id \times p_2 \circ \pi_{\mathcal{U}})^* (\mathcal{U})|_{\Gamma}$ and $\beta^* \mathcal{Q}_{\mathcal{U}} \cong$ $p_{\mathbb{G}(\mathcal{U})}^*(Q_{\mathcal{U}})|_{\Gamma}$, we get a surjective morphism

$$
(id \times p_2 \circ \pi_{\mathcal{U}})^* (\mathcal{U})|_{\Gamma} \to \mathcal{O}_{\Gamma} \otimes p_{\mathbb{G}(\mathcal{U})}^* \mathcal{Q}_{\mathcal{U}}.
$$
 (3.7)

Hence, from the exact sequence

$$
0 \to (id \times p_2 \circ \pi_{\mathcal{U}})^* \mathcal{U} \otimes I_{\Gamma} \to (id \times p_2 \circ \pi_{\mathcal{U}})^* \mathcal{U} \to (id \times p_2 \circ \pi_{\mathcal{U}})^* \mathcal{U}|_{\Gamma} \to 0
$$

and the morphism [\(3.7\)](#page-8-1) we get the surjective map $(id \times p_2 \circ \pi_u)^* \mathcal{U} \to \mathcal{O}_\Gamma \otimes p_{\mathbb{G}(u)}^* \mathcal{Q}_u$ which completes the proof. \Box

According to the above Lemma, let us denote by $\mathcal F$ the kernel of the surjective morphism [\(3.6\)](#page-7-1). Hence, we get the exact sequence

$$
0 \to \mathcal{F} \to (id \times p_2 \circ \pi_{\mathcal{U}})^* \mathcal{U} \to \mathcal{O}_{\Gamma} \otimes p_{\mathbb{G}(\mathcal{U})}^* \mathcal{Q}_{\mathcal{U}} \to 0. \tag{3.8}
$$

Note that $(id \times p_2 \circ \pi_{\mathcal{U}})^*(\mathcal{U})|_{X \times ((x,E),W)} = E$ and $\mathcal{O}_{\Gamma} \otimes p_{\mathbb{G}(\mathcal{U})}^* \mathcal{Q}_{\mathcal{U}}|_{X \times ((x,E),W)} = \mathcal{O}_{\mathcal{X}} \otimes W$. Since $p_{\mathbb{G}(\mathcal{U})}^* \mathcal{Q}_{\mathcal{U}}$ is a vector bundle and $Tor^1(I_{X\times \{g\}}, \mathcal{O}_\Gamma) = 0$, it follows that $Tor^1(I_{X\times \{g\}}, \mathcal{O}_\Gamma\otimes p_{\mathbb{G}(U)}^*Q_U) = p_{\mathbb{G}(U)}^*Q_U\otimes \mathbb{G}$ $Tor^1(I_{X\times\{g\}}, \mathcal{O}_\Gamma) = 0$. Therefore, restricting the exact sequence [\(3.8\)](#page-8-2) to $X \times \{(x, E), W\}$, we get the exact sequence

$$
0 \longrightarrow E^W \longrightarrow E \longrightarrow \mathcal{O}_x \otimes W \longrightarrow 0
$$

over *X*. Moreover, if we restrict [\(3.8\)](#page-8-2) to $X \times \mathbb{G}(z)$, we obtain [\(3.3\)](#page-5-2).

Hence by similar arguments to Proposition [3.3,](#page-6-3) we have that F is a family of stable torsion-free sheaves of rank *n* of type $(c_1, c_2 + m)$ which determines a morphism

$$
\Phi: \mathbb{G}(\mathcal{U}, m) \to \mathfrak{M}_{X,H}(n; c_1, c_2 + m)
$$

$$
((x, E), W) \mapsto E^W.
$$

Note that Im Φ lies in $\mathfrak{M}_{X,H}(n; c_1, c_2 + m) - M_{X,H}(n; c_1, c_2 + m)$. In the following theorem, we compute the dimension of Im Φ .

Theorem 3.6. *Let m, n natural integers with* $1 \leq m < n$. Then $\mathfrak{M}_{X,H}(n; c_1, c_2 + m) - M_{X,H}(n; c_1, c_2 + m)$ *contains an irreducible projective variety Y of dimension* $3 + \dim M_{X,H}(n; c_1, c_2)$ *such that the general* $element F \in Y$ *fits into exact sequence*

$$
0 \to F \to E \to \mathcal{O}_{X,x} \otimes W \to 0,
$$

where $E \in M_{X,H}(n; c_1, c_2)$, $W \in \mathbb{G}(E_x, m)$ and $x \in X$. In particular, if $n = 2$ then Φ is injective and Y is a *divisor.*

Proof. We will prove that image of Φ is an irreducible variety of dimension $3 + \dim M_{X,H}(n; c_1, c_2)$. For this, it will thus be sufficient to compute the dimension of the fibers of Φ . Let $F \in \text{Im } \Phi$, then there exists $((x, E), W) \in \mathbb{G}(\mathcal{U}, m)$ such that *F* fits into the following exact sequence

$$
0 \to F \to E \to \mathcal{O}_{X,x} \otimes W \to 0, \tag{3.10}
$$

where *E* is a vector bundle and $W \in \mathbb{G}(E_x, m)$. We claim dim $\text{Ext}^1(\mathcal{O}_{X,x} \otimes W, F) = m^2$.

From the exact sequence (3.10) , we get the long exact sequence

$$
0 \to \text{Hom}(\mathcal{O}_{X,x}, F) \to \text{Hom}(\mathcal{O}_{X,x}, E) \to \text{Hom}(\mathcal{O}_{X,x}, \mathcal{O}_{X,x} \otimes W) \to
$$

$$
Ext^1(\mathcal{O}_{X,x}, F) \to Ext^1(\mathcal{O}_{X,x}, E) \to Ext^1(\mathcal{O}_{X,x}, \mathcal{O}_{X,x} \otimes W) \to \dots
$$

Since $Hom(\mathcal{O}_{X,x}, E) = 0$ and by Lemma [2.6](#page-4-3) $Ext^1(\mathcal{O}_{X,x}, E) = 0$, it follows that

 $\dim \operatorname{Ext}^{1}(\mathcal{O}_{X,x}, F) = \dim \operatorname{Hom}(\mathcal{O}_{X,x}, \mathcal{O}_{X,x} \otimes W) = m.$

Thus, dim $\text{Ext}^1(\mathcal{O}_{X,x} \otimes W, F) = m^2$.

We now proceed to compute the dimension of $\text{Im }\Phi$. Let p_i be denote the canonical projection of $X \times \mathbb{G}(E_x, m)$ for $i = 1, 2$ and consider the sheaf $\mathcal{H}om(p_1^*\mathcal{O}_x \otimes p_2^*\mathcal{Q}_{E_x}, p_1^*F)$. Taking higher direct image, we obtain on $\mathbb{G}(E_r, m)$ the sheaf:

$$
\Lambda := R^1_{p_{2\ast}} \mathcal{H}om \left(p_1^* \mathcal{O}_x \otimes p_2^* \mathcal{Q}_{E_x}, p_1^* F \right).
$$

This Λ is locally free over $\mathbb{G}(E_x, m)$ because

 $H^0(\mathcal{H}om(\mathcal{O}_{X,x} \otimes W, F)) \cong \text{Hom}(\mathcal{O}_{X,x} \otimes W, F) = 0,$

for any $W \in \mathbb{G}(E_x, m)$. Hence, the fiber of Λ at $W \in \mathbb{G}(E_x, m)$ is $\text{Ext}^1(\mathcal{O}_{X,x} \otimes W, F)$.

Let $\pi : \mathbb{P}\Lambda \to \mathbb{G}(E_x, m)$ denote the projectivization of the sheaf Λ . By [\[11,](#page-14-12) Lemma [3.2\]](#page-6-1) there exists an exact sequence:

$$
0 \to (id \times \pi)^* p_1^* F \otimes \mathcal{O}_{X \times \mathbb{P}\Lambda}(1) \to \mathcal{E} \to (id \times \pi)^* (p_1^* \mathcal{O}_{X,x} \otimes p_2^* \mathcal{Q}_{E_x}) \to 0 \tag{3.11}
$$

on $X \times \mathbb{P}\Lambda$ such that, for each $p \in \mathbb{P}\Lambda$, its restriction to $X \times \{p\}$ is the extension

$$
0 \longrightarrow F \longrightarrow \mathcal{E}_{|_p} \longrightarrow \mathcal{O}_{X,x} \otimes W \longrightarrow 0
$$

where $\mathcal{E}_{|p} := \mathcal{E}_{|X \times \{p\}}$. The set

 $U := \{ p \in \mathbb{P}\Lambda \sim | \sim \mathcal{E}_{\vert_n} \text{ is locally free and stable} \}$

is irreducible open set of dimension $m(n - m) + m^2 - 1 = mn - 1$. Therefore, the dimension of the fiber of Φ is $mn - 1 - m^2 = m(n - m) - 1$ and then we have

> dim Im $\Phi = m(n-m) + 2 + \dim M_{YH}(n; c_1, c_2) - m(n-m) + 1$ $= 3 + \dim M_{YH}(n; c_1, c_2).$

Note that for rank two case, the morphism ϕ is injective because the dimension of $\mathbb{P}Ext^{1}(\mathcal{O}_{X,x}\otimes$ W, F = 0 and $\mathbb{P}Ext^{1}(\mathcal{O}_{X,x} \otimes W, F)$ is irreducible.

By functorial construction, we also have the following algebraic morphism

$$
\Psi: X \times M_{X,H}(n; c_1, c_2) \to \text{Hilb}_{\mathfrak{M}_{X,H}(n; c_1, c_2+m)}
$$

$$
z = (x, E) \mapsto \mathbb{G}(z)
$$

with $\mathbb{G}(z) := \phi_z(\mathbb{G}(E_x, m))$. This construction is essentially the same as the one carried out in [\[2,](#page-14-1) [20\]](#page-15-0).

The injectivity of the function $\Psi: X \times M_{X,H}(n; c_1, c_2) \to \text{Hilb}_{\mathfrak{M}_{X,H}(n; c_1, c_2+m)}$ is established in the next proposition. The proof proceeds as [\[2,](#page-14-1) Proposition 3.2] and we use the following two lemmas.

Lemma 3.7. *Let X be an irreducible variety and let*

$$
0 \to F \to E \to G \to 0
$$

be an exact sequence of sheaves over X. If E and G are locally free sheaves, then F is locally free.

Proof. Let *H* be a sheaf on *X*. We claim that for any locally free sheaf *E* on *X* $\mathcal{E}xt^{i}(E, H) = 0$. By [\[12,](#page-14-11) Proposition 6.8], we have

$$
\mathcal{E}xt^{i}(E,H)_{x}\cong \text{Ext}^{i}(E_{x},H_{x})
$$

which is zero for any $x \in X$ because [\[10,](#page-14-5) Theorem 17]. Consider the exact sequence

$$
0 \to F \to E \to G \to 0 \tag{3.12}
$$

where *E* and *G* are locally free sheaves. Applying the functor \mathcal{H} *om*(−, *H*) to the exact sequence [\(3.12\)](#page-9-0), we get

$$
0 \to \mathcal{H}om(G, H) \to \mathcal{H}om(E, H) \to \mathcal{H}om(F, H) \to
$$

$$
\mathcal{E}xt^{1}(G, H) \to \mathcal{E}xt^{1}(E, H) \to \mathcal{E}xt^{1}(F, H) \to \mathcal{E}xt^{2}(G, H) \to \cdots
$$

Note that $\mathcal{E}xt^{i}(G,H) = \mathcal{E}xt^{i}(E,H) = 0$ for $i > 0$. Therefore, $\mathcal{E}xt^{i}(F,H) = 0$ from which we conclude that *F* is locally free as we desired. \Box

Lemma 3.8 ([\[14\]](#page-14-6), Lemma 8.2.12). Let F_1 and F_2 be μ -semistable sheaves on X. If a is sufficiently large *integer and* $C \in |aH|$ *a general nonsingular curve, then* $F_1|_C$ *and* $F_2|_C$ *are S-equivalent if and only if* $F_1^{**} \cong F_2^{**}$

Proposition 3.9. The morphism $\Psi: X \times M_{X,H}(n; c_1, c_2) \to \text{Hilb}_{\mathfrak{M}_{X,H}(n; c_1, c_2+m)}$ defined as above is injec*tive.*

Proof. Assume that for $i = 1, 2$, there exist $z_i = (x_i, E_i) \in X \times M_{X,H}(n; c_1, c_2)$ such that $\mathbb{G}(z_1) = \mathbb{G}(z_2)$, we want to prove that $E_1 \cong E_2$ and $x_1 = x_2$. We recall that for any $z_i = (x_i, E_i)$ there exists a family \mathcal{F}_{z_i} of stable torsion-free sheaves parameterized by $\mathbb{G}(z_i)$, and \mathcal{F}_z fits into the following exact sequence

$$
0 \longrightarrow \mathcal{F}_{z_i} \longrightarrow p_1^* E_i \longrightarrow p_1^* \mathcal{O}_{x_i} \otimes p_2^* \mathcal{Q}_{E_{x_i}} \longrightarrow 0 \tag{3.13}
$$

of sheaves over $X \times \mathbb{G}(z_i)$, where p_i denotes the *j*-projection over $X \times \mathbb{G}(z_i)$. From universal properties of moduli space $\mathfrak{M}_{X,H}(n; c_1, c_2 + m)$, there exists an isomorphism $\beta : \mathbb{G}(z_1) \to \mathbb{G}(z_2)$ that induces the following commutative diagrams

and

i.e. $\phi_{z_1} = \phi_{z_2} \circ \beta$ and $p_1 = p'_1 \circ (id_X \times \beta)$. By the universal property of $\mathfrak{M}_{X,H}(n; c_1, c_2 + m)$, we have

$$
\mathcal{F}_{z_1} \cong (id_X \times \beta)^* \mathcal{F}_{z_2} \otimes p_2^*(L)
$$

for some line bundle *L* on $\mathbb{G}(z_1)$. The following properties are satisfied:

- (1) *L* is trivial.
- (2) $R^1 p_{1*} (\mathcal{F}_{z_1}) = R^1 p'_{1*} (\mathcal{F}_{z_2}) = 0.$

(3) $p_{1*} \mathcal{F}_{z_1} = p'_{1*} \mathcal{F}_{z_2}$.

First we proved that $\mathcal{F}_{z_i}|_{\{y\}\times\mathbb{G}(z_i)} \cong E_y \otimes \mathcal{O}_{\mathbb{G}(z_i)}$ is trivial for any $y \neq x_i$. Restricting the exact sequence (3.13) , we obtain

$$
0 \to \mathcal{T}or^1(\mathcal{O}_{\mathbb{G}}, p_1^*\mathcal{O}_{x_i} \otimes p_2^*\mathcal{Q}_{E_{x_i}}) \to \mathcal{F}_{z_i}|_{y \times \mathbb{G}(z_i)} \to p_1^*(E_i)|_{y \times \mathbb{G}(z_i)} \to 0.
$$

Note that $p_1^*(E_i)|_{y \times \mathbb{G}(z_i)} \cong E_y \otimes \mathcal{O}_{\mathbb{G}(z_i)}$ and $\mathcal{F}_{z_i}|_{y \times \mathbb{G}(z_i)}$ are vector bundle of the same rank, then by Lemma [3.7](#page-9-1) we have $\mathcal{T}\circ r^1$ $(\mathcal{O}_\mathbb{G}, p_1^*\mathcal{O}_{x_i} \otimes p_2^*\mathcal{Q}_{E_{x_i}}) = 0$ and $\mathcal{F}_{z_i}|_{y \times \mathbb{G}(z_i)} \cong E_y \otimes \mathcal{O}_{\mathbb{G}(z_i)}$. On the other hand

$$
(id_X \times \beta)^* \left(\mathcal{F}_{z_2} \right) \vert_{y \times \mathbb{G}(z_1)} = \beta^* \left(\mathcal{F}_{z_2} \vert_{y \times \mathbb{G}(z_2)} \right) = \beta^* \left(E_y \otimes \mathcal{O}_{G(z_2)} \right) = E_y \otimes \mathcal{O}_{G(z_1)}.
$$

Therefore,

$$
E_{y} \otimes \mathcal{O}_{G(z_{1})} = \mathcal{F}_{z_{1}}|_{y \times \mathbb{G}(z_{1})} \cong ((id_{X} \times \beta)^{*}\mathcal{F}_{z_{2}} \otimes p_{2}^{*}(L))|_{y \times \mathbb{G}(z_{1})} = E_{y} \otimes \mathcal{O}_{G(z_{1})} \otimes L.
$$

Thus, *L* is trivial [\[22,](#page-15-4) p. 12] and this prove (1). Moreover

$$
\mathcal{F}_{z_1}|_{x_1\times\mathbb{G}(z_1)}\cong ((id_X\times\beta)^*\mathcal{F}_{z_2})|_{x_1\times\mathbb{G}(z_1)}=\beta^*\left(E_{x_1}\otimes\mathcal{O}_{G(z_2)}\right)=E_{x_1}\otimes\mathcal{O}_{\mathbb{G}(z_1)}.
$$

And for any $y \in X$ we have

$$
R^1p_{1*}\left(\mathcal{F}_{z_1}\right)_y=H^1\left(\mathcal{F}_{z_1}|_{y\times\mathbb{G}(z_1)}\right)=H^1\left(E_y\otimes\mathcal{O}_{\mathbb{G}(z_1)}\right)=0.
$$

Similarly, we can prove that $\mathcal{F}_{z_2}|_{x_2\times\mathbb{G}(z_2)} \cong E_{x_2}\otimes \mathcal{O}_{\mathbb{G}(z_2)}$ and

 $R^1 p_{1*} (F_z) = 0$ and this prove (2). Since $p_1 = p'_1 \circ (id \times \beta)$ and $(id_X \times \beta)$ is an isomorphism, we get

$$
p_{1*}(\mathcal{F}_{z_1}) = p_{1*}(id \times \beta)^* (\mathcal{F}_{z_2}) = (p'_1 \circ (id \times \beta))_*(id \times \beta)^* \mathcal{F}_{z_2})
$$

= $p'_{1*}((id \times \beta)_*(id \times \beta)^* (\mathcal{F}_{z_2}))$
= $p'_{1*} (\mathcal{F}_{z_2}),$

and this proves (3). We now proceed to show that $E_1 \cong E_2$ and $x_1 = x_2$. The proof will be divided into three steps:

Step 1: We will show that $E_1 \otimes I_{x_1} \cong E_2 \otimes I_{x_2}$.

Taking the direct image of (3.13) by p_1 we obtain the following exact sequence:

$$
0 \to p_{1*}(\mathcal{F}_{z_1}) \to p_{1*}(p_1^*E_1) \to p_{1*}(p_1^*\mathcal{O}_{x_1} \otimes p_2^*Q_{E_{1,x_1}}) \to 0
$$

because $R^1 p_{1*}(\mathcal{F}_{z_1}) = 0$. And we can complete the diagram

$$
\begin{array}{ccccccc}\n0 & \longrightarrow & E_1 \otimes I_{x_1} & \longrightarrow & E_1 & \longrightarrow & E_1 \otimes \mathcal{O}_{x_1} & \longrightarrow & 0 \\
 & & & & & & & \\
0 & \longrightarrow & p_{1*}(\mathcal{F}_{z_1}) & \longrightarrow & p_{1*}(p_1^*E_1) & \longrightarrow & p_{1*}(p_1^*\mathcal{O}_{x_1} \otimes p_2^*\mathcal{Q}_{E_{1,x_1}}) & \longrightarrow & 0.\n\end{array}
$$

Since $p_{1*}p_1^*(E_1) \cong E_1$ and $p_{1*}(p_1^*\mathcal{O}_{x_1} \otimes p_2^*\mathcal{Q}_{E_{1,x_1}}) \cong E_1 \otimes \mathcal{O}_{x_1}$ by projection formula, it follows that $p_{1*} \mathcal{F}_{z_1} \cong E_1 \otimes I_{x_1}$. We can now proceed analogously to obtain $p'_{1*} \mathcal{F}_{z_2} \cong E_2 \otimes I_{x_2}$. Therefore,

$$
E_1\otimes I_{x_1}\cong p_{1*}\mathcal{F}_{z_1}\cong p'_{1*}\mathcal{F}_{z_2}\cong E_2\otimes I_{x_2}.
$$

Step 2: We will show that $E_1 \cong E_2$;

Note that the general curve on *X* does not goes through the points x_1 and x_2 , hence $E_1|_C \cong (E_1 \otimes$ *I_x*₁)| $C \cong (E_2 \otimes I_{x_1})|_C \cong E_2|_C$ for the general curve $C \in |aH|$. From Lemma [3.8,](#page-10-1) we conclude that $E_1 \cong E_2$ which is the desired conclusion.

Step 3: We show will that $x_1 = x_2$;

Notice that by step 1 there exists an isomorphism $\lambda: E_1 \otimes I_{x_1} \to E_2 \otimes I_{x_2}$. On the other hand, step 2 provided us an isomorphism $\phi: E_1 \to E_2$. Considering the exact sequence

$$
0 \longrightarrow E_i \otimes I_{x_i} \longrightarrow E_i \longrightarrow \alpha_i \rightarrow E_i \otimes \mathcal{O}_{x_i} \longrightarrow 0
$$

for $i = 1, 2$. Moreover $\phi \circ f_1, f_2 \circ \lambda \in \text{Hom}(E_1 \otimes I_x, E_2)$, and hence by Lemma [3.1,](#page-5-3) $\phi \circ f_1 = t(f_2 \circ \lambda)$ for some $t \in \mathbb{C}^*$. Without loss of generality, we suppose that $t = 1$ therefore we have the following commutative diagram

$$
0 \longrightarrow E_1 \otimes I_{x_1} \xrightarrow{f_1} E_1 \longrightarrow E_1 \otimes \mathcal{O}_{x_1} \longrightarrow 0
$$

$$
\downarrow \lambda \qquad \qquad \downarrow \phi \qquad \qquad \downarrow \alpha
$$

$$
0 \longrightarrow E_2 \otimes I_{x_2} \longrightarrow E_2 \longrightarrow E_2 \otimes \mathcal{O}_{x_2} \longrightarrow 0,
$$

where α is an isomorphism of skyscraper sheaves supported at x_1 and x_2 , respectively. Hence $x_1 = x_2$. Therefore, Ψ is injective which establishes the proposition. \Box

We can now state our main result. The theorem computes a bound of the dimension of an irreducible subvariety of the Hilbert scheme Hilb $m_{X_H(n;c_1,c_2+m)}$.

Theorem 3.10. *The Hilbert scheme Hilb* $\mathfrak{M}_{X,H(n;\,c_1,c_2+m)}$ *of the moduli space of stable vector bundles has an irreducible component of dimension at least* $2 + \dim M_{X,H}(n; c_1, c_2)$.

Proof. The proof follows from Proposition [3.9.](#page-10-2)

4. Application to the moduli space of sheaves on the projective plane

Let us denote by $\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2)$ the moduli space of rank 2 stable sheaves on the projective plane \mathbb{P}^2 with respect to the ample line bundle $\mathcal{O}_{\mathbb{P}^2}(1)$. By Proposition [3.4,](#page-6-0) the image $\phi_z(\mathbb{P}(z))$ defines a cycle in the Hilbert scheme of $\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2)$

In this section, we will describe the component of the Hilbert scheme which contains the cycles ϕ _z($\mathbb{P}(E_x)$). Our computations use some results and techniques of [\[13,](#page-14-13) [24\]](#page-15-5).

Definition 4.1. Let E be a normalized rank 2 sheaf on \mathbb{P}^2 . A line L (resp. a conic C) $\subset \mathbb{P}^2$ is jumping *line* (*resp. jumping conic) if* $h^{1}(L, E(-c_1 – 1)|_L) ≠ 0$ *(<i>resp.* $h^{1}(C, E|_C) ≠ 0$).

The following theorem was proved in [\[24\]](#page-15-5)

Theorem 4.2. Assume that $c_1 = -1$ (resp. $c_1 = 0$) and that $c_2 = n \geq 2$ (resp. $c_2 = n \geq 3$ is odd). Then

(i) $Pic(\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2))$ *is freely generated by two generators denoted by* ϵ *and* δ *(resp.* φ *and* ψ *).*

(ii) An integral linear combination $a\epsilon + b\delta$ (resp. $a\varphi + b\psi$) is ample if and only if $a > 0$ and $b > 0$.

(iii) Consider the following sets in $\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2)$:

 $D_1 = \{sheaves with a given jumping conic (resp - line)\}.$

*D*² = {*sheaves with a given jumping line* (*resp*.*conic*) *passing through* 1 (*resp*.3) *given points*}.

Then D_1 *is the support of a reduced divisor in the linear system* $|\epsilon|$ (*resp.* $|\varphi|$ *) and* D_2 *is the support of a reduced divisor in the linear system* $|\delta|$ *(resp.* $|\frac{1}{2}(n-1)\psi|$ *).*

Following the construction given in Section [3,](#page-4-0) if $z = (x, E) \in \mathbb{P}^2 \times M_{\mathbb{P}^2}(2; c_1, c_2 - 1)$ then, Proposition [3.3,](#page-6-3) we have a family \mathcal{F}_z of *H*-stable torsion-free sheaves rank two on \mathbb{P}^2 parameterized by $\mathbb{P}(E_x)$ or $\mathbb{P}(z)$ for short. Such family fits in the following exact sequence

 \Box

$$
0 \longrightarrow \mathcal{F}_z \longrightarrow p_1^* E \longrightarrow p_1^* \mathcal{O}_x \otimes p_2^* \mathcal{Q}_{E_x} \longrightarrow 0,
$$
\n
$$
(4.1)
$$

defined on $\mathbb{P}^2 \times \mathbb{P}(z)$. The classification map of \mathcal{F}_z is the morphism

$$
\phi_z : \mathbb{P}(z) \to \mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2) \tag{4.2}
$$

defined as ϕ _{*z}* $(W) = E^W$.</sub>

We now use the exact sequence (4.1) and the morphism (4.2) to determine the irreducible component of the Hilbert scheme Hilb_{$\mathfrak{M}_{\mathbb{R}^2}(2;\mathfrak{c}_1,\mathfrak{c}_2)$ of the moduli space $\mathfrak{M}_{\mathbb{P}^2}(2;\mathfrak{c}_1,\mathfrak{c}_2)$, $\mathfrak{c}_1 = 0$ or -1 which contains the} cycles $\phi_z(\mathbb{P}(z))$. This component is denoted by \mathcal{HG} .

For the proof of the theorem, we first establish the result for two particular cases: $c_1 = -1$ and $c_1 = 0$.

Theorem 4.3. *Under the notation of Theorem [4.2](#page-12-3)*

(1) Assume that $c_1 = -1$ *and let* $c_2 \geq 2$ *. Let* $\mathfrak{L} := a\epsilon + b\delta$ *be an ample line bundle in* $Pic(\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2))$. Then, \mathcal{HG} is the component of the Hilbert scheme $Hilb_{\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2)}^p$ where *P is the Hilbert polynomial defined as;*

$$
P(m) = \chi\left(\mathbb{P}(z), \phi_z^*(\mathfrak{L})\right) = \chi\left(\mathbb{P}(z), \mathcal{O}_{\mathbb{P}(z)}(mb)\right).
$$

(2) Assume that $c_1 = 0$ *and let* $c_2 \geq 3$ *odd number. Let* $\mathcal{L} := a\varphi + b\psi$ *be an ample line bundle in* $Pic(\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2))$. Then, \mathcal{HG} is the component of the Hilbert scheme $Hilb_{\mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2)}^P$ where P *is the Hilbert polynomial defined as;*

$$
P(m) = \chi \left(\mathbb{P}(z), \phi_z^*(\mathfrak{L}) \right) = \chi \left(\mathbb{P}(z), \mathcal{O}_{\mathbb{P}(z)} \left(m \left(c_2 - 1 \right) b \right) \right).
$$

Proof.

(1) Let $z = (x, E) \in \mathbb{P}^2 \times M_{\mathbb{P}^2}(2; c_1, r)$, $c_1 = -1$ and $r \ge 1$. Consider the family \mathcal{F}_z of stable sheaves of rank two given by the exact sequence [\(4.1\)](#page-12-2). Then, $\mathcal{F}_{z} := (\mathcal{F}_{z})|_{\mathbb{P}^2 \times \{t\}}$ is stable for any $t \in$ P(*z*) and by Proposition [2.4](#page-3-1) its Chern classes are $c_1(\mathcal{F}_z) = -1$ and $c_2 := c_2(\mathcal{F}_z) = r + 1 ≥ 2$. Therefore, we have the morphism

$$
\phi_z : \mathbb{P}(E_x) \longrightarrow \mathfrak{M}_{\mathbb{P}^2}(2; c_1, c_2), \quad t \mapsto \mathcal{F}_z|_t
$$

and set $\tau = p_1^*(\mathcal{O}_{\mathbb{P}^2}(1)).$

Now we will compute $\phi_z^* \epsilon$ and $\phi_z^* \delta$.

Let $l \geq 0$, from the exact sequence (4.1) we have

$$
0 \to p_{2*} \mathcal{F}(-l\tau) \to p_{2*} p_1^* E(-l\tau) \to p_{2*} p_1^* \mathcal{O}_x(-l\tau) \otimes p_2^* \mathcal{Q}_{E_x} \to
$$

\n
$$
R^1 p_{2*} \mathcal{F}(-l\tau) \to R^1 p_{2*} p_1^* E(-l\tau) \to R^1 p_{2*} (p_1^* \mathcal{O}_x(-l\tau) \otimes p_2^* \mathcal{Q}_{E_x}) \to 0.
$$

Using the projection formula, we get

$$
R^i p_{2*} p_1^* E(-l\tau) = \mathcal{O}_{\mathbb{P}(E_x)} \otimes H^i(\mathbb{P}^2, E(-l)).
$$

Since $E(-l)$ is a stable vector bundle on \mathbb{P}^2 with $c_1 \le 0$, it follows that $p_{2*}p_1^*E(-l\tau) = 0$ and $R^i p_{2*} p_1^* E(-l\tau)$ is a trivial bundle. Moreover, by similar arguments we have

$$
R^i p_{2_*} \left(p_1^* \mathcal{O}_x(-l\tau) \otimes p_2^* \mathcal{Q}_{E_x} \right) \cong \mathcal{Q}_{E_x} \otimes p_{2*} p_1^* \mathcal{O}_x(-l\tau) \cong \mathcal{Q}_{E_x} \otimes H^i \left(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(-l)_x \right).
$$

Hence $R^1 p_{2*} p_1^* \mathcal{O}_x(-l\tau) \otimes p_2^* \mathcal{Q}_{E_x} = 0$ and $p_{2*} p_1^* \mathcal{O}_x(-l\tau) \otimes p_2^* \mathcal{Q}_{E_x} = \mathcal{Q}_{E_x}$. Therefore, we have the exact sequence

$$
0 \to Q_{E_x} \to R^1 p_{2*} \mathcal{F}(-l\tau) \to R^1 p_{2*} p_1^* E(-l\tau) \to 0
$$

where we conclude that $c_1(R^1 p_{2*} \mathcal{F}(-l\tau)) = 1$ for any $l \ge 0$. According to [\[13,](#page-14-13) Lemmas 3.3 and 3.4], it follows that

$$
\phi_z^*(\epsilon) = c_1 \left(R^1 p_{2*} \mathcal{F} \right) - c_1 \left(R^1 p_{2*} \mathcal{F}(-2\tau) \right) = 0
$$

and

$$
\phi_z^*(\delta) = (r+1)c_1\left(R^1p_{2*}\mathcal{F}\right) - rc_1\left(R^1p_{2*}\mathcal{F}(-\tau)\right) = 1.
$$

Hence, we conclude that

$$
P(m) = \chi(\mathbb{P}(z), \phi_z^*(a\epsilon + b\delta)) = \chi(\mathbb{P}(z), \mathcal{O}_{\mathbb{P}(E_x)}(mb))
$$

as we desired.

(2) For the case, $c_1 = 0$ and $c_2 \geq 3$ odd. Consider $z = (x, E) \in \mathbb{P}^2 \times M_{\mathbb{P}^2}(2; c_1, r)$, $c_1 = 0$ and $r \geq 0$ 2 even. From the exact sequence [\(4.1\)](#page-12-2), we get $\mathcal{F}_{z} := \mathcal{F}_{z_{\vert p^2 \times \{t\}} }$ is stable for all $t \in \mathbb{P}(E_x)$ and $c_1(\mathcal{F}_z) = 0, c_2 := c_2(\mathcal{F}_z) = r + 1 \ge 3$ odd. By [\[13,](#page-14-13) Lemmas 3.3 and 3.4] we have that

$$
\phi_z^*(\varphi) = c_1 \left(R^1 p_{2*} \mathcal{F}(-\tau) \right) - c_1 (R^1 p_{2*} \mathcal{F}(-2\tau)) = 0,
$$

and

$$
\phi_z^*(\psi) = \frac{1}{2}r\left((r+1)c_1\left(R^1p_{2*}\mathcal{F}\right)-(r-1)c_1\left(R^1p_{2*}\mathcal{F}(-\tau)\right)\right) = c_2 - 1.
$$

which implies

$$
P(m) = \chi(\mathbb{P}(z), \phi_z^*(a\varphi + b\psi)) = \chi(\mathbb{P}(z), \mathcal{O}_{\mathbb{P}(E_x)}(m(c_2 - 1)b)))
$$

 \Box

and the proof is complete.

Acknowledgment. The first author acknowledges the financial support of Universidad de Guadalajara via PROSNI programme.

References

- [1] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, *Compact complex surfaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd edition (Springer-Verlag, Berlin, 2004), xii+436.
- [2] L. Brambila-Paz and O. Mata-Gutiérrez, On the Hilbert Scheme of the moduli space of vector bundles over an algebraic curve, *Manuscripta Math.* **142** (2013), 525–544.
- [3] I. Coskun and J. Huizenga, The ample cone of moduli spaces of sheaves on surfaces and the Brill-Noether Problem, *Manuscripta Math.* **142** (2013), 525–544.
- [4] I. Coskun and J. Huizenga, Brill-Noether theorems and globally generated vector bundles on Hirzebruch surfaces, *Nagoya Math. J.* **238** (2020), 1–36.
- [5] I. Coskun and J. Huizenga, The birational geometry of the moduli spaces of sheaves on \mathbb{P}^2 , in *Proceedings of the Gökova Geometry-Topology Conference 2014, Gökova Geometry/Topology Conference (GGT)*, Gökova (2015), 114–155.
- [6] I. Coskun and J. Huizenga, The moduli spaces of sheaves on surfaces, pathologies and Brill-Noether problems, in *Geometry of moduli*, Abel Symposia, vol. 14 (Springer, Cham, 2018), 75–105.
- [7] L. Costa and R. M. Miró-roig, Elementary transformations and the rationality of the Moduli Spaces of Vector Bundles on P2, *Manuscripta Math.* **113**(1) (2004), 69–84.
- [8] D. Eisenbud and J. Harris, *3264 and all that a second course on algebraic geometry* (Cambridge University Press, Cambridge, 2016).
- [9] B. Fantechi, et al., *Fundamental algebraic geometry: Grothendieck's FGA explained*, *Mathematical Surveys and Monographs*, vol. **123** (2005).
- [10] R. Friedman, *Algebraic surfaces and holomorphic vector bundles*. Universitext (Springer-Verlag, New York, 1998), x+328.
- [11] L. Gottsche, Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces, *Mathematische Zeitschrift* **223** (1996), 247–260.
- [12] R. Hartshorne, *Algebraic geometry*. *Graduate Texts in Mathematics*, vol. **52** (Springer-Verlag, New York-Heidelberg, 1977), xvi+496.
- [13] A. Hirshowitz and K. Hulek, Complete families of stable vector bundles over P2, in *Complex Analysis and Algebraic Geometry*. Lecture Notes in Mathematics (Springer Verlag, 1985).
- [14] D. Huybrechts and M. Lehn, *The geometry of moduli spaces of sheaves,* Aspects of Mathematics, vol. E31 (Friedr. Vieweg Sohn, Braunschweig, 1997), xiv+269.
- [15] J. Le Potier, *Lectures on vector bundles*. Translated by A. Maciocia. Cambridge Studies in Advanced Mathematics, vol. 54 (Cambridge University Press, Cambridge, 1997), viii+251.
- [16] M. Maruyama, *Elementary transformations in the theory of algebraic vector bundles*, *Lecture Notes in Mathematics*, vol. 961 (2006), 241–266.
- [17] M. Maruyama, On a family of algebraic vector bundles, in *Number theory, algebraic geometry and commutative algebra, in honor of Y. Akizuki* (Kinokuniya, Tokyo, 1973), 95–146.
- [18] M. Maruyama, Openness of a family of torsion free sheaves, *J. Math Kyoto Univ.* **16**(3) (1976), 627–637.
- [19] D. Mumford, *Lectures on curves on an algebraic surface*. With a section by G. M. Bergman. Annals of Mathematics *Studies*, vol. **59** (Princeton University Press, Princeton, N.J., 1966), xi+200.
- [20] M. S. Narasimhan and S. Ramanan, *Geometry of Hecke Cycles I*. C. P. Ramanujam-a tribute, Tata Institute of *Fundamental Research*, vol. **8** (Springer, Berlin-New York, 1978), 291–345.
- [21] M. S. Narasimhan and S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, *Ann. Math.* **101**(3) (1975), 391–417. [https://doi.org/10.2307/1970933.](https://doi.org/10.2307/1970933)
- [22] P. E. Newstead, *Introduction to moduli problems and orbit spaces,* Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51 (Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978), vi+183.
- [23] C. Okonek, M. Schneider and H. Spindler, *Vector bundles on complex projective spaces*, *Progress in Mathematics*, vol. **3** (Birkhäuser, Boston, MA, 1980), vii+389.
- [24] S. A. Stromme, Ample divisors on fine moduli spaces on the projective plane, *Math. Z.* **187**(3) (1984), 405–423.
- [25] A. Tyurin, Vector bundles, in *Collected works, volume I* (Bogomolov F., Gorodentsev A., Pidstrigach V., Reid M. and Tyurin N., Editors) (Universitätsverlag Göttingen, 2008), vii+389.