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Abstract
The aim of this paper is to determine a bound of the dimension of an irreducible component of the Hilbert scheme
of the moduli space of torsion-free sheaves on surfaces. Let X be a nonsingular irreducible complex surface, and
let E be a vector bundle of rank n on X. We use the m-elementary transformation of E at a point x ∈ X to show that
there exists an embedding from the Grassmannian variety G(Ex, m) into the moduli space of torsion-free sheaves
MX,H(n; c1, c2 + m) which induces an injective morphism from X × MX,H(n; c1, c2) to HilbMX,H (n; c1 ,c2+m).

1. Introduction

Let X be a nonsingular irreducible complex projective variety of dimension d. Let E be a vector bundle
of rank n and fixed Chern classes ci ∈ H2i(X, Z) on X. The m-elementary transformation E ′ of E at the
point x ∈ X is defined as the kernel of a surjection α : E −→Om

x which fits the exact sequence

0 → E′ → E →Om
x → 0. (1.1)

It is not hard to check that the class of such extensions is parameterized by G(Ex, m). This elementary
transformation coincides with those defined by Maruyama, when X is a curve (see, [17]) but differs when
dim X ≥ 2, because the point x ∈ X is not a divisor anymore.

Maruyama used his definition of elementary transformation to construct vector bundles on nonsingu-
lar projective varieties. Since then these elementary transformations have been a powerful tool in order
to get topological and geometric properties of the moduli space of sheaves, for instance:

When X is a curve and m = 1, the elementary transformation E ′ of E is a vector bundle. Moreover,
if E is a general stable vector bundle then E ′ is stable, and under this condition, Narasimhan and
Ramanan used elementary transformations to determine certain subvarieties (called Hecke cycles) in
the moduli space of vector bundles on curves, see [20, 21]. These Hecke cycles are contained in
a component of the Hilbert scheme of the moduli space of vector bundles on curves (called Hecke
component). Hence, Narasimhan and Ramanan computed a bound for the dimension of the Hecke com-
ponent and proved that is nonsingular in those points defined by Hecke cycles. Moreover, when X is a
curve and m ≥ 2, Brambila-Paz and Mata-Gutiérrez in [2] generalized the construction of Hecke cycles
using Grassmannians and defined Hecke Grassmannians. They proved that the corresponding Hecke
component is nonsingular and a bound for its dimension was given.
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In case that X is a surface and m = 1, Coskun and Huizenga [3] used elementary transformations to
determine a component of the moduli space of vector bundles of rank two and compute a bound for
its dimension. Also, Costa and Miró-Roig used priority sheaves and elementary transformations in the
sense of Maruyama in order to establish maps between certain moduli spaces over P2 with the same
rank and different Chern classes (see [7]).

The aim of this paper is to consider the case when X is a surface and m ≥ 1, we use m-elementary
transformations to determine Hecke cycles in the moduli space of stable torsion-free sheaves and deter-
mine geometrical aspects of a component of its Hilbert scheme. Specifically, we prove the following
result (see Theorem 3.10):

Theorem 1.1. The Hilbert scheme HilbMX,H (n; c1,c2+m) of the moduli space of stable torsion-free sheaves
has an irreducible component of dimension at least 2 + dim MX,H(n; c1, c2).

The proof of this Theorem follows some ideas and techniques of [2, 20]. For a fixed vector bun-
dle E and a point x ∈ X, we determine a closed embedding φz : G(Ex, m) �→MX,H(n; c1, c2 + m) (see
Proposition 3.4). We use the closed embedding φz to define the injective morphism

ψ : X × MX,H(n; c1, c2) −→ HilbMX,H (n; c1,c2+m)

z �→ φz(G(Ex, m)).

Additionally, we establish the following morphism

� : G(U , m) →MX,H(n; c1, c2 + m)

where U denotes the universal family parameterized by MX,H(n; c1, c2). This morphism allows us to
determine an irreducible projective variety of MX,H(n; c1, c2 + m) − MX,H(n; c1, c2 + m) and we get the
following result (see Theorem 3.6):

Theorem 1.2. Let m, n natural integers with 1 ≤ m< n. Then MX,H(n; c1, c2) − MX,H(n; c1, c2 + m) con-
tains an irreducible projective variety Y of dimension 3 + dim MX,H(n; c1, c2) such that the general
element F ∈ Y fits into exact sequence

0 → F → E →OX,x ⊗ W → 0,

where E ∈ MX,H(n; c1, c2), W ∈G(Ex, m) and x ∈ X. In particular, if n = 2 then � is injective and Y is a
divisor.

As an application of the previous result, we compute the Hilbert polynomial of the Hilbert scheme
HilbP

MX,H (n; c1,c2) which contains the cycle φz(G(Ex, m)) when X is the projective plane. In particular, we
prove the following (see Theorem 4.3);

Theorem 1.3. Assume that c1 = −1 (resp. c1 = 0) and that c2 ≥ 2 (resp. c2 ≥ 3 is odd). Let L = aε + bδ,
(resp. aϕ + bψ) be an ample line bundle in Pic(MP2 (2; c1, c2)). Then,HG is the component of the Hilbert
scheme HilbP

M
P2 (2; c1,c2) where P is the Hilbert polynomial defined as;

P(m) = χ (P(Ex), φ
∗
z (aε + bδ)) = χ (P(Ex), OP(Ex)(mb)).

(resp. P(m) = χ (P(Ex), φ
∗
z (aϕ + bψ)) = χ (P(Ex), OP(Ex)(m(c2 − 1)b))).

The paper is organized as follows: Section 2 contains a brief summary of the main results of
Grassmannians of vector bundles, moduli space of torsion-free sheaves, and m-elementary transforma-
tions. In Section 3, we give some technical results which allow us to prove our main results: Theorems
1.1 and 1.2. In Section 4, an application of the previous results is indicated for the Hilbert scheme of
moduli space of rank 2 sheaves on the projective plane.
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2. Preliminaries

Let X be a nonsingular irreducible complex projective algebraic surface. This section contains a brief
summary about stable torsion-free sheaves on surfaces, and we recall some basic facts on Grasmannians
of vector bundles and m-elementary transformations see [9, 10, 14] for more details.

2.1. Grassmannian

We will collect here the principal properties of Grassmannians of vector bundles necessary for our
purpose. For a fuller treatment, we refer the reader to [8, 25].

Let E be a vector bundle of rank n on X. Let pE : G(E, m) → X be the Grassmannian bundle of rank
m quotients of E whose fiber at x ∈ X is the Grassmannian G(Ex, m) of m-dimensional quotients of Ex,
that is

G(E, m) = {(x, W) | x ∈ X, Ex → W → 0}.
Let

0 → SE → p∗E → QE → 0

be the tautological exact sequence over G(E, m) where SE and QE denote the universal subbundle of rank
n − m and universal quotient of rank m, respectively. The tangent bundle of G(E, m) is the vector bundle
TG(E, m) = Hom(SE, QE) and hence TxG(E, m) = Hom(SEx , QEx ). Moreover, we have the following exact
sequence:

0 → TpE → TG(E, m) → p∗
ETX → 0

where TpE is the relative tangent bundle to the fibers and TpE = S∗
E ⊗ QE.

2.2. Torsion-Free sheaves

Let H be an ample divisor on X. For a torsion-free sheaf E on X with Chern classes ci ∈ H2i(X, Z),
i = 1, 2 one sets

μH(E) := degH(E)

rk(E)
, Pm(E) := χ (E ⊗ Hm)

rk (E)
,

where degH(E) is the degree of E defined by c1(E).H and χ (E ⊗ Hm) denotes the Hilbert polynomial
defined by

∑
(−1)ihi(X, E ⊗ Hm).

Definition 2.1. Let H be an ample divisor on X. A torsion-free sheaf E on X is H-stable (resp. stable) if
for all nonzero subsheaf F ⊂ E

μH(F)<μH(E) (resp. Pm(F)< Pm(E)).

We want to emphasize that both notions of stability depend on the ample divisor we fix on the
underlying surface X and it is easily seen that H-stability implies stability.1

Recall that any H-stable (resp. stable) torsion-free sheaf is simple, i.e. if E is H-stable (resp. stable),
then dim Hom(E , E) = 1. We will denote by MX,H(n; c1, c2) the moduli space of H-stable vector bundles
on X of rank n and fixed Chern classes c1, c2 and by MX,H(n; c1, c2) the moduli space of stable torsion-
free sheaves on X. Since locally free is an open property and H-stability implies stability, it follows that
MX,H(n; c1, c2) is an open subset of MX,H(n; c1, c2). In general an universal family on X × MX,H(n; c1, c2)

1The H-stability is frequently called Mumford–Takemoto stability and the stability is called Gieseker–Maruyama stability.
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(resp. on X ×MX,H(n; c1, c2)) does not exist, the existence of such universal family is guaranteed by the
following criterion.

Lemma 2.2. [14, Corollary 4.6.7] Let X be a nonsingular surface and let H be an ample divisor
on X. Let n, c1, c2 fixed values for the rank and Chern classes. If gcd(n, c1.H, 1

2
c1.(c1 − KX) − c2) = 1,

then there is an universal family on X × MX,H(n; c1, c2) (resp. X ×MX,H(n; c1, c2)).

2.3. m-elementary transformations.

Definition 2.3. Let E be a locally free sheaf on X of rank n and Chern classes c1, c2 and let

0 → E′ → E →Om
x → 0 (2.1)

be an exact sequence of sheaves, where Om
x = ⊕m

i=1Ox is the sum of skyscraper sheaf with support on
x ∈ X. The coherent sheaf E′ is called the m-elementary transformation of E at x ∈ X.

Notice that even though E is locally free, its elementary transformation E ′ is a torsion free sheaf not
locally free. Moreover if E is H-stable then E ′ is also H-stable. However, if E is stable then E ′ is not
necessarily stable (see for instance [6, Remark 1]).

The m-elementary transformations have been used for several authors to construct many vector bun-
dles on a higher dimensional projective variety and to determine topological and geometric properties
of the moduli space of sheaves. For instance, Maruyama did a general study of elementary transforma-
tions of sheaves in his master’s and doctoral theses [16, 17]. In [20] Narasimhan and Ramanan used
elementary transformations of vector bundles on curves to introduce certain subvarieties in the moduli
space of vector bundles which they called Hecke cycles. Brambila-Paz and the first author also used
m-elementary transformations to describe a nonsingular open set of the Hilbert scheme of the moduli
space of vector bundles on a curve [2]. Coskun and Huizenga have used elementary transformations to
study priority sheaves since that they are well-behaved under elementary modifications [3–5].

We now collect some other basic properties related with m-elementary transformations in the
following result.

Proposition 2.4. Let H be an ample divisor on X. Let E be a vector bundle on X of rank n and Chern
classes c1, c2, and let E′ be a m-elementary transformation of E at x ∈ X, i.e. we have

0 → E′ → E →Om
x → 0. (2.2)

Then,
(i) rk(E′) = n, c1(E′) = c1, c2(E′) = c2 + m and χ (E′) = χ (E) − m.
(ii) E′ is a torsion-free sheaf not locally free.
(iii) If E is H-stable, then E′ is H-stable. Hence, E′ is stable.

Proof.
(i) The proof follows directly from the exact sequence and Riemann–Roch Theorem.
(ii) Clearly E ′ is torsion free since E is a vector bundle. Now, suppose that E ′ is locally free, by

[10, Chapter 4, Lemma 3], it follows that E = E′ which is impossible because c2(E′) = c2 + m.
Therefore E ′ is a torsion-free sheaf not locally free.

(iii) Let F be subsheaf of E ′ and assume that E is H-stable. It is clear that F is a subsheaf of E and
by item (i), it follows that

μH(F)<μH(E) =μH(E′).

Hence E ′ is H-stable and therefore stable.
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Remark 2.5. The class of extensions (2.2) are parameterized by G(Ex, m). Furthermore, any W ∈
G(Ex, m) defines a surjective linear transformation α̃W : Ex → W → 0 which determines a surjective
morphism of sheaves αW : E →Om

x . If EW denotes ker(αW) then we have the exact sequence:

0 → EW → E →Om
x → 0. (2.3)

The following result will be used in the next sections:

Lemma 2.6. Let E be a vector bundle on X and let Ox be the skyscraper sheaf with support on x ∈ X.
Then, for any integer m ≥ 1 we have

Exti
(
Om

x , E
) = 0, i = 2.

For a deeper discussion of m-elementary transformations, we refer to reader to [2, 3].

2.4. Hecke cycles on the moduli space of vector bundles on curves.

Let X be a smooth projective curve, and let x ∈ X be a point. For any vector bundle E on X, the
m-elementary transformation

0 → E′ → E →Om
x → 0 (2.4)

determines a vector bundle E ′, where deg(E′) = deg(E) − m and rk(E′) = rk(E). If E is general in the
moduli space MX(n, d) of stable vector bundles of rank n and degree d, then E ′ is stable (see [2,
Proposition 2.4]).

In [20] Narasimhan and Ramanan considered the m-elementary transformations of type

0 → E′ → E →Ox → 0

to prove that, for a general E ∈ MX(n, d) (for an explicit description of the general open set in MX(n, d)
see [20, Lemma 5.5]), the pair (E, x) determines a closed embedding

�(E,x) : P
(
E∗

x

) → MX(n, d − 1). (2.5)

(see, [20, Lemma 5.8]) and therefore P
(
E∗

x

)
can be considered as a subscheme of the moduli space

MX(n, d − 1). These projective subschemes are called Hecke cycles. Every Hecke cycle determines a
point in the Hilbert scheme HilbMX (n,d−1). Narasimhan and Ramanan proved that there is an open sub-
scheme in MX(n, d) which is isomorphic to an open subscheme of HilbMX (n,d−1) (see, [20, Theorem
5.13]).

Later, in [2] the authors generalize the ideas of Narasimhan and Ramanan and they considered
m-elementary transformations, m> 1 in order to prove that, if E ∈ MX(n, d) is general (for an explicit
description of the general open set in MX(n, d) see [2, Proposition 2.4]), then E ′ is stable. Moreover,
every pair (E, x) determines a closed embedding

�(E,x) : G(Ex, m) → MX(n, d − m) (2.6)

(see [2, Proposition 3.1]) and therefore G(Ex, m) can be considered as a Grassmannian subvariety in the
moduli space MX(n, d − m) which is called m-Hecke cycles. Hence, they concluded that HilbM(n,d−m) has
an irreducible component HG of dimension (n2 − 1)(g − 1) + 1 where every m-Hecke cycle determines
a smooth point (see, [2, Theorem 1.1]).

The principal significance of [20, Lemma 5.8] and [2, Proposition 3.1] is that the morphisms (2.5)
and (2.6) are closed embeddings. It allows determine m-Hecke cycles and geometric and topological
properties of the Hilbert scheme HilbMX (n,d−m).
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3. On the moduli space of torsion free sheaves

The aim of this section is to define an embedding from G(Ex, m) into the moduli space MX,H(n; c1, c2 +
m) of torsion-free sheaves. Generalizing some techniques of [2, 20] we establish a closed embed-
ding φz : G(Ex, m) →MX,H(n; c1, c2 + m) and an injective algebraic morphism
 : X × MX,H(n; c1, c2) →
HilbMX,H (n; c1,c2+m), where z = (x, E) ∈ X × MX,H(n; c1, c2) and HilbMX,H (n; c1,c2+m) denotes the Hilbert scheme
of the moduli space MX,H(n; c1, c2). Moreover, we construct an irreducible variety properly contained in
MX,H(n; c1, c2 + m) − MX,H(n; c1, c2 + m).

The following Lemma deals with m-elementary transformations, specifically we compute the dimen-
sion of the morphisms of a m-elementary transformation E ′ of E. The important point to note here is
that E is a vector bundle. Here and subsequently, E denotes a vector bundle on X.

Lemma 3.1. Let H be an ample divisor on X. Let E′ be a torsion-free sheaf of rank n and let E be an
H-stable vector bundle of rank n. If c1(E′) = c1(E), then dim Hom(E′, E) ≤ 1.

Proof. Let f : E′ → E be a not zero homomorphism. By [10, Proposition 7, Chapter 4] the morphism
f is injective and hence we have the sequence

0 → E′ → E → E/E′ → 0.

By [12, Proposition 6.4.], we have the following long exact sequence

0 →Hom(E/E′, E) → Hom(E, E) → Hom(E′, E) →
Ext1(E/E′, E) → Ext1(E, E) → Ext1(E′, E) → · · ·

Note that E/E′ has support in a finite number of points because c1(E) = c1(E′), hence Hom(E/E′, E) =
0. On the other hand Lemma 2.6, implies that Ext1(E/E′, E) = 0. Since E is a H-stable vector bundle, it
follows that

dim Hom(E, E) = dim Hom(E′, E) = 1

as we desired.

Set z := (x, E) ∈ X × MX,H(n; c1, c2) and let m be a fixed natural number with m< n. Let
πE : G(E, m) → X be the Grassmannian bundle associated to E and for any x ∈ X denote by G(Ex, m)
the Grassmannian of m-quotients of Ex. On G(E, m), we have the tautological exact sequence

0 → SE → π ∗
EE → QE → 0, (3.1)

where SE is the universal subbundle and QE is the universal quotient bundle. Note that for any x ∈ X, if
we restrict (3.1) to G(Ex, m) then we obtain

0 → SEx →OG × Ex → QEx → 0. (3.2)

Let us denote by G(z) := G(Ex, m). Consider on X ×G(z), the surjective morphism α : p∗
1E −→

p∗
1Ox ⊗ p∗

2QEx associated to the canonical surjective morphism αx : OG × Ex → QEx in (3.2) under the
isomorphism:

H0
(
X ×G(z), p∗

1E∗ ⊗ p∗
1Ox ⊗ p∗

2QEx

) ∼= H0
(
G(z), p2∗ (p∗

1E∗ ⊗ p∗
1Ox) ⊗ QEx

)

∼= H0
(
G(z), p2∗p∗

1(E∗
x ) ⊗ QEx

)

∼= H0
(
G(z),

(
OG × E∗

x

) ⊗ QEx

)

∼= H0
(
G(z), Hom

(
OG × Ex, QEx

))
,

where the second isomorphism is given by projection formula (see, [19], p. 76). Here, taking the kernel
of the surjective morphism α : p∗

1E −→ p∗
1Ox ⊗ p∗

2QEx , we get the exact sequence

0 −→Fz −→ p∗
1E −→ p∗

1Ox ⊗ p∗
2QEx −→ 0 (3.3)

on X ×G(z).
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Lemma 3.2. Let z = (x, E) ∈ X × MX,H(n; c1, c2) and W ∈G(z), then

T or1
(
O{x}×G, OX×{W}

) = 0.

Proof. Restricting the exact sequence

0 → I{x}×G →OX×G →O{x}×G → 0

to X × {W}, we get

0 → T or1
(
O{x}×G, OX×{W}

) → I{x}×G|X×{W} →OX →Ox → 0

As is well-known p∗
1Ix

∼= I{x}×G and I{x}×G|X×{W} ∼= Ix. Then it follows that

T or1
(
O{x}×G, OX×{W}

) = 0.

With the above notation and as consequence of Lemma 3.2, we have the following result.

Proposition 3.3. If E is H-stable, then Fz is a family of stable torsion-free sheaves parameterized by
G(z).

Proof. Let W ∈G(z). Restricting the exact sequence (3.3) to X × {W}, we get the exact sequence

0 −→ EW −→ E −→Ox ⊗ W −→ 0 (3.4)

over X. Hence, EW is a torsion-free sheaf of rank n called the m-elementary transformation of E in x
defined by W . Since c1(Ox ⊗ W) = 0 and E is H-stable, it follows that EW is H-stable and therefore stable
with c1(EW) = c1(E) (see Proposition 2.4). Moreover, by Whitney sum and c2(Ox ⊗ W) = − dim (W) =
−m we get c2(EW) = c2(E) + m which completes the proof.

The classification map of Fz is given by

φz : G(z) →MX,H(n; c1, c2 + m)

W �→ EW ,

where EW was defined in the above Proposition. The following result shows that the morphism φz is a
closed embedding. For the proof of the proposition, we follow the techniques and ideas of [20, Lemma
5.10], and [2, Proposition 3.1] who proved a similar result for vector bundles on curves.

Proposition 3.4. For any point z = (x, E) ∈ X × MX,H(n; c1, c2), the morphism φz : G(z) →
MX,H(n; c1, c2 + m) is a closed embedding.

Proof. We first prove that the morphism φz is injective. Assume that there exist W1, W2 ∈G(z) such
that ψ : EW1 → EW2 is an isomorphism, we claim that W1 = W2. Recall that for any i = 1, 2, we have the
following exact sequence

By Lemma 3.1 we have dim Hom(EW1 , E) = 1, it follows that there exist λ ∈C
∗ such that λf1 = f2 ◦ψ .

Hence, Im f1,x = Im f2,x which implies W1 = W2. Therefore, φz is injective.
We now proceed to show the injectivity of the differential map dφz : TWG(z) →MX,H(n; c1, c2 + m).

By [20, Lemma 5.10], its infinitesimal deformation map in W ∈G(z) is, up to the sign, the composi-
tion of the natural map TWG(z) → Hom

(
EW , Ox ⊗ W

)
with the boundary map Hom

(
EW , Ox ⊗ W

) →
Ext1(X, EW , EW) given by the long exact sequence

0 → Hom
(
EW , EW

) → Hom(EW , E) → Hom
(
EW , Ox ⊗ W

) → Ext1
(
EW , EW

) → · · ·
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obtained from (3.4). Notice that Hom
(
EW , EW

) ∼=C because EW is an H-stable free torsion sheaf.
Moreover, Hom(EW , E) ∼=C by Lemma 3.1. Therefore, the coboundary morphism

δ : Hom
(
EW , Ox ⊗ W

) → Ext1
(
EW , EW

)

is injective.

As in [2, 20], a consequence of the above result is that we determine a collection of closed subschemes
in MX,H(n; c1, c2 + m) and a collection of points in its Hilbert scheme (see, [20, Definition 5.12]). From
a stable vector bundle E on X, we constructed the family Fz of stable torsion-free sheaves. Analogously,
if we start with a family E of stable vector bundles on X parameterized by T , then we can construct a
family of of stable torsion-free sheaves F . In the next paragraphs, we describe the construction when E
is the universal family of stable vector bundles parameterized by MX,H(n; c1, c2).

Let H be an ample divisor on X. As is well-known if gcd
(
n, c1.H, 1

2
c1.(c1 − KX) − c2

) = 1, then there
exists a universal family U of vector bundles parameterized by MX,H(n; c1, c2) (see Lemma 2.2). Under
this conditions, we will determine a family F of stable torsion-free sheaves parameterized by G(U , m)
which extends to Fz (see Proposition 3.3).

Let U be the universal family of vector bundles parameterized by MX,H(n; c1, c2), hence p : U → X ×
MX,H(n; c1, c2) is a vector bundle. We denote by πU : G(U , m) → X × MX,H(n; c1, c2) the Grassmannian
bundle of quotients associated to U . An element of G(U , m) is a pair ((x, E),W ), where (x, E) ∈ X ×
MX,H(n; c1, c2) and W ∈G(Ex, m). The tautological exact sequence over G(U , m) is

0 → SU → π ∗
U U α→ QU → 0, (3.5)

where QU denotes the universal quotient bundle of rank m over G(U , m). We now consider the graph of
the following composition

 := p1◦πU as a subvariety of X ×G(U , m). Then we have the following result.

Lemma 3.5. Let g ∈G(U , m). Then
(a) T or1(IX×{g}, O) = 0.
(b) There exists a canonical surjective morphism of sheaves

(id × p2 ◦ πU )∗ U →O ⊗ p∗
G(U )QU → 0, (3.6)

over X ×G(U , m), determined by α, where pG(U ) : X ×G(U , m) →G(U , m) and p2 : X ×
MX,H(n; c1, c2) → MX,H(n; c1, c2) are the respective second projections.

Proof. Taking β := pG(U )| as the restriction of the projection, we have the following commutative
diagram

where i : → X ×G(U ) is the inclusion map, hence IX×g| = i∗p∗
G(U )(Ig) = β∗(Ig).

From the exact sequence
0 → Ig →OG(U ) →Og → 0,

we get
0 → β∗(Ig) → β∗(OG(U )) → β∗(Og) → 0,

Therefore, T or1(IX×{g}, O) = 0 and this prove (a).
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Now, to prove (b) consider the surjective map α : π ∗
U U → QU given in (3.5) and notice

that β∗α : β∗π ∗
U U → β∗QU is also surjective. Since β∗π ∗

U(U ) ∼= (id × p2 ◦ πU )∗ (U )| and β∗QU ∼=
p∗
G((U )(QU )|, we get a surjective morphism

(id × p2 ◦ πU )∗ (U )| →O ⊗ p∗
G(U )QU . (3.7)

Hence, from the exact sequence

0 → (id × p2 ◦ πU )∗ U ⊗ I → (id × p2 ◦ πU )∗ U → (id × p2 ◦ πU )∗ U | → 0

and the morphism (3.7) we get the surjective map (id × p2 ◦ πU )∗ U →O ⊗ p∗
G(U )QU which completes

the proof.

According to the above Lemma, let us denote by F the kernel of the surjective morphism (3.6).
Hence, we get the exact sequence

0 →F → (id × p2 ◦ πU )∗ U →O ⊗ p∗
G(U )QU → 0. (3.8)

Note that (id × p2 ◦ πU )∗ (U )|X×((x,E),W) = E and O ⊗ p∗
G(U )QU |X×((x,E),W) =Ox ⊗ W. Since p∗

G(U )QU is
a vector bundle and T or1(IX×{g}, O) = 0, it follows that T or1(IX×{g}, O ⊗ p∗

G(U )QU ) = p∗
G(U )QU ⊗

T or1(IX×{g}, O) = 0. Therefore, restricting the exact sequence (3.8) to X × {((x, E), W)}, we get the exact
sequence

0 −→ EW −→ E −→Ox ⊗ W −→ 0

over X. Moreover, if we restrict (3.8) to X ×G(z), we obtain (3.3).
Hence by similar arguments to Proposition 3.3, we have that F is a family of stable torsion-free

sheaves of rank n of type (c1, c2 + m) which determines a morphism

� : G(U , m) → MX,H(n; c1, c2 + m)

((x, E), W) �→ EW .

Note that Im� lies in MX,H(n; c1, c2 + m) − MX,H(n; c1, c2 + m). In the following theorem, we
compute the dimension of Im�.

Theorem 3.6. Let m, n natural integers with 1 ≤ m< n. Then MX,H(n; c1, c2 + m) − MX,H(n; c1, c2 + m)
contains an irreducible projective variety Y of dimension 3 + dim MX,H(n; c1, c2) such that the general
element F ∈ Y fits into exact sequence

0 → F → E →OX,x ⊗ W → 0,

where E ∈ MX,H(n; c1, c2), W ∈G(Ex, m) and x ∈ X. In particular, if n = 2 then � is injective and Y is a
divisor.

Proof. We will prove that image of � is an irreducible variety of dimension 3 + dim MX,H(n; c1, c2).
For this, it will thus be sufficient to compute the dimension of the fibers of �. Let F ∈ Im�, then there
exists ((x, E), W) ∈G(U , m) such that F fits into the following exact sequence

0 → F → E →OX,x ⊗ W → 0, (3.10)

where E is a vector bundle and W ∈G(Ex, m). We claim dim Ext1(OX,x ⊗ W, F) = m2.
From the exact sequence (3.10), we get the long exact sequence

0 → Hom(OX,x, F) → Hom(OX,x, E) → Hom(OX,x, OX,x ⊗ W) →
Ext1(OX,x, F) → Ext1(OX,x, E) → Ext1(OX,x, OX,x ⊗ W) → . . .

Since Hom(OX,x, E) = 0 and by Lemma 2.6 Ext1(OX,x, E) = 0, it follows that

dim Ext1(OX,x, F) = dim Hom(OX,x, OX,x ⊗ W) = m.

Thus, dim Ext1(OX,x ⊗ W, F) = m2.
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We now proceed to compute the dimension of Im�. Let pi be denote the canonical projection of
X ×G(Ex, m) for i = 1, 2 and consider the sheaf Hom(p∗

1Ox ⊗ p∗
2QEx , p∗

1F). Taking higher direct image,
we obtain on G(Ex, m) the sheaf:

� := R1
p2∗Hom

(
p∗

1Ox ⊗ p∗
2QEx , p∗

1F
)

.

This � is locally free over G(Ex, m) because

H0(Hom(OX,x ⊗ W, F)) ∼= Hom(OX,x ⊗ W, F) = 0,

for any W ∈G(Ex, m). Hence, the fiber of � at W ∈G(Ex, m) is Ext1(OX,x ⊗ W, F).
Let π : P�→G(Ex, m) denote the projectivization of the sheaf �. By [11, Lemma 3.2] there exists

an exact sequence:

0 → (id × π )∗p∗
1F ⊗OX×P�(1) → E → (id × π )∗(p∗

1OX,x ⊗ p∗
2QEx ) → 0 (3.11)

on X × P� such that, for each p ∈ P�, its restriction to X × {p} is the extension

0 −→ F −→ E|p −→OX,x ⊗ W −→ 0

where E|p := E|X×{p} .
The set

U := {p ∈ P�~|~E|p is locally free and stable}
is irreducible open set of dimension m(n − m) + m2 − 1 = mn − 1. Therefore, the dimension of the fiber
of � is mn − 1 − m2 = m(n − m) − 1 and then we have

dim Im�= m(n − m) + 2 + dim MX,H(n; c1, c2) − m(n − m) + 1

= 3 + dim MX,H(n; c1, c2).

Note that for rank two case, the morphism φ is injective because the dimension of PExt1(OX,x ⊗
W, F) = 0 and PExt1(OX,x ⊗ W, F) is irreducible.

By functorial construction, we also have the following algebraic morphism


 : X × MX,H(n; c1, c2) → Hilb MX,H (n; c1,c2+m)

z = (x, E) �→ G(z)

with G(z) := φz(G(Ex, m)). This construction is essentially the same as the one carried out in [2, 20].
The injectivity of the function 
 : X × MX,H(n; c1, c2) → Hilb MX,H (n; c1,c2+m) is established in the next

proposition. The proof proceeds as [2, Proposition 3.2] and we use the following two lemmas.

Lemma 3.7. Let X be an irreducible variety and let

0 → F → E → G → 0

be an exact sequence of sheaves over X. If E and G are locally free sheaves, then F is locally free.

Proof. Let H be a sheaf on X. We claim that for any locally free sheaf E on X Exti(E, H) = 0. By [12,
Proposition 6.8], we have

Exti(E, H)x
∼= Exti(Ex, Hx)

which is zero for any x ∈ X because [10, Theorem 17]. Consider the exact sequence

0 → F → E → G → 0 (3.12)
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where E and G are locally free sheaves. Applying the functor Hom(−, H) to the exact sequence (3.12),
we get

0 →Hom(G, H) →Hom(E, H) →Hom(F, H) →
Ext1(G, H) → Ext1(E, H) → Ext1(F, H) → Ext2(G, H) → · · ·

Note that Exti(G, H) = Exti(E, H) = 0 for i> 0. Therefore, Ext1(F, H) = 0 from which we conclude that
F is locally free as we desired.

Lemma 3.8 ([14], Lemma 8.2.12). Let F1 and F2 be μ-semistable sheaves on X. If a is sufficiently large
integer and C ∈ |aH| a general nonsingular curve, then F1|C and F2|C are S-equivalent if and only if
F∗∗

1
∼= F∗∗

2

Proposition 3.9. The morphism 
 : X × MX,H(n; c1, c2) → Hilb MX,H (n; c1,c2+m) defined as above is injec-
tive.

Proof. Assume that for i = 1, 2, there exist zi = (xi, Ei) ∈ X × MX,H(n; c1, c2) such that G(z1) =G(z2),
we want to prove that E1

∼= E2 and x1 = x2. We recall that for any zi = (xi, Ei) there exists a family Fzi of
stable torsion-free sheaves parameterized by G(zi), and Fzi fits into the following exact sequence

0 −→Fzi −→ p∗
1Ei −→ p∗

1Oxi ⊗ p∗
2QExi

−→ 0 (3.13)

of sheaves over X ×G(zi), where pj denotes the j-projection over X ×G(zi). From universal properties
of moduli space MX,H(n; c1, c2 + m), there exists an isomorphism β : G(z1) →G(z2) that induces the
following commutative diagrams

and

i.e. φz1 = φz2 ◦ β and p1 = p′
1 ◦ (idX × β). By the universal property of MX,H(n; c1, c2 + m), we

have

Fz1
∼= (idX × β)∗Fz2 ⊗ p∗

2(L)

for some line bundle L on G(z1). The following properties are satisfied:
(1) L is trivial.
(2) R1p1∗

(
Fz1

) = R1p′
1∗

(
Fz2

) = 0.
(3) p1∗Fz1 = p′

1∗Fz2 .

First we proved that Fzi |{y}×G(zi)
∼= Ey ⊗OG(zi) is trivial for any y = xi. Restricting the exact sequence

(3.13), we obtain

0 → T or1
(
OG, p∗

1Oxi ⊗ p∗
2QExi

) →Fzi |y×G(zi) → p∗
1(Ei)|y×G(zi) → 0.
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Note that p∗
1(Ei)|y×G(zi)

∼= Ey ⊗OG(zi) and Fzi |y×G(zi) are vector bundle of the same rank, then by
Lemma 3.7 we have T or1

(
OG, p∗

1Oxi ⊗ p∗
2QExi

) = 0 and Fzi |y×G(zi)
∼= Ey ⊗OG(zi). On the other hand

(idX × β)
∗ (
Fz2

) |y×G(z1) = β∗ (
Fz2 |y×G(z2)

) = β∗ (
Ey ⊗OG(z2)

) = Ey ⊗OG(z1).

Therefore,

Ey ⊗OG(z1) =Fz1 |y×G(z1)
∼= (

(idX × β)∗Fz2 ⊗ p∗
2(L)

) |y×G(z1) = Ey ⊗OG(z1) ⊗ L.

Thus, L is trivial [22, p. 12] and this prove (1). Moreover

Fz1 |x1×G(z1)
∼= (
(idX × β)

∗ Fz2

) |x1×G(z1) = β∗ (
Ex1 ⊗OG(z2)

) = Ex1 ⊗OG(z1).

And for any y ∈ X we have

R1p1∗
(
Fz1

)
y
= H1

(
Fz1 |y×G(z1)

) = H1
(
Ey ⊗OG(z1)

) = 0.

Similarly, we can prove that Fz2 |x2×G(z2)
∼= Ex2 ⊗OG(z2) and

R1p1
′
∗
(
Fz2

) = 0 and this prove (2). Since p1 = p′
1 ◦ (id × β) and (idX × β) is an isomorphism,

we get

p1∗
(
Fz1

) = p1∗(id × β)∗ (
Fz2

) = (p′
1 ◦ (id × β))∗(id × β)∗Fz2

)

= p′
1∗((id × β)∗(id × β)∗ (

Fz2

))

= p′
1∗

(
Fz2

)
,

and this proves (3). We now proceed to show that E1
∼= E2 and x1 = x2. The proof will be divided into

three steps:

Step 1: We will show that E1 ⊗ Ix1
∼= E2 ⊗ Ix2 .

Taking the direct image of (3.13) by p1 we obtain the following exact sequence:

0 → p1∗
(
Fz1

) → p1∗
(
p∗

1E1

) → p1∗
(

p∗
1Ox1 ⊗ p∗

2QE1,x1

)
→ 0

because R1p1∗
(
Fz1

) = 0. And we can complete the diagram

Since p1∗p
∗
1(E1) ∼= E1 and p1∗

(
p∗

1Ox1 ⊗ p∗
2QE1,x1

) ∼= E1 ⊗Ox1 by projection formula, it follows that
p1∗Fz1

∼= E1 ⊗ Ix1 . We can now proceed analogously to obtain p′
1∗Fz2

∼= E2 ⊗ Ix2 . Therefore,

E1 ⊗ Ix1
∼= p1∗Fz1

∼= p′
1∗Fz2

∼= E2 ⊗ Ix2 .

Step 2: We will show that E1
∼= E2;

Note that the general curve on X does not goes through the points x1 and x2, hence E1|C
∼= (E1 ⊗

Ix1 )|C
∼= (E2 ⊗ Ix1 )|C

∼= E2|C for the general curve C ∈ |aH|. From Lemma 3.8, we conclude that E1
∼= E2

which is the desired conclusion.

Step 3: We show will that x1 = x2;
Notice that by step 1 there exists an isomorphism λ : E1 ⊗ Ix1 → E2 ⊗ Ix2 . On the other hand, step 2

provided us an isomorphism φ : E1 → E2. Considering the exact sequence
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for i = 1, 2. Moreover φ ◦ f1, f2 ◦ λ ∈ Hom(E1 ⊗ Ix1 , E2), and hence by Lemma 3.1, φ ◦ f1 = t(f2 ◦ λ)
for some t ∈C

∗. Without loss of generality, we suppose that t = 1 therefore we have the following
commutative diagram

where α is an isomorphism of skyscraper sheaves supported at x1 and x2, respectively. Hence x1 = x2.
Therefore, 
 is injective which establishes the proposition.

We can now state our main result. The theorem computes a bound of the dimension of an irreducible
subvariety of the Hilbert scheme HilbMX,H (n; c1,c2+m).

Theorem 3.10. The Hilbert scheme HilbMX,H (n; c1,c2+m) of the moduli space of stable vector bundles has
an irreducible component of dimension at least 2 + dim MX,H(n; c1, c2).

Proof. The proof follows from Proposition 3.9.

4. Application to the moduli space of sheaves on the projective plane

Let us denote by MP2 (2; c1, c2) the moduli space of rank 2 stable sheaves on the projective plane P2 with
respect to the ample line bundle OP2 (1). By Proposition 3.4, the image φz(P(z)) defines a cycle in the
Hilbert scheme of MP2 (2; c1, c2)

In this section, we will describe the component of the Hilbert scheme which contains the cycles
φz(P(Ex)). Our computations use some results and techniques of [13, 24].

Definition 4.1. Let E be a normalized rank 2 sheaf on P
2. A line L (resp. a conic C) ⊂ P

2 is jumping
line (resp. jumping conic) if h1(L, E(−c1 − 1)|L) = 0 (resp. h1(C, E|C) = 0).

The following theorem was proved in [24]

Theorem 4.2. Assume that c1 = −1 (resp. c1 = 0) and that c2 = n ≥ 2 (resp. c2 = n ≥ 3 is odd). Then
(i) Pic(MP2 (2; c1, c2)) is freely generated by two generators denoted by ε and δ (resp. ϕ and ψ).
(ii) An integral linear combination aε + bδ (resp. aϕ + bψ) is ample if and only if a> 0 and b> 0.
(iii) Consider the following sets in MP2 (2; c1, c2):

D1 = {sheaves with a given jumping conic (resp − line)}.
D2 = {sheaves with a given jumping line (resp.conic) passing through 1 (resp.3) given points}.
Then D1 is the support of a reduced divisor in the linear system |ε| (resp. |ϕ|) and D2 is the
support of a reduced divisor in the linear system |δ| (resp. | 1

2
(n − 1)ψ |).

Following the construction given in Section 3, if z = (x, E) ∈ P
2 × MP2 (2; c1, c2 − 1) then,

Proposition 3.3, we have a family Fz of H-stable torsion-free sheaves rank two on P
2 parameterized

by P(Ex) or P(z) for short. Such family fits in the following exact sequence

https://doi.org/10.1017/S0017089523000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000010


Glasgow Mathematical Journal 427

0 −→Fz −→ p∗
1E −→ p∗

1Ox ⊗ p∗
2QEx −→ 0, (4.1)

defined on P
2 × P(z). The classification map of Fz is the morphism

φz : P(z) →MP2 (2; c1, c2) (4.2)
defined as φz(W) = EW .

We now use the exact sequence (4.1) and the morphism (4.2) to determine the irreducible component
of the Hilbert scheme HilbM

P2 (2; c1,c2) of the moduli space MP2 (2; c1, c2), c1 = 0 or −1 which contains the
cycles φz(P(z)). This component is denoted by HG.

For the proof of the theorem, we first establish the result for two particular cases: c1 = −1 and c1 = 0.

Theorem 4.3. Under the notation of Theorem 4.2
(1) Assume that c1 = −1 and let c2 ≥ 2. Let L := aε + bδ be an ample line bundle in

Pic(MP2 (2; c1, c2)). Then, HG is the component of the Hilbert scheme HilbP
M

P2 (2; c1,c2) where
P is the Hilbert polynomial defined as;

P(m) = χ
(
P(z), φ∗

z (L)
) = χ

(
P(z), OP(z)(mb)

)
.

(2) Assume that c1 = 0 and let c2 ≥ 3 odd number. Let L := aϕ + bψ be an ample line bundle in
Pic(MP2 (2; c1, c2)). Then, HG is the component of the Hilbert scheme HilbP

M
P2 (2; c1,c2) where P

is the Hilbert polynomial defined as;
P(m) = χ

(
P(z), φ∗

z (L)
) = χ

(
P(z), OP(z) (m (c2 − 1) b)

))
.

Proof.
(1) Let z = (x, E) ∈ P

2 × MP2 (2; c1, r), c1 = −1 and r ≥ 1. Consider the family Fz of stable sheaves
of rank two given by the exact sequence (4.1). Then, Fzt := (Fz)|P2×{t} is stable for any t ∈
P(z) and by Proposition 2.4 its Chern classes are c1(Fzt ) = −1 and c2 := c2(Fzt ) = r + 1 ≥ 2.
Therefore, we have the morphism

φz : P(Ex) −→MP2 (2; c1, c2), t �→Fz|t

and set τ = p∗
1(OP2 (1)).

Now we will compute φ∗
z ε and φ∗

z δ.
Let l ≥ 0, from the exact sequence (4.1) we have

0 →p2∗F(−lτ ) → p2∗p∗
1E(−lτ ) → p2∗p∗

1Ox(−lτ ) ⊗ p∗
2QEx →

R1p2∗F(−lτ ) → R1p2∗p∗
1E(−lτ ) → R1p2∗

(
p∗

1Ox(−lτ ) ⊗ p∗
2QEx

) → 0.

Using the projection formula, we get
Rip2∗p∗

1E(−lτ ) =OP(Ex) ⊗ Hi(P2, E(−l)).

Since E(−l) is a stable vector bundle on P
2 with c1 ≤ 0, it follows that p2∗p∗

1E(−lτ ) = 0 and
Rip2∗p∗

1E(−lτ ) is a trivial bundle. Moreover, by similar arguments we have
Rip2∗

(
p∗

1Ox(−lτ ) ⊗ p∗
2QEx

) ∼= QEx ⊗ p2∗p∗
1Ox(−lτ ) ∼= QEx ⊗ Hi

(
P

2, OP2 (−l)x

)
.

Hence R1p2∗p∗
1Ox(−lτ ) ⊗ p∗

2QEx = 0 and p2∗p∗
1Ox(−lτ ) ⊗ p∗

2QEx = QEx . Therefore, we have the
exact sequence

0 → QEx → R1p2∗F(−lτ ) → R1p2∗p∗
1E(−lτ ) → 0

where we conclude that c1(R1p2∗F(−lτ )) = 1 for any l ≥ 0.
According to [13, Lemmas 3.3 and 3.4], it follows that

φ∗
z (ε) = c1

(
R1p2∗F

) − c1(R1p2∗F(−2τ ) = 0

and
φ∗

z (δ) = (r + 1)c1

(
R1p2∗F

) − rc1

(
R1p2∗F(−τ )

) = 1.
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Hence, we conclude that

P(m) = χ (P(z), φ∗
z (aε + bδ)) = χ (P(z), OP(Ex)(mb))

as we desired.
(2) For the case, c1 = 0 and c2 ≥ 3 odd. Consider z = (x, E) ∈ P

2 × MP2 (2; c1, r), c1 = 0 and r ≥
2 even. From the exact sequence (4.1), we get Fzt := Fz|

P2×{t}
is stable for all t ∈ P(Ex) and

c1(Fzt ) = 0, c2 := c2(Fzt ) = r + 1 ≥ 3 odd. By [13, Lemmas 3.3 and 3.4] we have that

φ∗
z (ϕ) = c1

(
R1p2∗F(−τ )

) − c1(R1p2∗F(−2τ )) = 0,

and

φ∗
z (ψ) = 1

2
r
(
(r + 1)c1

(
R1p2∗F

) − (r − 1)c1

(
R1p2∗F(−τ )

)) = c2 − 1.

which implies

P(m) = χ (P(z), φ∗
z (aϕ + bψ)) = χ (P(z), OP(Ex)(m(c2 − 1)b)))

and the proof is complete.
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