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Equivalence of Lp Stability and Exponential
Stability of Nonlinear Lipschitzian
Semigroups

Song Xueli and Peng Jigen

Abstract. Lp stability and exponential stability are two important concepts for nonlinear dynamic sys-

tems. In this paper, we prove that a nonlinear exponentially bounded Lipschitzian semigroup is expo-

nentially stable if and only if the semigroup is Lp stable for some p > 0. Based on the equivalence,

we derive two sufficient conditions for exponential stability of the nonlinear semigroup. The results

obtained extend and improve some existing ones.

1 Introduction

The abstract Cauchy problem in a Banach space X

(1.1)

{

u ′(t) = Au(t), t > 0,

u(0) = x ∈ C ⊆ X,

has been widely discussed by means of a semigroup of operators (see, for instance,

[1–3, 5–7, 13, 14, 16, 17]), where C is a closed subset of X. If A is linear, the abstract

Cauchy problem (1.1) is well posed in the sense of the classical solution for x ∈ D(A)

if and only if (A,D(A)) generates a strongly continuous semigroup (T(t))t≥0 on X.

Moreover, Pazy [15] showed that the following asymptotic result holds for linear

strongly continuous semigroups.

Theorem 1.1 Let (T(t))t≥0 be a strongly continuous semigroup on Banach space X.

Then the following two statements are equivalent:

∫ ∞

0

‖T(t)x‖pdt < ∞, for x ∈ X and some p ≥ 1(D1)

‖T(t)‖ ≤ Me−at , for some M ≥ 1 and a > 0.(D2)

For more information on the result, we can refer to [4, 8, 9, 14, 20].

If A is nonlinear, Peng [17] proved that the abstract Cauchy problem (1.1) is well

posed in the sense of a strong solution introduced in [2] if and only if A generates an
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exponentially bounded Lipschitzian semigroup on D(A). As we all know, for non lin-

ear systems it is very important (and difficult) to investigate the asymptotic behaviors

of their solution semigroups. Consequently, it is natural to ask whether the equiva-

lence in Theorem 1.1 still holds for the nonlinear Lipschitzian semigroup. However, a

counterexample was provided in [18] to illustrate that the equivalence may not hold.

It means that the condition (D1) is too weak to be equivalent to exponential stability

for nonlinear semigroups. Conseqently, only some “strengthened-version” of condi-

tion (D1) may be equivalent to exponential stability of nonlinear semigroups. In fact,

Ichikawa [10] proved the equivalence of a nonlinear semigroup corresponding to the

semilinear version of (1.1), i.e.,

(1.2)

{

u ′(t) = (A + B)u(t), t > 0,

u(0) = x ∈ X,

where A generates a linear strongly continuous semigroup and B : X → X is a Lips-

chitz continuous operator with B(0) = 0. Particularly, he gave the following equiva-

lence result of Lp stability and exponential stability for a nonlinearly perturbed semi-

group corresponding to (1.2).

Theorem 1.2 ([10, Corollary 2.1]) Let g( · ) be a positive continuous function on

[0,∞). Suppose that Xt = X0 = X, t ≥ 0 and T(t, s) = T(t − s) for some one-

parameter semigroup of nonlinear operators (T(t))t≥0 generated by A + B on X0 satisfies

‖T(t, s)x‖ ≤ g(t − s)‖x‖, x ∈ X0, t ≥ s.

Then the two statements below are equivalent:

∫ ∞

0

‖T(t)x‖pdt ≤ K p‖x‖p, x ∈ X0, for some p > 0 and K > 0;(N ′
1)

‖T(t)x‖ ≤ Me−at‖x‖, x ∈ X0, for some M ≥ 1 and a > 0.(N ′
2)

To the best of our knowledge, there are few papers investigating the asymptotic

behaviors of nonlinear semigroups except [10]. Motivated by this, we attempt to give

an equivalence characterization of Lp stability and exponential stability for nonlinear

Lipschitzian semigroup associated with (1.1) investigated in recent years by [11, 12,

18,19]. Actually, it is also significant to characterize the equivalence from the point of

view of Lyapunov’s direct method ,because there exist some situations where one may

easily find Lyapunov functions that are not strictly positive but assure Lp stability, i.e.,

(N ′
1) holds.

The paper is arranged as follows: in Section 2 we give some useful notions and

basic results. In Section 3, we show the equivalence of Lp stability and exponential

stability of a nonlinear exponentially bounded Lipschtizian semigroup. Based on the

equivalence, we derive two further sufficient conditions for exponential stability of

the nonlinear semigroup.
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2 Preliminaries

Throughout this paper, X and Y are assumed to be Banach spaces over the same

coefficient field K (= R or C). Let C and D be respective subsets of X and Y . An

operator T from C into D is called Lipschitz continuous if there exists a real constant

M > 0 such that ‖Tx − Ty‖ ≤ M‖x − y‖ for all x, y ∈ C , where the constant M

is usually called the Lipschitz constant of T. The minimum Lipschitz constant of T,

denoted by L(T), can be computed by

L(T) = sup
x,y∈C

x 6=y

‖Tx − Ty‖

‖x − y‖
.

It is easy to check that the nonnegative functional L( · ) is a seminorm of the space

Lip(C,D) of Lipschitz operators from C into D. Obviously, L(T) is just the operator

norm ‖T‖ when the operator T reduces to the linear case.

Definition 2.1 ([19]) A one-parameter family (T(t))t≥0 of Lipschitz operators

from C into itself is called a Lipschitzian semigroup on C if it possesses the follow-

ing two properties: (i) T(0) = I (the identity operator on X), T(t)T(s) = T(t + s) for

all t, s ≥ 0; and (ii) the mapping t 7→ T(t)x is continuous at t = 0 for every x ∈ C .

Furthermore, if there exist two real constants M ≥ 1 and ω ∈ R such that

L(T(t)) ≤ Meωt for all t ≥ 0, then the Lipschitzian semigroup (T(t))t≥0 is said

to be exponentially bounded.

Definition 2.2 ([19]) Let (T(t))t≥0 be a Lipschitzian semigroup on C , and let

D(A) =
{

x ∈ C : the limit lim
t→0+

T(t)x − x

t
exists

}

.

If D(A) is not empty, then we say that (T(t))t≥0 possesses an infinitesimal generator

A, which is defined by

A : D(A) ⊂ C −→ X, Ax = lim
t→0+

T(t)x − x

t
.

In this case, we also say that A generates the Lipschitzian semigroup (T(t))t≥0.

Definition 2.3 An exponentially bounded Lipschitzian semigroup (T(t))t≥0 on C

is called

(i) Lp stable if there exist some constants p > 0 and K > 0 such that

∫ ∞

0

‖T(t)x − T(t)y‖pdt ≤ K p‖x − y‖p for all x, y ∈ C and t ≥ 0;

(ii) exponentially stable if there exist constants a > 0 and M ≥ 1 such that

L(T(t)) ≤ Me−at for all t ≥ 0.
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Remark 2.4 It should be pointed out that exponential stability of Lipschitzian

semigroup (T(t))t≥0 is discussed in the sense of seminorm L(·). Since L( · ) is a non-

linear extension of linear operator norm ‖ · ‖, our definition can reduce to one of

exponential stability of linear strongly continuous semigroups [5, 7, 14, 16]. In ad-

dition, the nonlinear exponential stability in [10] is the special case of Definition

2.3(ii).

Definition 2.5 ([11]) A continuous function u( · ) from [0,∞) into X is said to be a

global solution to (1.1) if u(0) = x, u(t) ∈ C for t ≥ 0 and u(t) satisfies u ′(t) = Au(t)

for t ≥ 0.

Theorem 2.6 ([11]) Suppose that A is a continuous operator from C into X. Then A is

the infinitesimal generator of exponentially bounded Lipschitzian semigroup (T(t))t≥0

on C satisfying the estimate

L(T(t)) ≤ Meωt for M ≥ 1, t ≥ 0 and ω ∈ R

if and only if it satisfies the following two conditions:

(A1) lim infh↓0 d(x + hAx,C)/h = 0 for all x ∈ C.

(A2) There exists a nonnegative functional V on X × X satisfying

(V1) |V (x, y) −V (x̂ − ŷ)| ≤ M(‖x − x̂‖ + ‖y − ŷ‖), for (x, y), (x̂, ŷ) ∈ X × X

(V2) ‖x − y‖ ≤ V (x, y) ≤ M‖x − y‖, for x, y ∈ C

such that

D+V (x, y)(Ax,Ay) ≤ ωV (x, y) for x, y ∈ C.

Here the symbol D+V (x, y)(ξ, η) is defined by

D+V (x, y)(ξ, η) = lim inf
h↓0

(V (x + hξ, y + hη) −V (x, y))/h for (x, y), (ξ, η) ∈ X × X.

In this case, for each x ∈ C, the abstract Cauchy problem (1.1) has a unique global

solution u(t) = T(t)x for t ≥ 0.

3 The Main Results

Let Z be a Banach space and let T(t, s), t ≥ s ≥ 0, be a family of nonlinear operators

with domain Ys ⊂ Z with the following properties:

(3.1)

T(t, s)Ys ⊂ Yt for t ≥ s,

T(t, t)y = y, t ≥ 0 for y ∈ Yt ,

T(t, u)T(u, s) = T(t, s) on Ys for s ≤ u ≤ t,

T( · , s)y is continuous on [s,∞) for each y ∈ Ys.

Lemma 3.1 ([10, Lemma 2.1]) Let 0 < r < 1, L > 0 and let n be a nonnegative

integer. Then nL ≤ t ≤ (n + 1)L implies e−at ≤ rn ≤ (1/r)e−at , a = −(ln r)/L > 0.
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Theorem 3.2 Let g( · ) be a positive continuous function on [0,∞). Suppose that

T(t, s) satisfy the condition

(B) ‖T(t, s)x − T(t, s)y‖ ≤ g(t − s)‖x − y‖ for all x, y ∈ Ys, t ≥ s.

Then the following two statements are equivalent:

(N1)

∫ ∞

s

‖T(t, s)x − T(t, s)y‖pdt ≤ K p‖x − y‖p for some p > 0 and K > 0,

(N2) ‖T(t, s)x − T(t, s)y‖ ≤ Me−a(t−s)‖x − y‖ for some M ≥ 1 and a > 0,

where x, y ∈ Ys, t ≥ s ≥ 0.

Proof Obviously, it is enough to prove only that (N1) implies (N2). The proof idea

comes mainly from [10]. For any 0 ≤ s < t and x, y ∈ Ys, we have

(3.2) ‖T(t, s)x−T(t, s)y‖p

∫ t

s

g−p(t − u) du

=

∫ t

s

g−p(t − u)‖T(t, s)x − T(t, s)y‖p du

=

∫ t

s

g−p(t − u)‖T(t, u)T(u, s)x − T(t, u)T(u, s)y‖p du

≤

∫ t

s

g−p(t − u)g p(t − u)‖T(u, s)x − T(u, s)y‖p du

=

∫ t

s

‖T(u, s)x − T(u, s)y‖pdu

≤ K p‖x − y‖p.

We take L̃ > 0 arbitrarily and define J by Jp
=

∫ L̃

0
g−p(u) du. Then J > 0 and for

any t − s ≥ L̃, from (3.2) we derive

(3.3) ‖T(t, s)x − T(t, s)y‖ ≤ (K/ J)‖x − y‖.

Combined with (B), (3.3) implies that there exists a constant R > 0 such that

(3.4) ‖T(t, s)x − T(t, s)y‖ ≤ R‖x − y‖ for all t ≥ s ≥ 0 and x, y ∈ Ys.

Now let t > s, x, y ∈ Ys and we consider

(t − s)‖T(t, s)x − T(t, s)y‖p
=

∫ t

s

‖T(t, s)x − T(t, s)y‖p du

≤ Rp

∫ t

s

‖T(u, s)x − T(u, s)y‖p du

≤ (RK)p‖x − y‖p.
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Consequently, we derive

‖T(t, s)x − T(t, s)y‖ ≤ KR‖x − y‖/(t − s)1/p, x, y ∈ Ys.

Then for each 0 < r < 1 we can choose a number L = L(r) > 0 such that

(3.5) ‖T(t, s)x − T(t, s)y‖ ≤ r‖x − y‖, x, y ∈ Ys whenever t − s ≥ L.

Now let t − s ≥ L. Then there exists an integer n ≥ 1 such that nL ≤ t − s < (n + 1)L.

Using the semigroup property (3.1) and (3.5) n times and then (3.4), we derive

‖T(t, s)x − T(t, s)y‖ ≤ rnR‖x − y‖ for all x, y ∈ Ys.

According to Lemma 3.1, we have

(3.6) ‖T(t, s)x − T(t, s)y‖ ≤ M̃e−at‖x − y‖, for all x, y ∈ Ys, t − s ≥ L,

where M̃ = R/r and a = −(ln r)/L > 0. Combining (3.6) and (3.4), we conclude

that

‖T(t, s)x − T(t, s)y‖ ≤ Me−at‖x − y‖, x, y ∈ Ys, t ≥ s,

where M = max(M̃,ReaL).

Corollary 3.3 For a one-parameter exponentially bounded Lipschitzian semigroup

(T(t))t≥0 on X, the following two statements are equivalent:

(i) (T(t))t≥0 is Lp stable;

(ii) (T(t))t≥0 is exponentially stable.

Proof Let Xt = X0 = X, t ≥ s ≥ 0 and T(t, s) = T(t − s). For exponentially

bounded Lipschitzian semigroup (T(t))t≥0, without loss of generality, we assume

(T(t))t≥0 to satisfy L(T(t)) ≤ Meωt , where M ≥ 1 and ω ∈ R. Define g(t) = Meωt

for t ∈ [0,∞). Then g( · ) is a positive continuous function on [0,∞) and (T(t))t≥0

satisfies L(T(t− s)) ≤ g(t− s) for t ≥ s, i.e., the assumption (B) holds. Consequently,

from Theorem 3.2 we immediately derive that (i) is equivalent to (ii).

Remark 3.4 On the one hand, Corollary 3.3 partially extends the Datko–Pazy the-

orem on linear strongly continuous semigroups in [15] to the nonlinear case. On

the other hand, Corollary 3.3 improves [10, Corollary 2.1] which requires the zero

element to be a common fixed point of the nonlinear semigroup T(t) for all t ≥ 0.

Generally speaking, it is difficult or even impossible to derive an analytical ex-

pression of the solution operator T(t) of the abstract Cauchy problem (1.1) associ-

ated with a nonlinear operator A. Consequently, the significance of Corollary 3.3 is

mainly theoretical. As we all know, it is straightforward to discuss asymptotic be-

haviors of solutions of (1.1) associated with the nonlinear operator A by information

of A. Based on this, we present the following two sufficient conditions for the ex-

ponential stability of the nonlinear solution semigroup corresponding to (1.1) by

Corollary 3.3.
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Theorem 3.5 Let X be a Hilbert space and (T(t))t≥0 be a Lipschitzian semigroup on

C ⊆ X which is generated by A according to Theorem 2.6. Assume that there exists a

nonnegative function v(x) on C with the following properties:

(i) c‖x‖p ≤ v(x) ≤ ‖x‖p for some c < 1 and all x ∈ C and p > 0;

(ii) v(x) is Fréchet differentiable and 〈v ′(x− y),Ax−Ay〉 ≤ −β‖x− y‖p for x, y ∈ C

and some β > 0.

Then (T(t))t≥0 is exponentially stable. In particular, there exists a constant M ≥ 1 such

that L(T(t)) ≤ Me−βt .

Proof Let w(t) = T(t)x − T(t)y, where T(t)x and T(t)y are global solutions(in the

sense of Definition 2.5) of the abstract Cauchy problem (1.1) for all x, y ∈ C and

t ≥ 0. From (ii) and (i) we have

(

eβt v(w(t))
) ′

= βeβt v(w(t)) + eβt〈v ′(T(t)x − T(t)y),AT(t)x − AT(t)y〉

≤ βeβt‖w(t)‖p − βeβt‖w(t)‖p
= 0.

Integrating (eβt v(w(t))) ′ from 0 to t , we derive that v(w(t)) ≤ e−βt v(x− y) for t ≥ 0

and x, y ∈ C . From (i) we immediately derive that

∫ ∞

0

‖T(t)x − T(t)y‖pdt ≤
1

cβ
‖x − y‖p.

Consequently, from Corollary 3.3 we can conclude that (T(t))t≥0 is exponentially

stable, i.e., there exists a constant M ≥ 1 such that L(T(t)) ≤ Me−βt .

Corollary 3.6 Let X be a Hilbert space and (T(t))t≥0 be a Lipschitzian semigroup on

C ⊆ X which is generated by A according to Theorem 2.6. Assume that there exists a

nonnegative linear bounded operator P from X into itself such that

2Re〈P(x − y),Ax − Ay〉 ≤ −a‖x − y‖2 for all x, y ∈ C and some a > 0.

Then (T(t))t≥0 is exponentially stable, that is, there exists a constant M ≥ 1 such that

L(T(t)) ≤ Me−at .
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