SUMS OF POWERS IN ARITHMETIC PROGRESSIONS

BY
CHARLES SMALL

The papers [2] and [3] study the function $g(k, n)$, defined for integers $k>1$ and $n>1$ as the smallest r with the property that every integer is a sum of $r k$ th powers mod n. This note identifies $g^{\prime}(k)$, defined as the maximum over all n of $g(k, n)$, with the function $\Gamma(k)$ studied by Hardy and Littlewood [1] fifty years ago in connection with Waring's problem.

I want to thank Professor Eric Milner for a push in the right direction.
Notation:

$$
\begin{aligned}
\mathbb{Z} & =\text { rational integers }=\{0, \pm 1, \pm 2, \pm 3, \ldots\} . \\
\mathbb{N} & =\text { natural numbers }=\{0,1,2,3, \ldots\} . \\
\mathbb{N}_{i} & =\{n \in \mathbb{N} \mid n>i\}, \text { for } i=0,1 . \\
\mathbb{Z} / n \mathbb{Z} & =\text { ring of integers } \bmod n, \text { for } n \in \mathbb{N}_{1} .
\end{aligned}
$$

For $r, k \in \mathbb{N}_{1}, \mathbb{N}^{r}$ is the Cartesian product of r copies of \mathbb{N}, \sum_{r}^{k} is the map $\mathbb{N}^{r} \rightarrow \mathbb{N}$ given by $\left(x_{1}, x_{2}, \ldots, x_{r}\right) \mapsto x_{1}^{k}+x_{2}^{k}+\cdots+x_{r}^{k}$, and I_{r}^{k} is the image of \sum_{r}^{k}.

For $k, n \in \mathbb{N}_{1}, g(k, n)$ and $g^{\prime}(k)$ are defined as above.
For $a \in \mathbb{N}$ and $n \in \mathbb{N}_{0}, P_{n}(a)$ denotes the arithmetic progression $\{a+t n \mid t \in \mathbb{N}\}$ and $\widetilde{P_{n}(a)}$ denotes the complete arithmetic progression $\{a+t n \mid t \in \mathbb{Z}\} \cap \mathbb{N}$. Thus $P_{n}(a) \subseteq \widetilde{P_{n}(a)} \subseteq \mathbb{N}$.

We let ϕ denote the projection $\mathbb{N} \rightarrow \mathbb{Z} / n \mathbb{Z}$, and (as usual) write \bar{a} instead of $\phi(a)$. Note that $\phi^{-1}(\bar{b})=\widetilde{P_{n}(a)}$ for any $b \equiv a(\bmod n)$.

Now we make four definitions, for $k \in \mathbb{N}_{1}$:
$\Gamma_{0}(k)$ denotes the smallest $r \in \mathbb{N}_{1}$ with the property that every arithmetic progression contains a sum of $r k$ th powers, i.e., the least r such that $P_{n}(a) \cap I_{r}^{k} \neq \varnothing$, for all $a \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$.
$\widetilde{\Gamma_{0}}(k)$ is the analogue, for complete arithmetic progressions, of $\Gamma_{0}(k)$, i.e. $\widetilde{\Gamma_{0}(k)}$ is the least r for which $\widetilde{P_{n}}(a) \cap I_{r}(k)=\varnothing$, for all $a \in \mathbb{N}, n \in \mathbb{N}_{0}$.
$\Gamma(k)$ denotes the smallest $r \in \mathbb{N}_{1}$ with the property that every arithmetic progression contains infinitely many sums of $r k$ th powers, i.e., the least r such that $\left|P_{n}(a) \cap I_{r}^{k}\right|=\infty$, for all $a \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$, where $|X|$, for a subset X of \mathbb{N}, denotes the cardinality of X; and $\widetilde{\Gamma(k)}$ is the analogue, for complete arithmetic progressions, of $\Gamma(k)$, i.e., $\widetilde{\Gamma(k)}$ is the least r for which $\left|\widetilde{P_{n}(a)} \cap I_{r}^{k}\right|=\infty$, for all $a \in \mathbb{N}, n \in \mathbb{N}_{0}$.

We are going to show that the five functions $g^{\prime}, \Gamma, \tilde{\Gamma}, \Gamma_{0}$, and $\tilde{\Gamma}_{0}$ are in fact the same function. The function $\Gamma(k)$ of Hardy and Littlewood is defined differently, but they show (see [1], theorem 1) that for $k \neq 4$ it is the function considered here. (For $k=4, \Gamma(4)$ as defined here is 15 , and $\Gamma(4)$ as defined by Hardy and Littlewood is 16.)

Theorem. $\mathrm{g}^{\prime}=\Gamma=\tilde{\Gamma}=\Gamma_{0}=\tilde{\Gamma}_{0}$.
Proof. Fix $k \in \mathbb{N}_{1}$; we show $g^{\prime}(k) \leq \widetilde{\Gamma_{0}(k)} \leq \widetilde{\Gamma(k)} \leq \Gamma(k) \leq \Gamma_{0}(k) \leq g^{\prime}(k)$.
$g^{\prime}(k) \leq \widetilde{\Gamma_{0}(k)}$: We have to show that for any $n \in \mathbb{N}_{1}$, every element of $\mathbb{Z} / n \mathbb{Z}$ is a sum of $\widetilde{\Gamma_{0}}(k) k$ th powers. But given $x \in \mathbb{Z} / n \mathbb{Z}, \phi^{-1}(x)$ is a complete arithmetic progression $\widetilde{P_{n}(a)}$ for some $a ; \widetilde{P_{n}(a)}$ contains a sum of $\widetilde{\Gamma_{0}(k)} k$ th powers; and we need only apply ϕ.
$\widetilde{\Gamma_{0}(k)} \leq \widetilde{\Gamma(k)}$: This is trivial: if $\left|\widetilde{P_{n}(a)} \cap I_{r}^{k}\right|=\infty$ then surely $\widetilde{P_{n}(a)} \cap I_{r}^{k} \neq \varnothing$!
$\widetilde{\Gamma}(k) \leq \Gamma(k)$: This, too, is trivial: anything true for every arithmetic progression is true in particular for every complete arithmetic progression.
$\Gamma(k) \leq \Gamma_{0}(k)$: We have to show that if every arithmetic progression contains a sum of r kth powers then every arithmetic progression contains infinitely many sums of $r k$ th powers. Given an arithmetic progression $P_{n}(a)$, choose $x_{1} \in$ $P_{n}(a) \cap I_{r}^{k}$. Now consider the arithmetic progression $P_{n}\left(x_{1}+n\right)$, and choose $x_{2} \in P_{n}\left(x_{1}+n\right) \cap I_{r}^{k}$. Continuing in this way (choose $x_{i+1} \in P_{n}\left(x_{i}+n\right) \cap I_{r}^{k}$) we find a sequence of distinct numbers $x_{1}, x_{2}, x_{3}, \ldots$ in $P_{n}(a) \cap I_{r}^{k}$, for $P_{n}(a) \supseteq$ $P_{n}\left(x_{1}+n\right) \supseteq P_{n}\left(x_{2}+n\right) \supseteq \cdots$.
$\Gamma_{0}(k) \leq g^{\prime}(k)$: We have to show that every arithmetic progression $P_{n}(a)$ contains a sum of $g^{\prime}(k) k$ th powers. In $\mathbb{Z} / n \mathbb{Z}$ we have $\bar{a}=\bar{x}_{1}^{k}+\cdots+\bar{x}_{r}^{k}$ for some $r \leq g(k, n) \leq g^{\prime}(k)$. Choose representatives (pre-images under ϕ) x_{1}, \ldots, x_{r} for $\bar{x}_{1}, \ldots, \bar{x}_{r}$ such that $x_{i} \geq a$ for all $i(1 \leq i \leq r)$. Then $a=x_{1}^{k}+\cdots+x_{r}^{k}-t n$ for some $t \in \mathbb{Z}$, and since $x_{i}^{k} \geq a$ for all $i, t \in \mathbb{N}$. Thus $a+t n \in P_{n}(a) \cap I_{r}^{k}$, and we are done.
$g^{\prime}(k)$ can, in principle, be computed for any k by the methods of [3]. For computation of $\Gamma(k)$, see $\S \S 5$ and 6 of [1].

References

1. G. H. Hardy and J. E. Littlewood, Some Problems of 'Partitio Numerorum' VIII: The Number $\Gamma(k)$ in Waring's Problem, Proc. London Math. Soc. 28 (1927) 518-542.
2. C. Small, Waring's Problem mod n, Amer. Math. Monthly 84 (1977) 12-25.
3. C. Small, Solution of Waring's Problem modn, Amer. Math. Monthly 84 (1977) 356-359.

Mullen, Kenneth, A note on Bernstein's bivariate inequality
Santhakumari, C., On quotient loops of normal subloops
Wang, James Li-Ming, Approximation on boundary sets

ERRATA

Vol. 21 (1), 1978, pp. 21-30. In the paper "Reducible rational fractions of the type of Gaussian polynomials with only non-negative coefficients" the word "As" (p. 28, line 5(b) should read "If"; the word "Exactly" (p. 24, line 13(b)) should read "At least"; and the words "necessary and" (p. 24, lines 8/7(b)) should be omitted. The author's attention was called upon the need for these changes by M. Lewin, who will consider in detail the case $c>1$ in a forthcoming paper.

