APPLICATIONS OF THE MULTIPLICATION FORMULA FOR THE GAMMA FUNCTION TO E-FUNCTION SERIES
 by T. M. MACROBERT
 (Received 26 June, 1959)

1. Introductory. In two recent papers [1,2] the Barnes integral for the E-functions was employed to sum a number of infinite series of E-functions. In $\S 2$ of this paper, by making use of the multiplication formula for the gamma function, the method is extended to series of E-functions of a different type.

The Barnes formula is

$$
\begin{equation*}
E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right)=\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} d \zeta \tag{1}
\end{equation*}
$$

where $|\operatorname{amp} z|<\pi$, and the integral is taken up the η-axis, with loops, if necessary, to ensure that the origin lies to the left and the points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ to the right of the contour. Zero and negative integral values of the α 's and ρ 's are excluded, and the α 's must not differ by integral values. When $p<q+1$ the contour is bent to the left at each end. When $p>q+1$ the formula is valid for $|\operatorname{amp} z|<\frac{1}{2}(p-q+1) \pi$.

The gamma function formula is

$$
\begin{equation*}
\Gamma(z) \Gamma\left(z+\frac{1}{m}\right) \ldots \Gamma\left(z+\frac{m-1}{m}\right)=(2 \pi)^{\frac{1}{m-\frac{1}{2}} m^{\frac{1}{t}-m z} \Gamma(m z), ~, ~} \tag{2}
\end{equation*}
$$

where m is a positive integer.
From (2) it can be deduced that, if r is a positive integer,

$$
\begin{equation*}
\Gamma\left(\frac{\alpha+r}{m}\right) \Gamma\left(\frac{\alpha+1+r}{m}\right) \ldots \Gamma\left(\frac{\alpha+m-1+r}{m}\right)=\Gamma\left(\frac{\alpha}{m}\right) \Gamma\left(\frac{\alpha+1}{m}\right) \ldots \Gamma\left(\frac{\alpha+m-1}{m}\right) m^{-r}(\alpha ; r) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
(\alpha ; r)=\alpha(\alpha+1) \ldots(\alpha+r-1) \quad(r=1,2,3, \ldots) ;(\alpha ; 0)=1 . \tag{4}
\end{equation*}
$$

For, from (2), each side of (3) is equal to

$$
(2 \pi)^{\frac{1}{m} m-\frac{1}{b}} m^{\frac{1}{-\alpha-r}} \Gamma(\alpha)(\alpha ; r) .
$$

The formula

$$
\begin{align*}
E\left(\frac{n+m+1}{2},\right. & \left.\frac{n+m+2}{2}: n+\frac{3}{2}: z^{2}\right) \\
& =\frac{\Gamma\left(\frac{1}{2}\right) \Gamma(n+m+1)}{2^{m-\frac{1}{2}}} \frac{z^{n+m+1}}{\left(z^{2}+1\right)^{\frac{1}{m+\frac{1}{2}}}} T_{-m-\frac{1}{2}}^{\sim n-\frac{1}{2}}\left\{\frac{z}{\sqrt{\left(z^{2}+1\right)}}\right\} \tag{5}
\end{align*}
$$

will also be required. In proving it use will be made of the two following formulae [3, pp. 305, 307] :
$Q_{n}^{m}(z)=\sqrt{ }\left\{\frac{\pi}{2 \sqrt{ }\left(z^{2}-1\right)}\right\}\left\{z+\sqrt{ }\left(z^{2}-1\right)\right\}^{-n-1} \frac{\Gamma(n+m+1)}{\Gamma\left(n+\frac{3}{2}\right)} F\left\{\begin{array}{c}\frac{1}{2}+m, \frac{1}{2}-m \\ n+\frac{3}{2}\end{array} ; \frac{\sqrt{ }\left(z^{2}-1\right)-z}{2 \sqrt{ }\left(z^{2}-1\right)}\right\} ;$
and

$$
I_{n}^{-m}(z)=\frac{1}{\Gamma(m+1)}\left(\frac{1-z}{1+z}\right)^{\downarrow m} F\left(\begin{array}{c}
-n, n+1 \tag{7}\\
m+1
\end{array} ; \frac{1-z}{2}\right) .
$$

Now, from (6),
 and, from (7),

$$
T_{-m-1}^{-n-\{ }\left\{\frac{z}{\sqrt{ }\left(z^{2}+1\right)}\right\}=\frac{1}{\Gamma\left(n+\frac{3}{2}\right)}\left\{\sqrt{ }\left(z^{2}+1\right)+z\right\}^{-n-1} F\left\{\begin{array}{c}
\frac{1}{2}+m, \frac{1}{2}-m \\
n+\frac{3}{2}
\end{array} ; \frac{\sqrt{ }\left(z^{2}+1\right)-z}{2 \sqrt{ }\left(z^{2}+1\right)}\right\} .
$$

Hence

$$
\begin{equation*}
Q_{n}^{m}(i z)=i^{-n-1} \sqrt{\left(\frac{\pi}{2}\right)} \frac{\Gamma(n+m+1)}{\left(z^{2}+1\right)^{1 / 4}} T_{-m-1}^{-n-\frac{1}{2}}\left\{\frac{z}{\sqrt{\left(z^{2}+1\right)}}\right\} . \tag{8}
\end{equation*}
$$

But [3, p. 304]

$$
\begin{aligned}
Q_{n}^{m}(i z) & =i^{-n-1} \frac{\Gamma\left(\frac{n+m+1}{2}\right) \Gamma\left(\frac{n+m+2}{2}\right)}{2^{1-m} \Gamma\left(n+\frac{3}{2}\right)} \frac{\left(z^{2}+1\right)^{\frac{1}{2}}}{z^{n+m+1}} F\left(\frac{n+m+1}{2}, \frac{n+m+2}{2} ; n+\frac{3}{2} ;-z^{-2}\right) \\
& =i^{-n-1} 2^{m-1} z^{-n-m-1}\left(z^{2}+1\right)^{d m} E\left(\frac{n+m+1}{2}, \frac{n+m+2}{2}: n+\frac{3}{2}: z^{2}\right) ;
\end{aligned}
$$

hence, on comparing this with (8), formula (5) is obtained.
2. Infinite series. The first series is

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{(-k)^{n}}{n!} & E\left(\frac{\alpha+n}{m}, \frac{\alpha+1+n}{m}, \ldots, \frac{\alpha+m-1+n}{m}, \alpha_{1}, \ldots, \alpha_{p}: q ; \rho_{s}: z\right) \\
& =\left(1+\frac{k}{m}\right)^{-\alpha} E\left\{\frac{\alpha}{m}, \frac{\alpha+1}{m}, \ldots, \frac{\alpha+m-1}{m}, \alpha_{1}, \ldots, \alpha_{p}: q ; \rho_{s}: z\left(1+\frac{k}{m}\right)^{m}\right\}, \tag{9}
\end{align*}
$$

where m is a positive integer, $|\operatorname{amp} z|<\pi,\left|\operatorname{amp}\left\{z(1+k / m)^{m}\right\}\right|<\pi,|k / m|<1$.
From (1) the E-function on the left is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma\left(\frac{\alpha+n}{m}-\zeta\right) \ldots \Gamma\left(\frac{\alpha+m-1+n}{m}-\zeta\right) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} d \zeta
$$

and from (3) this is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma\left(\frac{\alpha}{m}-\zeta\right) \ldots \Gamma\left(\frac{\alpha+m-1}{m}-\zeta\right) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} m^{-n}(\alpha-m \zeta ; n) z^{\zeta} d \zeta
$$

Hence, on changing the order of integration and summation, the series is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma\left(\frac{\alpha}{m}-\zeta\right) \ldots \Gamma\left(\frac{\alpha+m-1}{m}-\zeta\right) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} F\left(\alpha-m \zeta ; ;-\frac{k}{m}\right) d \zeta
$$

and from this, since

$$
F^{\prime}(\alpha-m \zeta ; ;-k / m)=(1+k / m)^{m \zeta-\alpha},
$$

the result follows.

In particular, when $m=2, p=0, q=1, \alpha=n+m+1, \rho_{1}=n+\frac{3}{2}$, if z is replaced by z^{2} and k by $2 k$, it follows from (5) that

$$
\begin{align*}
\sum_{r=0}^{\infty} \frac{(n+m+1 ; r)}{r!}\left\{\frac{-k z}{\sqrt{ }\left(z^{2}+1\right)}\right\}^{r} T_{m+\frac{3}{2}+r}^{-n-\frac{1}{2}}\left\{\frac{z}{\left.\sqrt{\left(z^{2}+1\right)}\right\}}\right. \\
=\left\{\frac{z^{2}+1}{z^{2}(1+k)^{2}+1}\right\}^{1 m+1} \eta_{m+\frac{3}{2}}^{1-n-\frac{1}{2}}\left[\frac{z(1+k)}{\sqrt{ }\left\{z^{2}(1+k)^{2}+1\right\}}\right] \tag{10}
\end{align*}
$$

where $|\operatorname{amp} z|<\frac{1}{2} \pi,|\operatorname{amp}\{z(1+k)\}|<\frac{1}{2} \pi,|k|<1$.
The next summation is

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\beta ; n)}{n!} E\binom{\frac{\alpha+n}{m}, \ldots, \frac{\alpha+m-1+n}{m}, \alpha_{1}, \ldots, \alpha_{\nu}: z}{\frac{\rho+n}{m}, \ldots, \frac{\rho+m-1+n}{m}, \rho_{1}, \ldots, \rho_{q}} \\
&=\frac{\Gamma(\rho-\alpha-\beta)}{\Gamma(\rho-\alpha)} m^{\beta} E\binom{\frac{\alpha}{m}, \ldots, \frac{\alpha+m-1}{m}, \alpha_{1}, \ldots, \alpha_{p}:}{\frac{\rho-\beta}{m}, \ldots, \frac{\rho-\beta+m-1}{m}, \rho_{1}, \ldots, \rho_{q}} \tag{11}
\end{align*}
$$

where $R(\rho-\alpha-\beta)>0,|\operatorname{amp} z|<\pi$.
For the series is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma\left(\frac{\alpha}{m}-\zeta\right) \ldots \Gamma\left(\frac{\alpha+m-1}{m}-\zeta\right) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma\left(\frac{\rho}{m}-\zeta\right) \ldots \Gamma\left(\frac{\rho+m-1}{m}-\zeta\right) \Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} F\binom{\alpha-m \zeta, \beta ; 1}{\rho-m \zeta} d \zeta .
$$

But, if $R(\rho-\alpha-\beta)>0$,

$$
F\binom{\alpha-m \zeta, \beta ; 1}{\rho-m \zeta}=\frac{\Gamma(\rho-m \zeta) \Gamma(\rho-\alpha-\beta)}{\Gamma(\rho-\alpha) \Gamma(\rho-\beta-m \zeta)}
$$

hence, on applying (2) to $\Gamma(\rho-m \zeta)$ and $\Gamma(\rho-\beta-m \zeta)$, the result is obtained.
Again, if m and n are positive integers, $|\operatorname{amp} z|<\pi, R(\rho-\alpha-n)>0$,

$$
\left.\begin{array}{l}
\sum_{r=0}^{\infty} \frac{m^{r}(n ; r)}{r!(\rho ; r)} E\left(\frac{\alpha+r}{m}, \ldots, \frac{\alpha+m-1+r}{m}, \alpha_{1}, \ldots, \alpha_{p}: z\right. \\
\rho_{1}, \ldots, \rho_{q} \tag{12}
\end{array}\right) .
$$

For the series is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma\left(\frac{\alpha}{m}-\zeta\right) \ldots \Gamma\left(\frac{\alpha+m-1}{m}-\zeta\right) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} F\binom{n, \alpha-m \zeta ; 1}{\rho} d \zeta .
$$

Now, if $R(\rho-\alpha-n)>0$,

$$
F\binom{n, \alpha-m \zeta ; 1}{\rho}=\frac{\Gamma(\rho) \Gamma(\rho-\alpha-n+m \zeta)}{\Gamma(\rho-n) \Gamma(\rho-\alpha+m \zeta)}=(1-\rho ; n) \frac{\Gamma(\alpha-\rho+1-m \zeta)}{\Gamma(\alpha-\rho+1+n-m \zeta)}
$$

E-FUNCTION SERIES

Hence, on applying formula (2) to the gamma functions, the expression on the right of (12) is obtained.

Next, if m and n are positive integers such that $m>n$, if $R(\rho-\alpha-\beta)>0$ and if $|\operatorname{amp} z|<\pi$,

$$
\begin{align*}
& \sum_{r=0}^{\infty} \frac{(\beta ; r)}{r!}\left(\frac{n}{m}\right)^{r} E\binom{\frac{\alpha+r}{n}, \ldots, \frac{\alpha+n-1+r}{n}, \alpha_{1}, \ldots, \alpha_{p}: z}{\frac{\rho+r}{m}, \ldots, \frac{\rho+m-1+r}{m}, \rho_{1}, \ldots, \rho_{q}} \\
& \quad=\left(\frac{m}{m-n}\right)^{\beta} E\binom{\frac{\alpha}{n}, \ldots, \frac{\alpha+n-1}{n}, \frac{\rho-\alpha-\beta}{m-n}, \ldots, \frac{\rho-\alpha-\beta+m-n-1}{m-n}, \alpha_{1}, \ldots, \alpha_{p}: z}{\frac{\rho-\beta}{m}, \ldots, \frac{\rho-\beta+m-1}{m}, \frac{\rho-\alpha}{m-n}, \ldots, \frac{\rho-\alpha+m-n-1}{m-n}, \rho_{1}, \ldots, \rho_{Q}} . \tag{13}
\end{align*}
$$

For the series is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma\left(\frac{\alpha}{n}-\zeta\right) \ldots \Gamma\left(\frac{\alpha+n-1}{n}-\zeta\right) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma\left(\frac{\rho}{m}-\zeta\right) \ldots \Gamma\left(\frac{\rho+m-1}{m}-\zeta\right) \Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} F\binom{\alpha-n \zeta, \beta ; 1}{\rho-m \zeta} d \zeta .
$$

Now, if $R(\rho-\alpha-\beta)>0$,

$$
F\binom{\alpha-n \zeta, \beta ; 1}{\rho-m \zeta}=\frac{\Gamma(\rho-m \zeta) \Gamma\{\rho-\alpha-\beta-(m-n) \zeta\}}{\Gamma\{\rho-\alpha-(m-n) \zeta\} \Gamma(\rho-\beta-m \zeta)},
$$

and, from (2), this is equal to

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{\rho}{m}-\zeta\right) \ldots}{}+\Gamma\left(\frac{\rho+m-1}{m}-\zeta\right) \\
& \Gamma\left(\frac{\rho-\beta}{m}-\zeta\right) \ldots \Gamma\left(\frac{\rho-\beta+m-1}{m}-\zeta\right) \\
& \quad \frac{\Gamma\left(\frac{\rho-\alpha-\beta}{m-n}-\zeta\right) \ldots \Gamma\left(\frac{\rho-\alpha-\beta+m-n-1}{m-n}-\zeta\right)}{\Gamma\left(\frac{\rho-\alpha}{m-n}-\zeta\right) \ldots \Gamma\left(\frac{\rho-\alpha+m-n-1}{m-n}-\zeta\right)}\left(\frac{m}{m-n}\right)^{\beta}
\end{aligned}
$$

From this the result follows.
Similar results can be obtained by using the formula

$$
\begin{align*}
& \Gamma\left(\frac{\alpha-r}{m}\right) \Gamma\left(\frac{\alpha+1-r}{m}\right) \ldots \Gamma\left(\frac{\alpha+m-1-r}{m}\right) \\
& \quad=\Gamma\left(\frac{\alpha}{m}\right) \ldots \Gamma\left(\frac{\alpha+m-1}{m}\right)(-m)^{r} /(1-\alpha ; r), \tag{14}
\end{align*}
$$

where r is a positive integer.
For example, if $|\operatorname{amp} z|<\pi,\left|\operatorname{amp}\left\{z(1+k / m)^{-m}\right\}\right|<\pi,|k / m|<1$,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{k^{n}}{n!} E\left(p ; \alpha_{r}: \frac{\rho-n}{m}, \ldots, \frac{\rho+m-1-n}{m}, \rho_{1}, \ldots, \rho_{q}: z\right) \\
& \quad=\left(1+\frac{k}{m}\right)^{\rho-1} E\left\{p ; \alpha_{r}: \frac{\rho}{m}, \ldots, \frac{\rho+m-1}{m}, \rho_{1}, \ldots, \rho_{q}: z\left(1+\frac{k}{m}\right)^{-m}\right\} . \tag{15}
\end{align*}
$$

For the series is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma\left(\frac{\rho}{m}-\zeta\right) \ldots \Gamma\left(\frac{\rho+m-1}{m}-\zeta\right) \Pi \Gamma\left(\rho_{s}-\zeta\right)} F\left(1-\rho+m \zeta ; ;-\frac{k}{m}\right) z^{\zeta} d \zeta
$$

and

$$
F(1-\rho+m \zeta ; ;-k / m)=(1+k / m)^{\rho-1-m \zeta} .
$$

REFERENCES

1. T. M. MacRobert, Infinite series of E-functions, Proc. Glasgow Math. Assoc., 4 (1958), 26-28.
2. T. M. MacRobert, Infinite series of E-functions, Math. Z., 71 (1959), 143-145.
3. T. M. MacRobert, Functions of a complex variable, 4th edition (1954).

The Universtity
 Glasaow

