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Abstract

The monitoring of infrastructure assets using sensor networks is becoming increasingly prevalent. A digital twin in
the form of a finite element (FE) model, as commonly used in design and construction, can help make sense of the
copious amount of collected sensor data. This paper demonstrates the application of the statistical finite element
method (statFEM), which provides a principled means of synthesizing data and physics-based models, in developing
a digital twin of a self-sensing structure. As a case study, an instrumented steel railway bridge of 27:34m length
located along the West Coast Mainline near Staffordshire in the UK is considered. Using strain data captured from
fiber Bragg grating sensors at 108 locations along the bridge superstructure, statFEM can predict the “true” system
response while taking into account the uncertainties in sensor readings, applied loading, and FE model misspecifica-
tion errors. Longitudinal strain distributions along the two main I-beams are both measured and modeled during the
passage of a passenger train. The statFEM digital twin is able to generate reasonable strain distribution predictions at
locations where no measurement data are available, including at several points along the main I-beams and on
structural elements on which sensors are not even installed. The implications for long-term structural health
monitoring and assessment include optimization of sensor placement and performing more reliable what-if analyses
at locations and under loading scenarios for which no measurement data are available.

Impact Statement

Engineering structures, such as bridges, tunnels, power plants, or buildings, are vital to the functioning of society.
So far, they have been designed, built, and maintained primarily with the aid of computational finite element
models that rely on numerous empirical assumptions and codified safety factors. The predictions of such models
often bear little resemblance to the behavior of the actual structure. Lately, advances in infrastructure monitoring
using sensor networks are providing an unprecedented amount of data from structures in operation. The recently
proposed statistical finite element method (statFEM) boosts the predictive accuracy of models by synthesizing
their output with sensor data. In this work, the statFEM is used in developing a digital twin of an operational
railway bridge. The obtained digital twin enables the autonomous continuous monitoring and condition
assessment of the bridge.
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1. Introduction

Designers, engineers, and maintenance managers commonly rely on finite element (FE) models to help
better understand the current and future behavior of infrastructure assets. FE models are used both to
facilitate the design of new structures and to help assess structures that have already been in operation for
many years. The level of sophistication of the FEmodels depends on their intended purpose, the structure
modeled, and the resources available (i.e., technical skill, time, computational power, etc.). As with any
othermodel, FEmodels rely on assumptions and parameters, which are inevitably subject to uncertainties,
both epistemic and aleatoric, and require sufficient degree of experience to verify and interpret the
predicted results (Oden et al., 2010; Lau et al., 2018).

More recently, a trend toward monitoring of infrastructure assets using sensor networks has led to the
development of new data-driven approaches to assess the performance of structures, see the reviews
Abdulkarem et al. (2020); Lynch (2007); Brownjohn (2007). Sensing data can, for instance, provide
performance information to help decide when to inspect, repair, or decommission a structure and to
accelerate or improve prototyping of new construction techniques andmaterials (Frangopol and Soliman,
2016). There has been a wide array of field studies that have implemented sensing in bridges, tunnel
linings, high-rise buildings, and dams. For instance, De Battista et al. (2017) instrumented several
columns and walls on every floor in a 50-storey residential tower in central London. Using distributed
fiber optic sensors (DFOS), they measured the axial shortening of the various columns and walls as the
building was being erected. Recently, Di et al. (2021) reported a study in which electrical-based strain
gauges were installed on a 450m steel tied-arch bridge with an orthotropic steel deck. These types of
bridge structures are particularly susceptible to fatigue damage and, using the data captured via the
sensors, they were able to identify several fatigue-vulnerable locations along the structure. Another
unique application of structural health monitoring of a 100m segment of tunnel lining at the CERN
(European Council for Nuclear Research) was conducted byDiMurro et al. (2016). Localized tension and
compression cracks were observed in the tunnel and prompted instrumentation and monitoring using
DFOS. In light of data captured over 10months, they reported strain levels in the tunnel, which ultimately
proved to be insignificant.

With the increase in structural health monitoring campaigns, the infrastructure engineering sector has
been inundated with large quantities of data whose value is still being realized. In particular, this emerging
sensing paradigm has resulted in the development of new data-driven strategies to model infrastructure
performance, see the insightful reviews Huang et al. (2019); Wu and Jahanshahi (2020). Unlike FE
modeling, data-driven approaches utilizing monitoring data provide information about the actual oper-
ational performance of a particular infrastructure asset. The modeling effort associated with data-driven
techniques is lower than in FE modeling. However, even the most advanced data-driven models, which
are often based on artificial neural networks, Gaussian process regression, or Bayesian model updating,
require a copious amount of real-world training data to make predictions. This challenge has prompted
research in the areas ofmodel updating and system identificationwhich have attempted to use both FE and
data-driven models to provide better predictions of structural behavior, see, for example, Malekzadeh
et al. (2015); Pasquier and Smith (2016); Tsialiamanis et al. (2021). However, the current modeling
approaches seem to be unable to synthesize measurement data with uncertainties and predictions from
inherently misspecified FEmodels in a manner that allows for the generation of continuous predictions as
new measurement data become available. This ability is, however, critical to the realization of digital
twins (Rasheed et al., 2020; Worden et al., 2020). In its broadest sense, as defined in a UK governmental
report, a digital twin is a realistic digital representation of assets, processes, or systems in the built or
natural environment (Bolton et al., 2018).

The statistical construction of the FE method, dubbed statistical finite element method (statFEM),
recently introduced in Girolami et al. (2021) allows predictions to be made about the true system behavior
in light of limited sensor data and a misspecified FE model. As in all Bayesian approaches, any lack of
knowledge, or uncertainty, associated with the errors in the collected data, choice of the FEmodel, and its
parameters are represented as random variables. See Beck (2010) or Huang et al. (2019) for an overview
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on Bayesian approaches in structural health monitoring. Typically, the as-built dimensions, support
conditions, and loadings of a structure are only partially known and can be treated as random. Starting
from some assumed (subjective) prior probability densities for the random variables, Bayes rule provides
a coherent formalism to infer, or learn, the respective posterior densities using the likelihood of the
observations (Gelman et al., 2013; Stuart, 2010; Kaipio and Somersalo, 2006).

In statFEM, following Kennedy and O’Hagan (2001), the observed data y is equated to three random
components: a FE component u, a model misspecification component d, and measurement noise e. The
prior densities of each of the three random components may depend on additional random hyperpara-
meters to be learned from the sensor data. In this paper, only the model misspecification component has
hyperparameters. It is straightforward to introduce other hyperparameters pertaining to aspects of the FE
model and the measurement noise, see Girolami et al. (2021). The choice of additional hyperparameters
leads to an increase in computational cost and requires particular care to circumvent non-identifiability
issues (Arendt et al., 2012; Nagel and Sudret, 2016). The posterior density of the FE component, the true
system response, and the hyperparameters are inferred via the Bayes rule. The overall approach is akin to
the empirical Bayes or evidence approximation techniques prevalent inmachine learning (MacKay, 1992,
1999; Murphy, 2012). The prior probability density of the FE component is obtained by solving a
traditional probabilistic forward problem with random parameters (Sudret and Der Kiureghian, 2000;
Ghanem and Spanos, 1991).

This paper evaluates the application of statFEM to the development of a statistical digital twin of the
superstructure of an operational railway bridge, see Figure 1. The newly constructed skewed half-through
bridge has previously been instrumented with fiber optic-based sensors (FOSs). The instrumentation of
the bridge using FBG strain sensors is described in Butler et al. (2018). The sensor measurements have
since been compared with a deterministic FEmodel of the bridge in Lin et al. (2019). The contributions of
the present work are threefold: (1) the first-time application of a new modeling paradigm for use in
structural healthmonitoring; (2) evaluating the trade-off between the number of sensor measurements and
the accuracy of statFEM prediction; and (3) introducing the concept of a statistical digital twin by
demonstrating the application of statFEM to continuous strain sensing.

The outline of this paper is as follows. In Section 2, the structural system of the railway bridge and its
instrumentation with FBG sensors are introduced. The proposed statistical digital twin of the superstruc-
ture is discussed in Section 3. To this end, first the statFEM is reviewed in Section 3.1, and the FEmodel of
the structure is then presented in Section 3.2. In Section 4, the obtained digital twin is used to infer the true

Instrumented bridge

z
FE model

u

FBG strain data

y

Figure 1. Railway intersection bridge, a representative finite element discretization and the statistical
model underlying statFEM. The unobserved “true” bridge response z, the strain y measured using fiber

Bragg grating (FBG) sensors, and the finite element response u are all random.
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strain distribution over the entire structure during the passage of a train. In particular, it is shown that the
inference results are largely insensitive to the number of sensors and sampling frequency confirming the
utility of a statFEMmodel as an integral part of a digital twin. Section 5 concludes the paper and discusses
several promising directions for future research.

2. Self-sensing Railway Bridge

This section provides a summary of the structural system of the railway bridge and its sensor instrumen-
tation with a FOS network. Both were previously introduced in Butler et al. (2018) and Lin et al. (2019).

2.1. Structural system

Completed in 2016, Intersection Bridge 20A is a 27:34 m steel skewed half-through railway bridge
located along the West Coast Mainline in Staffordshire in UK (Figure 1). The bridge carries two lines of
passenger trains (with speeds up to 160 km=h) over another heavily trafficked rail corridor along theWest
Coast Main Line. The superstructure consists of a pair of steel main I-beams and 21 transverse I-beams
spanning the 7:3 m width of the structure, see Figure 2. The two main I-beams (referred to as east and
west) are 26:84 m long and 2:2 m deep (including doubler plates). Web stiffeners welded along the
outside web of themain I-beams are used to improve stability and to prevent local buckling of the web and
top flanges. Four rocker-type bearings, which sit atop reinforced concrete abutments, support the bridge
superstructure.

The transverse I-beams are 368 mmdeep and the attached shear stud connectors provide for composite
action with the reinforced concrete deck slab. The transverse beams are spaced at every 1:5 m in the
middle of the bridge and are fanned closer toward the two ends. Two types of connection are used between
the transverse and main I-beams. The transverse beams are consecutively either pinned with a 6-bolt end
plate or moment connected with a 10-bolt stiffened end plate. A 250 mm thick reinforced concrete deck
slab spans between transverse beams and supports the ballasted track bed system. The ballast has the
minimum depth of 300 mm and supports the prestressed concrete sleepers to which the rails are fastened.

Figure 2. Dimensions of the bridge superstructure (all in mm).

e31-4 Eky Febrianto et al.

https://doi.org/10.1017/dce.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.28


2.2. Sensor instrumentation

This recently constructed bridge was instrumented with an innovative FOS network which was designed
to provide reliable long-term measurements of the bridge’s operational performance (Butler et al., 2018).
The FBG sensors used were based on draw tower grating technology in which the gratings are inscribed at
the time of glass drawing and prior to application of the core cladding. Compared with traditionally
manufactured FBGs in which the core cladding must be stripped prior to FBG inscription, draw tower
gratings are inherently more robust and, in the case of the sensors used in this project, enable the
inscription of up to 20 FBGs along a single sensor cable. As depicted in Figure 3, FBG sensors were
installed on themain structural elements. The sensor arrays used had up to 108 strain FBGs. Along the east
main I-beam, 20 FBGs were placed at 1m spacing along both the top and bottom flanges. Similarly, the
same sensor arrangement is installed along the west main I-beam (i.e., 40 FBGs per I-beam). The other
28 FBGs are located along the top and bottom flanges of two adjacent transverse I-beams close to the
midspan of the main I-beams.

The sensors installed were based on FBG technology which can measure strain and temperature at
discrete points along an optical fiber. Consisting of glass fibers, FOS is lightweight, requires minimal
number of wiring cables, and provides stable long-term measurements. When laser light is shone down a
fiber optic cable, the gratings act like dielectric mirrors reflecting only those wavelengths, which match
the Bragg wavelength. When the fiber optic cable is elongated (or shortened), the wavelength of the
reflected light shifts in proportion to this change in strain. Once a fiber optic cable is attached to a structure,
the cable can be used to measure changes in strain of the structure itself. The mechanical strain can be
calculated by removing temperature effects associated with the thermal expansion of glass, the effect of
temperature on the index of refraction, and the thermal expansion of the substrate material (i.e., steel) using

Δεm ¼ 1
kε

Δλ
λ0

� �
S
� kT

Δλ
λ0

� �
T

kTT

0@ 1A�αsub

Δλ
λ0

� �
T

kTT

, (1)

where Δεm is the change in mechanical strain; Δλ=λ0ð ÞS is the change in relative wavelength of the strain
sensor; Δλ=λ0ð ÞT is the change in relative wavelength of the temperature-compensating sensor; kε is the
gauge factor provided by the strain FBG manufacturer (typically 0.78); kT is the change of the refractive
index of glass; kTT is the experimentally derived constant for the FBG temperature-compensating sensor;
and αsub is the linear coefficient of thermal expansion of the substrate material (concrete: 10�10�6=°C;
steel: 12�10�6=°C). Each FBG is capable of recording strain with an accuracy of approximately �5 �
10�6 at a data acquisition rate of up to 250 Hz.

Monitoring data were captured by the sensor network beginning from the time the bridge was being
constructed (Butler et al., 2018). Following the construction, the bridge was monitored sporadically for
2 years (Lin et al., 2019). During this period, FBG data were captured during the passage of more than
130 individual trains. This dataset contains strain data for the passage of two passenger train types: the
London Midland Class 350 Desiro (type T1) and the Cross Country Class 221 Super Voyager (type T2).

Figure 3.Position and numbering of the FBG strain sensors installed on the bridge. The same numbering
is used for the sensors at both top and bottom flanges. Not to scale.
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Both train types included 4 or 5 car configurations. Their axle weightings and spacing were provided by
Network Rail, the UK’s national rail authority.

3. Statistical Digital Twin

This section provides a brief review of statFEM and presents the FE model of the bridge superstructure.
For further details on statFEM and its application to diffusion problems refer to Girolami et al. (2021). In
the FEmodel, the main sources of uncertainty are the partially known train weight, the resulting structural
loads, and the particulars of the FE model. The material properties and geometry parameters are assumed
to be deterministic. Moreover, the inertia effects are not taken into account due to the relatively short span
of the bridge (Lin et al., 2019).

3.1. Review of the statFEM

3.1.1. Probabilistic forward FE formulation
The bridge superstructure is modeled using isogeometrically discretizedKirchhoff–Love shell FEs (Cirak
et al., 2000, 2002; Cirak and Long, 2011). The shell model takes into account the in-plane membrane and
out-of-plane bending response of the structural members. The FE model of the superstructure, consisting
of the main girders, cross I-beams, and the reinforced concrete deck, is obtained by rigidly connecting
horizontally and vertically aligned plates, that is, initially planar shells, along joints. The joints are able to
transfer both forces and moments.

The weak form of the shell equilibrium equation, or the principle of virtual work, for a Kirchhoff–Love
shell with the midsurface Ω and the position vector x readsZ

Ω
ðnðxÞ : δαðxÞþmðxÞ : δβðxÞÞdΩ¼

X
j

f ðjÞ �δuðjÞ þ
Z
Ω
rðxÞ �δuðxÞdΩ: (2)

Here, the penalty term enforcing the conformity of the displacements and rotations of all plates attached to
the same joint has been omitted for the sake of brevity. The internal virtual work on the left-hand side
depends on the membrane force resultant n xð Þ, the bendingmoment resultantm xð Þ, the virtual membrane
strain δα xð Þ, and the virtual bending strain δβ xð Þ. Evidently, these fields depend in turn either on the
displacements u xð Þ or the virtual displacements δu xð Þ. Furthermore, the material is assumed to be linear
elastic and isotropic so that the two resultants n xð Þ and m xð Þ depend on the respective strains α xð Þ and
β xð Þ via the Young’s modulus E, Poisson’s ratio ν, and the shell thickness h. The right-hand side of (2)
represents the external virtual work and depends on the deterministic concentrated forces f jð Þ applied at
the respective positions x jð Þ and the randomdistributed loading r xð Þ. The randomdistributed loading takes
into account the uncertainty in train weight and other uncertainties pertaining to the choice of the FE
model. As will be detailed later, it is assumed that the loading applied by the train axles is composed only
of vertical components so that both f jð Þ and r xð Þ have only a nonzero vertical component. The random
distributed train loading r xð Þ is a Gaussian process with a zero mean and prescribed covariance, that is,

r xð Þ¼
0

0

GP 0, cr x, x0ð Þð Þ

0B@
1CA: (3)

Without loss of generality, the squared-exponential kernel is chosen as the covariance function

cr x, x0ð Þ ¼ σ2r exp �∥x�x0∥2

2ℓ2r

 !
, (4)

where σr is a scaling factor and ℓr is a length scale parameter. Although the Euclidean squared-distance
∥x�x0∥2 has been used, in structural mechanics it may be more appropriate to use the squared geodesic
distance (Scarth et al., 2019).
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The position and displacement vectors x and u xð Þ in the weak form (2) are discretized using basis
functions obtained from Catmull–Clark subdivision surfaces (Cirak et al., 2000; Zhang et al., 2018). The
weak form (2) depends on the curvature so that the FE basis functions must be smooth or, in other words,
must have square-integrable second derivatives. Subdivision surfaces are the generalization of B-splines
from computer-aided geometric design to unstructured meshes and provide smooth basis functions for
discretizing the position and displacement vectors x and u xð Þ. The resulting FE approach is referred to as
isogeometric analysis (Hughes et al., 2005) and allows one to use the same representation for geometric
design and analysis. Without going into further detail, the subdivision basis functions ϕi θ

1, θ2
� �

furnish
the two approximants

x θ1, θ2
� �¼X

i

ϕi θ
1, θ2

� �
xi, u θ1, θ2

� �¼X
i

ϕi θ
1, θ2

� �
ui, (5)

where xi is the coordinate and ui is the displacement of the FE node with the index i and θ1, θ2
� �

are the
parametric coordinates. The sums in (5) are over all the nodes in the FE mesh. After introducing (5) into
the weak form (2) and numerically evaluating the integrals the linear system of equations

Au¼ f (6)

is obtained. Herein,A is the stiffness matrix, u is the nodal displacement vector, and the force vector f has
the multivariate Gaussian density

f� pðfÞ¼N ð�f,CfÞ, (7)

where�f is the mean vector andCf is the covariance matrix. See Girolami et al. (2021) for the computation
of �f and Cf. Because the stiffness matrix A is deterministic, it is easy to show that the resulting random
displacement vector has the probability density

u� pðuÞ¼N ðA�1�f,A�1CfA
�TÞ¼N ð�u,CuÞ (8)

Although not considered in the present study, it is possible to consider uncertainties in the internal work in
(2), such as random material parameters or geometry, leading to a random stiffness matrix A.

3.1.2. Statistical model and Bayesian inference
In the posited statistical model, the observed strain y at the ny sensor locations is assumed to be composed
of three random components, that is,

y¼ zþe¼ ρPuþdþe: (9)

The observed strain y is equal to the sum of the unknown (i.e., unobserved) “true” strain z and the
Gaussian measurement error

e� pðeÞ¼N ð0,CeÞ (10)

with a diagonal covariancematrix Ce ¼ σ2e I and a standard deviation σe. In turn, the true system response z
is the linear combination of the FE strainPu, depending on the nodal displacements u, and the mismatch,
or model inadequacy, error d. In the FE component, ρ is an unknown scaling parameter and P is a matrix
for obtaining the strain at the ny sensor locations from the nodal displacement vector u. The three random
components u, d, and e are assumed to be statistically independent.

The random parameter ρ and the randommismatch errord are the unknowns of the statistical model (9)
and will be characterized using the measured strain data y and the random FE solution u in (8). The
probability density of the mismatch error is assumed to be a multivariate Gaussian

d� pðdÞ¼N ð0,CdÞ, (11)

and the covariance matrix Cd is obtained from the squared-exponential kernel
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cd x, x0ð Þ ¼ σ2d exp �∥x�x0∥2

2ℓ2d

 !
(12)

with the hyperparameters σd and ℓd. In the following, the three hyperparameters of the statistical model
are collected in the vector

w :¼ðρ ℓd σdÞT: (13)

Next, the Bayesian inference of the random FE solution u and the hyperparameters w in light of the
observed data y and the statistical model (9) are considered. Since all the variables in the statistical model
are Gaussians, one can write by inspection for the likelihood, see, for example, Murphy (2012),

pðyju,wÞ¼N ðρPu,CdþCeÞ: (14)

According to the Bayes rule, the posterior density of the FE solution is given by

pðujy,wÞ¼ pðyju,wÞpðuÞ
pðyjwÞ : (15)

Note that in the present study, the prior pðuÞ does not have any hyperparameters, that is, pðu,wÞ¼ pðuÞ.
In statFEM, one is interested in the posterior FE density

pðujyÞ¼
Z

pðujw,yÞpðwjyÞdw: (16)

Following an empirical Bayes or evidence approximation approach, see, for example, MacKay (1999),
this integral can be approximated by

pðujyÞ≈pðujw∗,yÞ: (17)

As a point estimate w∗ either the maximum

w∗ ¼ argmax
w

pðyjwÞ (18a)

or the mean

w∗ ¼E½pðyjwÞ� (18b)

is suitable. When the hyperparameters are endowed with a prior pðwÞ, the posterior
pðwjyÞ ∝ pðyjwÞpðwÞ can be considered for obtaining the point estimate. In this paper, pðwjyÞ is
sampled with the Markov-chain Monte Carlo (MCMC) method and the empirical mean of the samples
is taken as w∗. According to the statistical model (9) and noting that the linear combination of Gaussian
vectors is a Gaussian vector, the marginal likelihood is given by

pðyjwÞ¼N ðρP�u,CdþCeþρ2PC uP
TÞ: (19)

Finally, introducing the obtained point estimatew∗ in (15) yields the sought posterior density pðujyÞ.
To this end, note that the densities on the right-hand side of (15) are Gaussians so that the posterior is a
Gaussian as well. As shown in Girolami et al. (2021), the posterior density reads

pðujyÞ¼N ð�ujy,Cu∣yÞ (20a)

with the covariance matrix

Cujy ¼Cu�CuP
T 1

ρ2
ðCdþCeÞþPCuP

T

� ��1

PCu (20b)

and the mean
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�ujy ¼CujyðρPTðCdþCeÞ�1yþC�1
u

�uÞ (20c)

The mean can also be expressed as

�u∣y ¼ �uþCuP
T 1

ρ2
ðCdþCeÞþPCuP

T

� ��1
y

ρ
�P�u

� �
: (21)

That is, the posterior mean is obtained by updating the prior mean �u with the difference between the
observed and prior mean strain y=ρ�P�u. The respective weight depends on the scaling parameter ρ and
the relative magnitude of the covariance matrices Cu, Cd and Ce.

With the determined posterior FE density, the posterior true strain density is given by

pðzjyÞ¼N ðρP�ujy, ρ2PC ujyP
TþCdÞ: (22)

3.1.3. Mismatch modeling and multiple observations
The previous section considered only one single observation vector y recorded at a fixed time instant tk.
However, the passage of a single train yields several hundreds of such observation vectors. These vectors
are collected in the observation matrix

Y¼ðy0 y1 … ynoÞ: (23)

In principle, it is possible to consider each time instant tk independently and to obtain for each a point
estimate w∗ according to (18a) or (18b). This can be very costly given that each time instant requires
MCMC sampling. More critically, the information content available in one single observation vector y
often gives only a very poor estimate forw∗. Consequently, it is advantageous to consider all observation
vectors simultaneously and to obtain one singlew∗. To this end, themismatch error covariance kernel (12)
is replaced with the scaled squared-exponential kernel

cd x, x0, kð Þ¼ γkσdð Þ2 exp �∥x�x0∥2

2ℓ2d

 !
(24a)

with

γk ¼
∥ fk∥

max k∥fk∥
, (24b)

where the index k corresponds to the time instant tk and ∥ �∥ denotes L2 norm. The scale factor γk is
necessary because the number of axles on the bridge, hence the loading fk at each tk is different. As implied
by the statistical model (9), it is necessary to scale each random vector dk in dependence of the magnitude
of the observed strain yk, which is approximately proportional to the actual loading fk. Assuming
statistical independence between the observations, the marginal likelihood for determining w∗ reads

pðYjwÞ¼
Yno
k¼1

pðykjwÞ (25a)

with

pðykjwÞ¼N ðρP�uk,Cdk þCeþρ2PC ukP
TÞ: (25b)

The prior mean �uk and covariance Cuk are given by (8) and correspond to the loading fk at the time tk.
In summary, starting with the FE prior densities pðukÞ¼N ð�uk,Cuk Þ and the observation matrix Y the

posterior FE and true strain densities are determined in three steps.

1. Sample the marginal likelihood pðYjwÞ given by (25a) using MCMC.
2. Determine from the MCMC samples the point estimate w∗.
3. Compute the posterior FE and true strain densities pðukj ykÞ and pðzkjykÞ by introducing the

determined w∗ into (20a) and (22).
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3.2. FE model of the bridge superstructure

As detailed in Section 2.1, the bridge superstructure is comprised of 2 identical main I-beams (east and
west), 21 transverse I-beams, and a reinforced concrete deck. The transverse I-beams are modeled as
rigidly connected to the reinforced concrete deck owing to the double row of shear connectors atop the
transverse I-beams. In the actual structure, the transverse beams are alternatingly pinned and moment
connected to the main I-beams. For simplicity in the consideredmodel, following the numerical studies in
Lin et al. (2019), all transverse beams are modeled as moment connected. Consequently, all components
of the superstructure are modeled using shell FEs and along joints moment connected to each other, see
Figure 4. Each moment connected joint is able to transfer both forces and moments. As noted in Figure 2,
in the FE model the two main I-beams are 26:84 m long, 0:7 m wide, and 2:04 m deep. The two main
I-beams are 7:3 m apart. Instead of doubler plates as in the actual structure, the flanges consist of a single
plate with equivalent second moment of area. The 21 transverse I-beams are categorized either as
orthogonal or fanned. The orthogonal beams are located in the center of the superstructure and are placed
at every 1:5 m, and the fanned beams are situated near the two ends of the bridge. The transverse beams are
0:4 m wide and 0:4 m deep. The dimensions of all the I-beams are listed in Table 1.

The Young’s modulus and Poisson’s ratio of the steel I-beams are assumed to be Es ¼ 210 GPa and
νs ¼ 0:3, respectively. The deck of the bridge ismodeledwithout the ancillary structures such as the ballast
and prestressed concrete sleepers. The thickness of the deck in the FE model is 0:25 m. Assuming a
uniform distribution of the steel reinforcement across the cross-section of the concrete deck, the
equivalent reinforced concrete elasticity modulus according to the rule of mixtures is given by

Erc ¼ qEsþ 1�qð ÞEc: (26)

A steel reinforcement ratio of q¼ 0:03 and a concrete elasticity modulus of Ec ¼ 35 GPa are assumed
yielding Erc ¼ 40:5 GPa. The Poisson’s ratio of the reinforced concrete is νrc ¼ 0:2. The equivalent
elasticity modulus (26) does not take into account that the rebar is usually placed away from the center of
the cross-section.

Figure 4. Finite element model of the bridge superstructure. The two main I-beams and the 21 transverse
I-beams are moment connected at the mesh nodes in blue. The reinforced concrete deck is moment

connected to the transverse I-beams at the mesh nodes in red.

Table 1. Web and flange dimensions of the main and transverse I-beams (all in mm).

Main Transverse

Web Flange Web Flange

Thickness 25 120 16.5 27
Depth or width 2040 700 400 400

e31-10 Eky Febrianto et al.

https://doi.org/10.1017/dce.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.28


Two different FE meshes for discretizing the bridge superstructure are considered. Mesh M1 is a
relatively coarse mesh consisting of 4635 nodes and 4600 quadrilateral elements and the finer mesh M2
consisting of 7191 nodes and 7144 quadrilateral elements, see Figures 1 and 5. To model the rocker type
bridge supports, pinned and roller supports at the relevant FE nodes are applied.

Although there are data for two different types of train crossing the bridge, this paper focuses on type
T1 train (London Midland Class 350 Desiro) with four carriages and a total length of 81:47 m (Lin et al.,
2019). The average normal axle load is 104 kN (52 kN per wheel), see Figure 6. The speed of the train is
approximately 131 km=h so that the train crosses the bridge in less than 3 s. The moving loads generated
by the train wheels are directly applied to the concrete slab neglecting any load distribution effects by the
sleepers and the track ballast. Moreover, the rail tracks are assumed to have no vertical cant so that any
centrifugal forces are neglected. Clearly, a more faithful modeling of the train loading and its transfer to
the bridge superstructure requires a significantly more advanced FE model. Due to the relatively short
span of the bridge, inertia effects are not taken into account in the FE analysis. That is, for a given set of
wheel forces and positions a single static analysis is performed.

The weight of the train and its approximation as static point loads in the FEmodel is obviously subject
to a number of assumptions and uncertainties. In the proposed Bayesian statFEM framework, these

(a) Top view (b) Bottom view

Figure 5. The fine FE mesh M2.

Figure 6. Location and magnitude of the forces applied to the superstructure. Forces are directly
applied to the deck. The axle weight of 104 kN is split into two forces representing the two

attached wheels.
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uncertainties are taken into account by considering the FE solution u as a random variable. It bears
emphasis that this randomness is epistemic, that is, it is due to lack of knowledge and not due to inherent
variability of the FE solution. To obtain the respective FE prior density pðuÞ in (8), a random loading r xð Þ
as described by the Gaussian process (3) is applied. The respective covariance scaling and length scale
parameters are chosen as σr ¼ 1000 Pa and ℓr ¼ 1 m. The scaling factor σr represents 20% of the
maximum train load distributed over the planform of the bridge, see Figure 7a. The length scale parameter
ℓr is chosen to be in the order of the distance between the transverse beams and is about three times the
ballast depth. The random loading r xð Þ is applied in addition to the deterministic point forces of 52 kN per
wheel. The choice of the two parameters σr and ℓr requires input from domain experts, that is, bridge
engineers, and may be formalized with prior elicitation techniques from statistics, see the recent review
Mikkola et al. (2021). Alternatively, σr and ℓr can be interpreted as hyperparameters and inferred from the
observed data (Kennedy and O’Hagan, 2001; Nagel and Sudret, 2016).

4. Results and Discussion

Throughout this section, a train of type T1with four carriages heading from north to south on the east track
is considered. Specifically, the analysis and discussion focus on the axial strains along the top and bottom
flanges of the east main I-beam. In the FE model, the axial strains are obtained by multiplying the nodal
displacement vector u with the projection matrix P which discretizes the symmetric gradient operator.
The total loading depends on the number of train wheels on the bridge and is depicted in Figure 7a. The
deflected superstructure at five distinct time instances is shown in Figure 7.
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(b) t = 1 s (c) t = 2 s (d) t = 3 s
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Figure 7. Total train loading applied to the superstructure and its deflection at five distinct time instances.
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4.1. Mesh convergence and probabilistic FE analysis

The axial FE strains at the midspan of the east I-beam obtained using meshesM1 andM2 are compared in
Figure 8a. The results for bothmeshes are in close agreement; therefore, the coarsermeshM1 is chosen for
subsequent computations. The large-scale oscillations in the strains result from the changing number of
train wheels on the bridge. The small-scale oscillations in the lower flange are due to the relative position
of the wheel with respect to the relatively stiff transverse I-beams and the less stiff reinforced concrete
deck.

The measured and computed FE strains at the midspan of the main I-beams are compared in Figure 8b.
Eachmeasured strain is depictedwith a “þ”. Evidently, there is a significant scatter in themeasured strains
between neighboring measurement points. Furthermore, the offset between the measured and FE strains
in time indicates a mismatch between the actual and the assumed train speed. The actual train speed and
position corresponding to the measured strains are unknown. The time coordinate for the FE strains is
chosen so that the offset between the two sets of strains is minimized. Although the FE strains are smaller
than the measured strains, their overall oscillation pattern is in close agreement. In comparison to the
measured strains, the bottom flange FE strains have multiple small dips which is again related to the
modeling of the connection between the main and transverse I-beams and the concrete deck.

The random loading r xð Þ representing the uncertainties in the train loading and its application to the

superstructure yields according to (8) the prior FE strain density pðPuÞ¼N ðP�u,PCuP
TÞ. The mean and

the 95% confidence region of the strains computed at 20 sensor locations along the top and bottom flanges
of the east main I-beam (i.e., 40 sensor locations in total) are shown in Figure 10. The plotted curves are
nonsmooth because the strains are linearly interpolated between the sensor locations. The actual FE
strains are smooth and quadratic within each element (Zhang et al., 2018).

4.2. Statistical FE analysis

4.2.1. Inference of true strain response using all sensors
The measured strains are used to predict the “true” axial strains along the east main I-beam. The posterior
FE strain density pðPujyÞ and the true strain density pðzjyÞ conditioned on the measured strains y are
determined by evaluating (20a) and (22) using the parameters in Table 2. Evidently, the true strain
response z is unknown and only the measured strain response including some measurement error, that is,
y¼ zþe, at the ny locations is known. At each time instant tk, the posterior FE strain density pðPukjykÞ
and the true strain density pðzkjykÞ are computed from the measured strains yk. For simplicity, the
subscript k is omitted here and in the following.

Before computing the posterior densities, the marginal likelihood pðYjwÞ given by (25a) is sampled to
obtain the point estimate w∗. Recall that the hyperparameter vectorw consists of the scaling parameter ρ
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Figure 8. Normal strains along the top and bottom flanges of the east main I-beam at the midspan.
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and the covariance kernel parameters σd and ℓd of the mismatch error d. The strain recordings from all
ny ¼ 40 FBG sensors of the east main I-beam are included in the observation (measurement) matrix
Y∈Rny�no. The sensor locations are as specified in Figure 3. Only data recorded when a train is present on
the bridge (i.e., 1 s≤ t≤3 s yielding no ¼ 501 readings for each sensor) are included. The standard
deviation σe ¼ 1microstrain of the measurement error e is estimated from the strain recordings within
0 s≤ t≤0:5 s prior to the arrival of the train (see Figure 8b). The marginal likelihood pðYjwÞ is sampled
with a standard MCMC algorithm. In Figure 9, the normalized histograms for pðYjρÞ, pðYjσdÞ, and
pðYjℓdÞ obtained with 20,000 iterations and an acceptance ratio of 0.283 are depicted. Convergence is
ensured by checking the trace plot of the samples and monitoring the empirical mean and standard
deviation of the samples. As mentioned before, the empirical mean of the MCMC samples is used as a
point estimatew∗, see Table 3. The unimodal nature of the histograms in Figure 9 and the relatively small
standard deviations indicate that the available data are sufficient to identify the hyperparameters with a
high certainty. Lack of sufficient data usually leads to multimodal histograms and large standard
deviations.

In Figure 10, the prior and posterior densities of the axial FE strains and the measured strains at t¼ 1 s,
t¼ 2 s, and t¼ 3 s are plotted. For the FE strains, in addition to the mean, the corresponding 95%
confidence regions are plotted. Observe how the mean of the posterior FE strain lies much closer than the
prior FE strain to the measured strains. It is also evident that the uncertainty in the prior FE strains is
significantly reduced by conditioning them on the sensor measurements. In the corresponding Figure 11,
the posterior densities of the true system response at t¼ 1s, t¼ 2 s, and t¼ 3s are shown. The respective
confidence regions encompass all the strain measurements and their mean is always visually very close to
the mean of the data. These results clearly demonstrate that the FE strains conditioned on the measured
strains (i.e., black curves in Figure 10) provide an improvement of strain prediction over the uncondi-
tioned FE strain results. Moreover, the 95% confidence regions provide a quantifiable method for

0.84 0.86 0.88 0.90 0.92
ρ

0

20

40

60

80

100

120

(a) p(Y|ρ)

3.8 3.9 4.0 4.1 4.2 4.3 4.4
σd ×10−6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

×107

(b) p(Y|σd)

0.35 0.40 0.45 0.50 0.55
d

0

5

10

15

20

25

30

35

(c) p(Y|�d)

Figure 9. Normalized histogram of the marginal likelihood pðYjwÞ for ny ¼ 40 and no ¼ 501 sampled
with MCMC. The red dashed lines indicate the empirical mean w∗ of the samples.

Table 2. Covariance and algorithmic parameters used in Section 4.2

Parameter Value

σr 1000 Pa
ℓr 1 m
σe 1 microstrain
MCMC samples 20,000
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identifying anomalous sensor readings. As a further note, observe that the confidence interval of pðzjyÞ in
Figure 11 is wider than the confidence interval of pðujyÞ in Figure 10 due to the contribution of the
inferred mismatch term.

4.2.2. Inference of true strain response using a reduced number of sensors
Given the considerable efforts and costs associated with instrumenting operational structures, methods for
optimizing both number and location of sensing points are critical. The statFEM approach allows for both
data and physics-informed prediction even in situations where very limited measurement data are
available. In the following, a reduced number of measurements are considered to obtain the posterior
FE strain density pðPujyÞ and the true strain density pðzjyÞ. A reduced number of sensors ny and readings
per sensor no are considered. The purpose of this study is to confirm empirically the convergence of the

Table 3. Empirical mean and standard deviation of the hyperparameters.

Hyperparameter Value

ρ 0:8706�0:0037
σd (microstrain) 4:0998�0:0263
ℓd (meter) 0:4261�0:0116
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Figure 11. Inferred true strain density pðzjyÞ conditioned on strains (þ) measured along the east main
I-beam. The blue and red lines represent the mean P�u of the prior along the top and bottom flanges,
respectively, and the black lines the conditioned mean �z∣y. The shaded areas denote the corresponding

95% confidence regions. The unit of the vertical axis is microstrain.
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Figure 10. Posterior FE strains pðujyÞ conditioned on the measured strains (þ) along the east main
I-beam. The blue and red lines represent the mean P�u of the prior along the top and bottom flanges,
respectively, and the black lines the conditioned mean ρPu∣y. The shaded areas denote the corresponding

95% confidence regions. The unit of the vertical axis is microstrain.
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two posteriors with increasing number of data and to determine the minimum number of data required for
an acceptable estimate. The use of fewer data has advantages in terms of reduced instrumentation,
increased numerical efficiency, and the corresponding reduction in effort spent on data analysis and
interpretation.

Three numbers of sensing points ny∈ 40, 20, 10f g along the east main I-beam are considered. In each
case, half of the sensing points are along the top and the other half along the bottom flange. Recall that the
total number of sensors installed along the top and bottom flanges of each main I-beam is 40 (20 top and
20 bottom). For each ny, a subset of FBG sensorswith the IDs given in Table 4 is selected. Furthermore, the
number of strain measurements no is altered by selecting four different time intervals Δt¼
f1=250 s,1=50 s,1=25 s,1 sg between the measurements within the observation window 1 s≤ t≤3 s.
The respective number of measurements is no ¼ 501, 101, 51, 3f g. As in the preceding section, the
marginal likelihood pðYjwÞ is sampled usingMCMC. For each combination of ny and no, a total of 20,000
MCMC samples are generated with an average acceptance ratio of 0.326.

The normalized histograms for pðYjρÞ, pðYjσdÞ, and pðYjℓdÞ for ny ¼ 20 are shown in Figure 12. It is
apparent that the standard deviations become significantly smaller with increasing number of readings no.
The empirical mean and standard deviation for all combinations of ny and no are given in Tables 5, 6 and 7.
In almost all cases, the standard deviation of the samples becomes smaller with increasing number of
readings. Moreover, the standard deviation becomes smaller when data frommore sensors are considered
(larger ny). For the scaling parameter ρ, the difference between the means obtained with no ¼ 501 and
no ¼ 3 is around 5% and decreases as additional readings are incorporated. For the mismatch parameter
σd, the difference can be as high as 25%, and then decreases to 2–8% depending on the number of sensors
ny. It is remarkable that with 50 times fewer readings, the difference of the estimated ρ and σd is still
acceptable. The length scale parameter ℓd, however, shows a larger difference between the two smaller
number of sensing points no ¼ 3, 11f g and the larger number of sensing points no ¼ 501. This result,
however, does not significantly affect the inferred posterior true strains.

Next, the posterior true strain density pðzjyÞ is evaluated for different numbers of sensing points ny and
a fixed number of readings no ¼ 11, see Figure 13. In contrast, Figure 14 shows the posterior true strains
for different no and a fixed ny¼ 10. It can be observed that themeans �z∣y obtained using fewer observation

Table 4. Strain gauge ID for computations with ny ¼ 40,20,10f g sensors on the east main I-beam.

Gauge ID Top/bottom flange

ny ¼ 40 1,2,3,…,20 Top and bottom
ny ¼ 20 1,3,5,…,19 Top and bottom
ny ¼ 10 3,7,11,15,19 Top and bottom
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Figure 12. Normalized histogram of the marginal likelihood pðYjwÞ for ny¼ 20 and
no∈ 3, 11, 101, 501f g sampled with MCMC.
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data show close agreement with those obtained using more data. Similarly, the 95% confidence intervals
of the different posteriors pðzjyÞ look visually very similar for all combinations of no and ny. These results
confirm that it is possible to use data from fewer sensors ny and fewer readings no to obtain a sufficiently
reliable estimate for the true strain response.

4.2.3. Predictive strains at nonsensor locations
Another advantage of statFEM is the possibility of generating strain predictions at locations where no
sensing data are available. Limited sensing points may arise due to cost and labor considerations, but it is
also common in structural monitoring for sensor systems tomalfunction and for entire sections of a sensor
network to stop recording. The sensor strains along the west main I-beam are estimated by using only the
readings from sensors installed along the east main I-beam.Although strain data along thewest I-beam are
available, they are not included in the observation matrix Y. This test is an extreme case of missing
measurement data due either to sensor malfunction or temporary system error.

Consider the vector of unobserved strains by at the locations with the coordinates bX. The matrix bX
contains the coordinates of the FBG sensors along the west I-beam, see Figure 3. The predictive density of
sensors strains pðbyjyÞ conditioned on the observations y is given by

pðbyjyÞ¼Z pðbyjuÞpðujyÞdu: (27)

With the likelihood (14) and the FE posterior (20) this becomes

Table 5. Empirical mean and standard deviation of the hyperparameter ρ.

ny ¼ 10 ny ¼ 20 ny ¼ 40

no ¼ 3 1:0152�0:0717 0:9581�0:0593 0:9253�0:0548
no ¼ 11 0:9614�0:0325 0:9215�0:0281 0:8869�0:0251
no ¼ 101 0:9452�0:0103 0:9075�0:0093 0:8717�0:0080
no ¼ 501 0:9457�0:0046 0:9062�0:0041 0:8706�0:0036

Table 6. Empirical mean and standard deviation of the hyperparameter σd.

ny ¼ 10 ny ¼ 20 ny ¼ 40

no ¼ 3 4:9211�1:0585 4:4129�0:6042 4:6830�0:4241
no ¼ 11 3:5436�0:3651 3:4951�0:2365 3:9374�0:1742
no ¼ 101 3:8462�0:1219 3:6611�0:0840 4:0894�0:0590
no ¼ 501 3:8524�0:0542 3:6405�0:0367 4:0998�0:0263

Table 7. Empirical mean and standard deviation of the hyperparameter ℓd.

ny ¼ 10 ny ¼ 20 ny ¼ 40

no ¼ 3 0:5657�0:4098 0:5634�0:3060 0:3766�0:1442
no ¼ 11 0:4663�0:3378 0:6099�0:2592 0:2508�0:1250
no ¼ 101 0:3736�0:1482 0:9628�0:5261 0:4335�0:0235
no ¼ 501 0:4731�0:1005 1:0201�0:0208 0:4260�0:0116

Data-Centric Engineering e31-17

https://doi.org/10.1017/dce.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.28


pðbyjyÞ¼N ðρbP�ujy,ρ2bPCujybPTþ bCdþ bCeÞ (28)

where the matrices bP, bCd, and bCe are obtained by introducing the coordinates collected in bX in the
respective operator and covariance kernels. Note that this expression is very similar to the true system
density pðzjyÞ given in (22) up to the additional covariance term due to the measurement errors.

To evaluate the predictive strain density pðbyjyÞ, the hyperparameters of the statistical model w are
learned first as before. To this end, included in the observation matrix Y are the strains of the ny¼ 40
sensors along the east I-beam and for each sensor the no ¼ 101 readings between the time 1 s≤ t≤3 s.
Subsequently, pðbyjyÞ is computed by introducing the point estimate w∗ obtained by MCMC sampling
into (28). The point estimate obtained in this example isw∗ ¼ð0:87723 3:996 microstrain 0:43mÞT. The
prediction pðbyjyÞ is computed at all the 40 sensor positions along the west I-beam.

As shown in Figure 15, with only measurement data from the east I-beam taken into account, the
predictive strain distribution pðbyjyÞ differs from the prior FE computed strains pðPuÞ and the measured
strains. Its mean �byjy lies mostly in between the mean of the prior P�u and the measured strains. The 95%
confidence regions of the predictive strain distribution and the prior have almost the same width. Hence,
even at locations where there are no measurement data available, statFEM is able to improve the FE prior
by utilizing measurement data from other parts of the bridge.
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Figure 13. Inferred true strain density pðzjyÞ conditioned on strains (þ) measured along the east main
I-beam for no ¼ 11 readings. The blue and red lines represent the mean P�u of the prior along the top and
bottom flanges, respectively, and the black lines the conditioned mean �z∣y. The shaded areas denote the
corresponding 95% confidence regions. In each row, the numberof sensors ny is fixed. In each column, the

observation time t is fixed. The unit of the vertical axis is microstrain.
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5. Conclusions

In this study, a statistical digital twin of an operational bridge superstructure has been developed to
synthesize FBG strain measurements with FE model predictions for obtaining improved strain predic-
tions. To this end, the application of statFEM as a new modeling paradigm in creating digital twins was
proposed. In light of the presented results, several conclusions can be drawn.
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Figure 14. Inferred true strain density pðzjyÞ conditioned on strains (þ) measured along the east main
I-beam for ny ¼ 10 sensors. The blue and red lines represent the mean P�u of the prior along the top and
bottom flanges, respectively, and the black lines the conditioned mean �z∣y. The shaded areas denote the
corresponding 95% confidence regions. In each row, the number of readings no and in each column the

observation time t is fixed. The unit of the vertical axis is microstrain.
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1. By considering strain data captured along the top and bottom flanges of the east and west main
I-beams, statFEM analysis showed an improvement of the mean strain estimates after being
conditioned on the recorded sensor data. The 95% confidence bounds provided a quantifiable
means of identifying anomalous sensor readings, which represents a significant step change in how
structural monitoring data may be more reliably interpreted.

2. To evaluate the effect of the number of sensing points on statFEM predictions, several sensor
subsets (40, 20, and 10 sensors) for each main I-beam were considered. The resulting predictive
strain distributions and associated 95% confidence bounds between the three sensor subsets were
negligible. This demonstrated that statFEMmay be used to optimize sensor network design leading
to significant reductions in instrumentation costs.

3. In addition to evaluating the effect of a reduced number of sensing points, several reduced sampling
rates for each individual FBG sensor (originally capturing data at 250Hz) were considered. Once
again, statFEMprovided robustmean estimates of the predictive strains regardless of sampling rate.

4. Using only strain data captured along the east main I-beam, the predictive strain distribution along
the west main I-beam was estimated. It was shown that the predictive mean along the west I-beam
incorporates the effects from both the FE prior and the measured data at the opposite east main
I-beam. Therefore, in cases where missing or damaged parts of a sensor network exist, statFEM can
still be used to generate meaningful interpretations of the data.

In summary, this study has highlighted the suitability of statFEM for structural health monitoring and
condition assessment of instrumented civil infrastructure assets. The presented results demonstrated that a
relatively coarse FE model and a modest amount of data are sufficient to obtain reliable predictions.
Combined with advanced computing technologies, this paves the way for future continuous, real-time
monitoring, and condition assessment of infrastructure assets. Furthermore, the choice of a suitable coarse
FE model can be rationalized with the Bayesian model selection paradigm (Beck, 2010; Girolami et al.,
2021). Indeed, Bayesian model selection can provide a means to discover sudden changes in the state of
the infrastructure by comparing the plausibility of different predefined “what-if” scenarios, including
simulated damage and failure mechanisms.
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Figure 15. Predictive strain distribution pðbyjyÞ along the west I-beam conditioned on strains (þ)
measured along the east main I-beam. The blue and red lines represent the prior mean P�u along the top
and bottom flanges, respectively, and the black lines the predictive mean ρP�bu∣y. The shaded areas denote

the corresponding 95% confidence regions. The unit of the vertical axis is microstrain.

e31-20 Eky Febrianto et al.

https://doi.org/10.1017/dce.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.28


Funding Statement. This work was supported by Wave 1 of The UKRI Strategic Priorities Fund under the EPSRC Grant
EP/T001569/1, particularly the “Digital twins for complex engineering systems” theme within that grant, and The Alan Turing
Institute.

Competing Interests. The authors declare no competing interests exist.

References
AbdulkaremM, Samsudin K, Rokhani FZ and Rasid MFA (2020) Wireless sensor network for structural health monitoring: A

contemporary review of technologies, challenges, and future direction. Structural Health Monitoring 19, 693–735.
Arendt PD, Apley DW and Chen W (2012). Quantification of model uncertainty: Calibration, model discrepancy, and

identifiability. Journal of Mechanical Design 134, 100908:1–100908:12.
Beck JL (2010) Bayesian system identification based on probability logic. Structural Control and Health Monitoring 17, 825–847.
Bolton A, Enzer M and Schooling, J. (2018). The Gemini Principles: Guiding Values for the National Digital Twin and

Information Management Framework. Technical report, Centre for Digital Built Britain and Digital Framework Task Group.
Brownjohn JMW (2007) Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 365, 589–622.
Butler LJ,LinW,Xu J,Gibbons N,ElshafieMZEB andMiddleton CR (2018) Monitoring, modeling, and assessment of a self-

sensing railway bridge during construction. Journal of Bridge Engineering 23, 1–16.
Cirak F and LongQ (2011) Subdivision shells with exact boundary control and non-manifold geometry. International Journal for

Numerical Methods in Engineering 88, 897–923.
Cirak F, Ortiz M and Schröder P (2000) Subdivision surfaces: A new paradigm for thin-shell finite-element analysis.

International Journal for Numerical Methods in Engineering 47, 2039–2072.
Cirak F, ScottMJ,Antonsson EK,OrtizMand Schröder P (2002) Integratedmodeling, finite-element analysis, and engineering

design for thin-shell structures using subdivision. Computer-Aided Design 34, 137–148.
De Battista N, Cheal N, Harvey R and Kechavarzi C (2017). Monitoring the axial displacement of a high-rise building under

construction using embedded distributed fibre optic sensors. In SHMII 2017 - 8th International Conference on Structural Health
Monitoring of Intelligent Infrastructure, Proceedings, pp. 1058–1067.

Di J,RuanX,ZhouX,Wang J andPengX (2021). Fatigue assessment of orthotropic steel bridge decks based on strainmonitoring
data. Engineering Structures 228, 111437.

Di Murro V, Pelecanos L, Soga K, Kechavarzim C and Morton R (2016). Distributed fibre optic long-term monitoring of
concrete-lined tunnel section tt10 at cern. In International Conference on Smart Infrastructure and Construction.

Frangopol DM and SolimanM (2016) Life-cycle of structural systems: Recent achievements and future directions. Structure and
Infrastructure Engineering 12, 1–20.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A and Rubin DB (2013). Bayesian Data Analysis, 3rd Edn. Boca Raton:
CRC Press.

Ghanem RG and Spanos PD (1991) Stochastic Finite Elements: A Spectral Approach. New York: Springer.
Girolami M, Febrianto E, Yin G and Cirak F (2021) The statistical finite element method (statFEM) for coherent synthesis of

observation data and model predictions. Computer Methods in Applied Mechanics and Engineering 375, 113533:1–113533:32.
HuangY,ShaoC,WuB,Beck JL andLiH (2019) State-of-the-art review onBayesian inference in structural system identification

and damage assessment. Advances in Structural Engineering 22, 1329–1351.
Hughes TJR,Cottrell JA and Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh

refinement. Computer Methods in Applied Mechanics and Engineering 194, 4135–4195.
Kaipio J and Somersalo E (2006) Statistical and Computational Inverse Problems. New York: Springer.
KennedyMC and O’Hagan A (2001) Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 63, 425–464.
Lau FD-H, Adams NM,Girolami MA, Butler LJ and Elshafie MZEB (2018) The role of statistics in data-centric engineering.

Statistics & Probability Letters 136, 58–62.
Lin W, Butler LJ, Elshafie MZEB and Middleton CR (2019) Performance assessment of a newly constructed skewed half-

through railway bridge using integrated sensing. Journal of Bridge Engineering 24, 1–14.
Lynch JP (2007) An overview of wireless structural health monitoring for civil structures. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences 365, 345–372.
MacKay DJC (1992) Bayesian interpolation. Neural Computation 4, 415–447.
MacKay DJC (1999) Comparison of approximate methods for handling hyperparameters. Neural Computation 11, 1035–1068.
MalekzadehM,Atia G andCatbas FN (2015) Performance-based structural health monitoring through an innovative hybrid data

interpretation framework. Journal of Civil Structural Health Monitoring 5, 287–305.
Mikkola P, Martin OA, Chandramouli S, Hartmann M, Pla OA, Thomas O, Pesonen H, Corander J, Vehtari A, Kaski S,

Bürkner P-C and Klami A (2021) Prior knowledge elicitation: The past, present, and future. Preprint, arXiv:2112.01380.
Murphy KP (2012) Machine Learning: A Probabilistic Perspective. Cambridge: MIT Press.

Data-Centric Engineering e31-21

https://doi.org/10.1017/dce.2022.28 Published online by Cambridge University Press

https://arxiv.org/abs/2112.01380
https://doi.org/10.1017/dce.2022.28


Nagel JB and Sudret B (2016) A unified framework for multilevel uncertainty quantification in Bayesian inverse problems.
Probabilistic Engineering Mechanics 43, 68–84.

Oden JT, Moser R and Ghattas O (2010) Computer predictions with quantified uncertainty, part I. SIAM News 43, 1–3.
Pasquier R and Smith I (2016) Iterative structural identification framework for evaluation of existing structures. Engineering

Structures 106, 179–194.
Rasheed A, San O and Kvamsdal T (2020) Digital twin: values, challenges and enablers from a modeling perspective. IEEE

Access 8, 21980–22012.
Scarth C, Adhikari S, Cabral PH, Silva GHC and do Prado AP (2019) Random field simulation over curved surfaces:

Applications to computational structural mechanics. Computer Methods in Applied Mechanics and Engineering 345, 283–301.
Stuart AM (2010) Inverse problems: A Bayesian perspective. Acta Numerica 19, 451–559.
Sudret B and Der Kiureghian A (2000). Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report. Technical

Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley.
Tsialiamanis G, Wagg DJ, Dervilis N and Worden K (2021) On generative models as the basis for digital twins. Data-Centric

Engineering 2.
Worden K,Cross E,Barthorpe R,WaggD andGardner P (2020) On digital twins, mirrors, and virtualizations: Frameworks for

model verification and validation. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical
Engineering 6(3), 030902.

Wu R-T and Jahanshahi MR (2020) Data fusion approaches for structural health monitoring and system identification: Past,
present, and future. Structural Health Monitoring 19, 552–586.

Zhang Q, Sabin M and Cirak F (2018) Subdivision surfaces with isogeometric analysis adapted refinement weights. Computer-
Aided Design 102, 104–114.

Cite this article: Febrianto E, Butler L, Girolami M and Cirak F (2022). Digital twinning of self-sensing structures using the
statistical finite element method. Data-Centric Engineering, 3, e31. doi:10.1017/dce.2022.28

e31-22 Eky Febrianto et al.

https://doi.org/10.1017/dce.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.28
https://doi.org/10.1017/dce.2022.28

	Digital twinning of self-sensing structures using the statistical finite element method
	Impact Statement
	Introduction
	Self-sensing Railway Bridge
	Structural system
	Sensor instrumentation

	Statistical Digital Twin
	Review of the statFEM
	Probabilistic forward FE formulation
	Statistical model and Bayesian inference
	Mismatch modeling and multiple observations

	FE model of the bridge superstructure

	Results and Discussion
	Mesh convergence and probabilistic FE analysis
	Statistical FE analysis
	Inference of true strain response using all sensors
	Inference of true strain response using a reduced number of sensors
	Predictive strains at nonsensor locations


	Conclusions
	Data Availability Statement
	Author Contributions
	Funding Statement
	Competing Interests
	References


