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Introduction 

Thermal barrier coatings (TBCs) are multilayer coatings meant to insulate gas turbine engine metal 

component and allow it to operate at elevated temperatures. Typically, a TBC is made from four layers: 

a ceramic topcoat, a thermally grown oxide (TGO), an aluminum-containing bond coat, and a superalloy 

substrate. Figure 1 shows a representative image of TBC layers. After certain hours of service time the 

ceramic topcoat eventually spalls off which can result in the exposure of substrate to melting 

temperatures. The delamination of the topcoat is attributed to several reasons: i) The growth and linkage 

of cracks within topcoat ii) the growth in undulations within bond coat and TGO exceeding strains of 

thermal expansion coefficient mismatch and iii) growth of the TGO thickness. [1] In order to fully 

understand the failure mechanism of TBC systems and predict their life, one needs to study the 

evolution of cracks and the TGO interfacial surface geometry as a function of hour of operation. 3D 

Xray Microscopy (XRM) allows us to obtain such information non-destructively at various intervals of 

heat treatment corresponding to engines’ operation. However, lack of quantitative information does not 

allow us to develop or confirm constitutive relationships or failure mechanisms. Therefore, it is critical 

to assign materials to voxels in XRM images. This process is known as segmentation. Segmentation of 

TBCs, however, is not trivial. The top coat Zirconia-based composition significantly attenuates the Xray 

photons. Higher energy X-rays are usually used along with aggressive filtering to avoid beam hardening 

effects. However, even at high energies, the contrast between the top coat material and cracks and voids 

changes from slice to slice. Also, detection of rough aluminum-based interfacial layer, TGO, proves to 

be difficult and discerning that from cracks and voids close to the interface is very difficult. Previous 

efforts of segmenting TBCs systems have all been manual which is both time consuming and labor 

intensive. [1] 

 

This work aims to automate the detection of cracks in the topcoat and the TGO interfacial geometry of a 

heat-treated TBC sample using image processing and machine learning. To achieve this, TBC image 

data was first solicited from [1], where a cyclically heat-treated APS 7 wt.% Yttria-stabilized-zirconia 

TBC was imaged using 3D XCT [1]. In total, 1,007 2D X-ray micrographs were taken, serving as this 

work's TBC image dataset. In an attempt to identify cracks from this data, the 3D visualization software, 

Dragonfly was used [4]. 

 

Methods 

To automate the detection of cracks, a training dataset was first made. To do this, a manual segmentation 

approach was taken, and three tools were used within an image processing software “Dragonfly”. The 

first was the smart grid tool, which decomposed the TBC images and assigned regions within them. 

Once created, the regions were filled using the ROI painter tool and, depending on their location, were 

classified as one of the four layers or the surrounding. After being segmented, the thresholding tool 
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created an intensity domain of dataset values inside the topcoat. Once applied, those voxels within this 

domain were segmented as cracks. Following this approach, 20 total TBC micrographs were segmented. 

An example of one of these slices is shown in Figure 1. 

 
Once made, the training dataset was used to teach a machine learning architecture, U-Net, to 

automatically segment cracks in the topcoat. Chosen for its ability to segment images, it was trained 

with an initial filter count of 128, a depth level of 5, a batch size of 32 pixels, and a patch size of 64 

pixels. To obtain the most accurate results from this architecture, two parameters were varied between 

each training session: learning rate and epoch number. For the present work, learning rates of 1, 0.75, 

0.5, 0.25, 0.1, and 0, and epoch numbers of 100, 200, and 300 were used. 

 

Once trained on each learning rate and epoch number, the pairing with the largest categorical accuracy 

was identified and then retrained on a new, modified training dataset. Using the same manual 

segmentation approach, this training dataset's "topcoat" class was segmented with less labeled data than 

that of the preceding. For this, 20 total TBC micrographs were segmented. Again, categorical accuracy 

was used to evaluate this model's performance from the retraining, showing the percentage of predicted 

classes that match the actual ones. 

 

Results 

From the training sessions on the initial dataset, categorical accuracies were exported. These are shown 

in Table 1, which indicate how well the U-Net architectures labeled data to match those generated 

manually. From these results, there are three features to notice: 

 

1. For the most part, the training parameters affected the machine learning architecture's accuracy. 

This is seen by the different accuracies between training sessions, except for the U-Net 

architecture trained with a learning rate of 0.25 for 100 and 200 epochs. 

2. Small categorical accuracies were recorded for the U-Net architectures trained with a learning 

rate of 0. This result was expected because, by using a learning rate of 0, the architecture does 

not change under the estimated error. 

3. The U-Net architecture trained with a learning rate of 1 for 200 epochs has the best overall 

accuracy, and so it was retrained on the modified training dataset. A TBC slice segmented with 

this architecture is shown in Figure 2. 

 

 
Shown in Table 2 are the results from the retraining. Comparing this value to that of the same 

architecture in Table 1, one will notice its value is slightly less. This difference outlines that, for 

detecting cracks, the labeled dataset's size affects the architecture's accuracy. 

 
Conclusion 

 In this work, it was shown that detecting cracks in TBCs and interfacial TGO geometry can be 

automated using image processing and machine learning. In doing so, costs, variability, and 

segmentation time can be reduced. Due to the trade-off between time and accuracy, the U-Net 

architecture was trained on labeled data of different sizes and for training parameters of varying values. 

In this way, the training parameters and labeled dataset's size were shown to affect the machine learning 

architecture's accuracy. From these findings, a machine learning-based approach is a likely alternative to 

detecting cracks in TBCs. 
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Figure 1. TBC slice segmented using a manual segmentation approach and the smart grid, ROI painter, 

and thresholding tools in Dragonfly for the initial training dataset. Shown in the segmentation are the 

superalloy substrate (green), the aluminum-containing bond coat (yellow), the thermally grown oxide 

(orange), the ceramic topcoat (blue), the cracks (light pink), and the surrounding (pink). This 

segmentation, and the 19 other slices like it, are considered the accepted ground truth for this work. 

https://doi.org/10.1017/S1431927622011448 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927622011448


3071  Microsc. Microanal. 28 (Suppl 1), 2022 
doi:10.1017/S143192762201144810.1017/S1431927622011448  © Microscopy Society of America 2022 

 

 

Architecture: U-Net 

(Original Training Data) 

 

 

Epoch Number 

 

 

100 

 

200 

 

300 

Learning Rate 
 

Categorical Accuracies 

0 0.10137 0.19323 0.18869 

0.1 0.92801 0.98801 0.92691 

0.25 0.98716 0.98716 0.98907 

0.5 0.98841 0.98957 0.98962 

0.75 0.98826 0.98935 0.87176 

1 0.98770 0.98976 0.98973 

Table 1. Categorical accuracies measured on the initial training data for the U-Net architecture using 

varying learning rates and epoch numbers. 

 
Figure 2.  TBC slice segmented using the U-Net architecture trained with a learning rate of 1 for 200 

epochs (right), and the Figure 1 TBC slice, which is a part of the dataset it was trained on (left). From a 

comparison of the two images, it can be seen that the "best" U-Net architecture of all others trained was 

able to segment and detect cracks in a TBC slice that it had not seen during training. However, although 

this architecture did detect cracks, it did not segment many, which partly led to the new training dataset 

being labeled with fewer data in its "topcoat" class. 

 
Architecture: U-Net 

(Modified Training Dataset – Smaller “topcoat” Class) 
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Epoch Number 

 

 

200 

Learning Rate 
 

Categorical Accuracy 

1 0.98830 

Table 2. Categorical accuracy measured on the modified training dataset for the “best” U-Net 

architecture of all those trained. 

References: 

[1] Ahmadian S., et al. “Three-dimensional X-ray micro-computed tomography of cracks in a furnace 

cycled air plasma sprayed thermal barrier coating”. (2014) 

[2] Kastner J., Heinzl C. “X-ray Computed Tomography for Non-destructive Testing and Materials 

Characterization”. (2015) 

[3] Ahmadi B., et al. “Non-destructive Automatic Die-Level Defect Detection of Counterfeit 

Microelectronics using Machine Vision.” 

[4] About Deep Learning. Dragonfly Deep Learning | About Deep Learning | ORS. (n.d.). Retrieved 

October 5, 2021, from https://www.theobjects.com/dragonfly/deep-learning.html.   

https://doi.org/10.1017/S1431927622011448 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927622011448



