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FINITE TRAVELLING WAVES FOR
SEMILINEAR PARABOLIC SYSTEMS

by MING-XIN WANG*

(Received 28th January 1997)

In this paper, finite travelling waves for the semilinear parabolic systems

«n = d,u,,, ~ e'Tl"""• ' = ' " (*)

are studied, where i, > 0, e, > 0, m,, > 0 for all 1 < i,j < n, and 5Z"=i mu > 0 *° r a " ' 5 ' 5 "• Let
M = (m,j)nxn and A = I — M. It will be proved that (*) has finite travelling waves if and only if all principal
minors of A are positive. Moreover, some asymptotic behaviours of finite travelling waves will be obtained.

1991 Mathematics subject classification: 35K55, 35K.57, 35K60.

1. Introduction and main results

In this paper, finite travelling waves (FTW) of the semilinear parabolic systems

uj", x s R ' , t > 0 , i = l , . . . , n (1)
/='

are studied, where d{ > 0, e, > 0, mj; >0,i,j=\,...,n, and J^l i m,-,- > 0, i = 1 , . . . , n.
By a travelling wave of (1) with speed c, we mean a solution of (1) of the form

u,(x, 0 = yt(z), z — x + ct,ceRl, i = 1 n,

where y&z) are nonnegative and nontrivial, and y;{z) -> 0 as z - • —oo. If there exists
a finite z0 e K1 such that y£z) = 0 for z < z0, i = 1 n, we say that (yt(z),..., yn(z))
is a finite travelling wave (FTW). Owing to the invariance property of travelling waves
under translation, it is easy to see that looking for a FTW of (1) is equivalent to
finding a solution of the following ODE systems
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(2)

y,(z) > 0 for z > 0, and y,(z) > 0 for z > 0 and close to 0, i — 1 w,

where ' = d/rfz.
We can prove that the solution (y,(z) yn(

z)) of (2) satisfies y,(z) > 0 for z > 0,
i = 1 n. Therefore, y^z) > 0 for z > 0 and yt(z) e C2(0, z*) n C'[0, z*), i = 1,. . . ,«,
where z* < +oo or z* = + o o is the maximum existence time of (y,(z), . . . , yn(z)). It
follows that the line x =—ct is a front separating the region P+(«,, . . . ,«„) =
{(x, t)\ut(x, t) > 0, i = 1 , . . . . n} from the one where M,(X, t) — 0, i = 1 , . . . , n.

By the standard theory of ordinary differential equations we can prove that

(a) limz^z. E L , y.(z) = +oo if z* < +oo;

(b) limz_2. yt(z) — Hm2^2. y\[z) — +oo if z* = +oo, 1 < i < n.

In fact, by the continuation of solutions theory the conclusion (a) is obvious. To
prove conclusion (b), let f^z) — f]"=i y™"(z)- Because y^z) > 0 and y\{z) > 0, we have
that f-(z) > 0 and there exists f0 > 0 such that / (z) > /0 for all z > 1 and 1 < i < n. By
(2) we have

If c = 0, then we have y\(z) >
as z —>• +oo, 1 < i < n.

If c ^ 0, then we have

y,(z) > 0, y'iz) > 0 for z > 1.

— 1) ->• +oo a s z - > +c« and hence yt(z) -*• +oo

Therefore y'^z) > T,/0 for some T, > 0 and z > 2. Hence y^z) -> +CXD as z -*• +oo,
1 < i < n. Because Ylj=\ mu > 0> w e have that / (z) -*• +oo a s z ^ +oo. Therefore

U(z - z0)} + J / ( z )expj - |

exp

- z > - | e x p

- 1
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for any z > z0 > 1. Because /(z0) -*• +°° as z0 -> +00, we know that yj(z) ~* + ° ° a s

z -> +00.

Finite travelling waves of semilinear parabolic systems (1) were first studied by J.
Esquinas and M. A. Herrero in [2] for the case « = 2 and mll=m22 = 0,
dx—d2 — ei=e1 = \ by using the theory of integral equations and the Schauder fixed
point theorem.

For the following quasilinear parabolic systems

j (A = «„-«•»". (3)
I (»m), - vxx - i iV,

where 9, m > 0 and a, p\ p, q > 0, a + j? > 0, p + q > 0. In paper [5], we discussed the
necessary and sufficient conditions on existence and large time behaviours of FTW of
(3) by using an upper and lower solutions method. For the special case 9 = m = 1,
asymptotic behaviours of FTW of (3) as z -*• 0+ and z -»• +00 were given in [6] by
using the similar method to that of [5].

Denote M = (mtj)nxn, A — I — M, / i s the unit matrix. In this paper, we will prove
that (1) has FTW if and only if all principal minors of A are positive, and give some
asymptotic behaviours of FTW as z ->• 0+ and z -*• +00. Our main results read as
follows.

Theorem 1. Given c e R1, (2) has at most one solution.

Theorem 2. For any e e l 1 , (2) has a solution if and only if all principal minors of A
are positive.

Theorem 3. Let (yt(z) yn(z)) be the solution of (2). For any c e R1, y,(z) % fc,z2t|

as z -> 0+, i = 1 , . . . , n. Where k = (k , , . . . , kn)
T, with kt > 1, is the unique solution of the

linear algebraic system

Ak = (l,...,l)T, (4)

and b — (£>, bn) is the unique positive solution (i.e. bj > 0) of the nonlinear algebraic
system

f \ b?' = - 2k,(2k,. - 1 )dibh i = 1 n. (5)

Theorem 4. Let (y,(z) yn(
z)) be the solution of (2). Ifc<0, then y,(z) « £>,z*' as

z -*• +00, i = 1,. . . ,«. Here D = ( D , , . . . , Dn) is the unique positive solution of the
nonlinear algebraic system
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m:i 1
(6)

Theorem 5. Let (y , (z) , . . . , yn(z)) be the solution of (2). If c> 0 and 5Z"= i (yy
l/djfor all 1 < i < n, then y,(z) = O(eC(Z) as z -*• +oo, w/iere c, = c/rf,, i = 1 , . . . , n.

Here y(z) « u(z) means that lim(y(z)/i;(z)) = 1; y(z) = O(y(z)) means that there exists
0 < C < +oo such that lim(y(z)/u(z)) = C.

2. The preliminaries

This section contains two parts. In the first one, we give some results on algebraic
systems. In the second one, we state the upper and lower solutions method.

Propos i t ion 1 ([1]). The n x n matrix A — (ai^) with a{j < 0 for i^j is called a
nonsingular M-matrix if it has one of the following equivalent properties:

(1) A is nonsingular and A~l > 0 (componentwise).

(2) All principal minors of A are positive.

(3) All leading principal minors of A are positive.

(4) Re k > Ofor each eigenvalue X of A.

By this proposition we have the following lemmas.

Lemma 1. Assume that all principal minors of A are positive. Then the linear algebraic
system (4) has a unique solution k = (fc,,. . . , kn)

T and satisfies k,> 1, i = 1 , . . . , n.

Proof. By Proposition 1, A is nonsingular and A~x > 0 (componentwise). Therefore,
equation (4) has a unique solution k — A'1 (I,..., 1)T > 0, and

a>iki = ( ! ~ w»)/c- ~ ^2 m'iki = ]' ' = l-•••-"•

This yields fe, > 1 for all 1 < i < n since /c, > 0, 0 < mu < 1, m,v > 0 and £"=1
 wo > 0. D

Lemma 2. Assume that all principal minors of A are positive. Let k = (fc,, . . . , kn)
T

be the unique solution of (4) (fc,- > 1). Then the nonlinear algebraic systems (5) and (6)
have unique positive solution b — ( b , , . . . , bn)

T and D = (D Dn)
T respectively.

Proof. Denote a, = 2fc,(2/c, - l)rf,/ef, and let /?, = logb,, yf = loga,. Then (5) is
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equivalent to

Ap = -y , (7)

where /? = (/? pn)
T and y = (y , , . . . , yn)r. Equation (7) has a unique solution

/? = — A~ly. Hence (5) has a unique positive solution b = (b, ftn)
T with bi = efl,

i = 1 , . . . , n. Similarly, (6) has a unique positive solution D — (D, A,)T- •

Lemma 3. Assume that all principal minors of A are positive and positive constants
bj, b'h a,-, a, (i = 1 , . . . , ri) satisfy

b, = a, f l bj", b\ = a; f\(b'j)mu' «• = 1. • • •. «. (8)

If a, < (<)a

Proof. Let /?, = logfc,, fSi = logty, y, = loga, and yj = logaj, i = 1 , . . . , n. Then (8) is
equivalent to

Afl — y, Aft = y',

where 0 = (/?„...,/?n)T, ft = (/?', £ ) r , y = (y y j r , y ' = (/, y'n)
T. I f

a, < (<)a-, then y, < (<)y-, i = 1 , . . . , n, and in turn

A($ — /?') = y — y' < (<)0 (componentwise).

Since /I is an M-matrix, we have ft — ft' < (<)0 and in turn bt < (<)fe|, i=\ n. D

Lemma 4. Assume that all principal minors of A are positive and c < 0. Le/
D = (D, Dn)r 6e /Ae unique positive solution of (6). 77ien ;/iere ex«r^ a sequence
{Dip) = (D\p) D^f), with D\p) > 0, such that

»\»iiy ^ c i n(p ) n(/7) ^ n n*d

D)"' - > D , a s p - > + o o , i = l M . (9)

Proof. Denote a, = (—c/c(/e,)~'. Then D and a = (a , an) r satisfy

Choose ajp) such that 0 < a-*0 < a, and <x\p) ->• a, as p ->• +oo. Let D(p) =
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(D[p\ ..., D[p))T be the unique positive solution of

Then we have

<-p)\m<i - _ L
> ~ J

and DSP) < D, by Lemma 3. Since <x\p) -*• a,, by continuity, we have D\p) -*• D, as
p -*• + 0 0 , i = 1 , . . .,n. D

Upper and lower solutions method. Assume that y,, y, e C2[0, e] are positive
functions for some e > 0, and satisfy

dty" — cy'j — Cj J~JyJ"' < 0 < d,y" — cyj — e, T~T y™w in [0, e],

y,.(0) = 0 < y,(0), yj(O) = 0 < yXO), y,(z) < Ife) in [0, e], i = 1 , . . . , n.

Then system (2) has a unique positive solution y = (y , , . . . , yn) and satisfies
yf 5 y* < y, in [0, e], i = 1 , . . . , n. Here y = (yi yn) and y = O'M • • • > Jn) a r e called
the ordered lower and upper solutions o f (2).

Existence of y can be proved by the standard iterative techniques because system
(2) is quasimonotone increasing, cf. [3, 4, 6]. The uniqueness can be proved as in [5].

3. Proofs of theorems

It is obvious that (2) is equivalent to the following integral differential system

j 5*w+f si n ; , yr&ds, z > o,
I y,.(0) = 0, y^z) > 0 for z > 0, i = 1 n,

and it is also equivalent to the following integral system

y««=UVP^CZ - s» -1] n;=, JTW*. ^ c / o,

y,(z) - a/o
z(z - s)n;=l »"(*)*. if c = °.

yf(z) > 0 for z > 0, i = 1 , . . . , n.

The proof of Theorem 1 is the same as that of the uniqueness in paper [5],
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Proof of Theorem 2. We first prove the necessity. Assume that 0>,(z),..., yn(z)) is
a solution of (2), then it satisfies (10), (11). Since y,(z) > 0 and y't(z) > 0, i = 1,. . . ,«,
from (11) it follows that, for some positive constant C and small positive constant z0,

yt(z) < Cz2 f j y;y(z), for 0 < z < z0) i = 1 n. (12)
; = i

We will focus our attention on the inequalities (12). Taking the number of
inequalities of (12) as an induction variable, we use the mathematical-induction
method to complete the proof. When n = 1, it is obvious that an = 1 — mn > 0 because
y,(z) -»• 0 as z -*• 0+. Assume that the conclusion holds for n — 1. Then for n, using
y,(0) — 0 and y|(z) > 0 we have that y£z) < a for all 0 < z < z0 and some
o- > 0, i = 1 n. From (12) it follows that, for any I <l < n,

n, i! ̂  /. (13)yt{z) < Cam"z2 Y\ y?'\z), for 0 < z < z0 and i = 1

For any fixed 1: I < I <n, because the number of inequalities in (13) is n — 1, by the
inductive assumption we have that all p-th order principal minors of A = I — M are
positive for p = 1,... ,n— 1. In particular ann > 0. From (12) we have

yn(z) < (Cz2)1/fl»» Y\y?i/a™(z), 0 < z < z0.

Hence

n - l

yiz) < (Cz2)1+m'"/a"» ]^y"«+«^-w/^.(z)f 0 < z < z0> i = 1 n - l . (14)

D e n o t e m[;' = m i ; + minmnj/ann, af = atj - a^anj/am,ij = l , . . . , n - l , M =Jm';f\n-i)x(.n-»>
A = (fly'^-Dx^.,), then we have mi"' > 0, A = I - M and det/1 — anndetA. Because the
number of inequalities in (14) is n— 1, by the inductive assumption it follows that
det A > 0, and hence det A > 0. This shows that all principal minors of A are positive.
The proof of the necessity is completed.

In the following we prove the sufficiency of Theorem 2. We assume that all principal
minors of A are positive. Using Lemmas 1 and 2 we have that the algebraic system
(4) has a unique solution k = (fc,, . . . , kn)

T with /c, > 1, i = 1, . . . ,«, and the algebraic
system (5) has a unique positive solution b = {bu ..., bn)

T (b,, > 0, i = 1 , n).
(1) The Case c = 0. Let j/,(z) = fc.-z2*', i = 1 n. Using (4) and (5) we can verify

that 0>i(z),.... yn(z)) is a solution of (2).
(2) The Case c^0. Choose 0 < a < e,/2 and let y, = fc.z2*', y, = fc.z2*', i = 1 «,

where (blt...,bn)
T and (fc,,. . . , fcn)

T are solutions of
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e'~'

and

,(2ki - 1Kb,, i = 1 . . . . , n

f f bp = - 1 — 2/c,(2fc, - lKfc,., i = 1 n

respectively. Then we have (similar to Case 1)

Since the power of z in y\ (yj) is 2/c, — 1 and the powers of z in y" and Y\"=i yj'(y"
and fl"=i y?") a r e 2fc,- — 2, it follows that there exists £ > 0, depending only on c and a,
such that

n

^ y " < cyj + e, ]~J y™'7 in [0, e], i = 1 , . . . , « ,

diy" > cy- + c, FT ~yj'' in [0, e], i = 1 , . . . , n.

This shows that y — (yt,..., yn) and y — (y{,..., yn) are the ordered lower and upper
solutions of (2) in [0, ej. Therefore, (2) has a unique positive solution y = (y, , . . . , yn) in
[0, E] and satisfies

Lz2*1 = yi<yi< y , = b^ in [0, e], i = 1 n. (15)

Let z* be the maximal existence time of (y,(z),..., yn(z)), and

then Ff(z) is a continuous positive function in (0, +oo). Using y,(z) > 0, y;(z) > 0
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(11), it follows that yt(z) < Ft(z) f],"=i y^i2), 0 < z < z*, i = 1 , . . . , n. Lemma 3 shows
that y,(z) is bounded in (0, z") if z* < +oo, i = 1 , . . . , n. Consequently, z* = +oo and
(yi(z) , . . . , yn{z)) is a global solution of (2).

Theorem 2 is proved. •

Proof of Theorem 3. Assume that (y, ( z ) , . . . , yjz)) is a solution of (2). By Theorem
2 we have that all principal minors of A are positive.

(1) If c = 0, by the uniqueness of solution of (2), it follows that yt{z) — fc.z"1, z > 0,
i — 1 , . . . , n. Hence the conclusion holds.

(2) If c ^ 0, by the uniqueness of solution of (2) we know that yt(z) satisfies (15).
Let a -*• 0 and z -*• 0+, it follows that yt{z) =» bjZ2*' as z -»• 0+ since bh fe, -»• />, as a -*• 0,

The proof of Theorem 3 is completed. •

Proof of Theorem 4. Let (yi(z) yn(.
z)) D e a solution of (2) and c < 0. By

Theorem 2 we have that all principal minors of A are positive. By Lemmas 2 and 4, (6)
has a unique positive solution D = ( / ) , , . . . , DJ, and there exist £)(p) = (D(,p), . . . , D[p)),
p= 1,2 such that (9) holds.

Let y- = vfe), then (2) is equivalent to

y'i(z) = y,(z), z > 0,

4»;(z) = cy,(z) + e, YIU yT\z), z > 0, (16)

y,(0) = y,(0) = 0, yt(z), vt(z) > 0 for z > 0, i = 1 , . . . , n.

Using (4) and (6) we have that, for any e > 0,

n

</,D,fc,(/Ci - l)(z 4- e)*""2 > cDfoiz + e)1"'1 + e, ]~[ Dj'\z + e)m"kj - 0, z > 0, i = 1 n.

(17)

Let yi(z) = Di(z + e)kl and y,(z) = Dife,(z + e)'("l
> i=l,...,n. By (17) we know that

(yi(z),. . . ,yn(z),U,(z),. . . , un(z)) is an upper solution of (16). By the comparison
principle (see [3]) we get y,(z) < £>,(z + E)1', y\{z) = vt(z) < Dfoiz + £)*'"', z > 0,
i = 1 n. Thus we have

lim sup(y,(z)/^0 < A. « = 1 «• (18)

Using (4) and (9), it follows that there exists z\p) » 1 such that

d,Dl,%(k, - l)^'-2 < cD^kiZ1"-1 + e, fl^T"z"'*, z > z\A, i = 1, . . . , n. (19)
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Since y,(z) -*• +00, y\(z) -*• +00 as z -> +00, there exists z2
p> > z\p\ such that

y,.(z2
rt) > D\>\z\»)k>, yU") > D l ' W . ' ' ) * - ' , i = 1 n. (20)

Let y,(z) = D^(z - z[p) + zj'*)*' and »,(z) = D^k^z - z2
p) + z\p))k'-\ i=\ n. Using

(16), (19) and (20), it follows by the comparison principle that (see [3])

y,(z) > y,(z) > D\"\z - z(
2
p) + z\p)f, for z > z[p\ i = 1, . . . ,»; p = 1, 2 , . . . .

Since limr^+oo(z - z(
2
p) + z\p)f'/zk' = 1, there exists z\p) > z2

p) such that

ki > (D\P) - -\D \ p \ z - z[p) + z\p))ki > (D\P) - - \ z k > f o r z > z ^ , i = 1 , . . . , « ; p = 1, 2 ,

Therefore

y,(z) > (D\p) --\zkl for z > z^ , i = 1,. . . ,«; p = 1, 2 , . . . .

Let p —*• +00, using D\p) -> £),, we have limz_+O0 inf(y,(z)/z*0 > D,, i = 1 , . . . , n. This
fact, combined with (18), yields that Theorem 4 holds. •

Proof of Theorem 5. Let (^(z) ))n(z)) be a solution of (2) and c > 0. By
Theorem 2 we have that all principal minors of A are positive. Let c, = c/d,,
wfa) = y^e'0", then we have

=je~CiI fY[y?Xs)ds > 0, z > 0, i = 1,..., «.
" i JO y = l

w|(z) =je~CiI fY[y?Xs)ds > 0, z > 0, i = 1,..., «. (21)

"Cl1 ~ e " c ' z ) ( 0 w ^ ( s ) ) e x p ( ? m " c
s ' ' = l'"""' ( 2 2 )

Denote T, = c, — J^,/wi;-Cy, by the assumption Ylj=i(mij/^j) < *M w e know that
> 0, 1 < i < n. Using (21) and (22) it follows that
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for some positive constant K. By Lemma 3 it follows that w,(z) is bounded in
[0, +oo), i = l , . . . , n . This fact, combined with w'^z) > 0, yields that the limit
Hm2_+oo w,(z) = w, exists and 0 < w, < +oo. Consequently, y,(z) w O(eC|Z) as z ->• +oo,
j = 1 n. The proof is completed. •
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