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An experimental study in a wind tunnel is presented to explore the wake of a floating
wind turbine subjected to harmonic side-to-side and fore–aft motions under laminar
inflow conditions. The wake recovery is analysed as a function of the frequency of
motion fp, expressed by the rotor-based Strouhal number, St = fpD/U∞ (D is the rotor
diameter, U∞ the inflow wind speed). Our findings indicate that both directions of motion
accelerate the transition to the far-wake compared with the fixed turbine. The experimental
outcomes confirm the computational fluid dynamics results of Li et al. (J. Fluid Mech.,
vol. 934, 2022, p. A29) showing that sideways motions lead to faster wake recovery,
especially for St ∈ [0.2, 0.6]. Additionally, we find that fore–aft motions also lead to better
recovery for St ∈ [0.3, 0.9]. The recovery is closely linked to nonlinear spatiotemporal
dynamics found in the shear layer region of the wake. For both directions of motion
and St ∈ [0.2, 0.55], the noisy wake dynamics lock in to the frequency of the motion.
In this synchronised-like state, sideways motions result in large coherent structures of
meandering, and fore–aft movements induce coherent pulsing of the wake. For fore–aft
motion and St ∈ [0.55, 0.9], the wake shows a more complex quasiperiodic dynamic,
namely, a self-generated meandering mode emerges, which interacts nonlinearly with
the excitation frequency St, as evidenced by the occurrence of mixing components. The
coherent structures grow nonlinearly, enhance wake mixing and accelerate the transition
to the far-wake, which, once reached, exhibits universal behaviour.
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1. Introduction

The worldwide installed capacity of offshore wind has been significantly growing since
2010. Most current offshore wind turbines are mounted on fixed structures and clustered
in wind farms installed in water depths less than 60 m (Díaz & Soares 2020). For water
depths greater than 60 m, a floating wind turbine is the preferred solution (Hannon et al.
2019). Compared with a fixed turbine, a floating offshore wind turbine (FOWT) is free
to move in its six degrees-of-freedom (DoF). The action of wind, waves and current
is responsible for complex platform motions (Jonkman & Matha 2011). These motions
depend, among others, on platform types, environmental conditions, moorings and water
depth (Butterfield et al. 2007; Goupee et al. 2014). The effect of the motions on rotor
aerodynamics is an active research topic that is becoming highly relevant. As turbines are
usually installed in wind farm configurations, wake development is of particular interest,
for example, for wind farm control strategies, power optimisations, etc.

Typical distances between offshore turbines within a farm in the main direction of the
wind are in the range of 6 to 12D (with D the rotor diameter) (Hou et al. 2019). This
implies that downstream turbines operate in the wake of upstream turbines. The wake
of an offshore turbine is a high-turbulent and low-energy flow region compared with the
undisturbed flow. There is thus much interest in understanding the evolution of the wake
of a wind turbine and especially the features of the far-wake (typically for x/D ≥ 6). Over
the past decades, several numerical studies, theoretical models, field measurements and
wind tunnel experiments have been carried out, leading to significant progress in the rich
subject of fixed wind turbine wakes, see for example Ainslie (1988), Vermeer, Sørensen
& Crespo (2003), Chamorro & Porté-Agel (2009), Porté-Agel, Bastankhah & Shamsoddin
(2020) and Neunaber et al. (2020).

(i) Wake regions of a fixed wind turbine. As the study of the wake of a FOWT assumes
a good knowledge of the wake of a fixed wind turbine, we start with a discussion on
this subject. The near-wake is located in the vicinity of the turbine (usually x < 4D),
characterised by the presence of hub-, root- and tip-vortices (Vermeer et al. 2003;
Neunaber et al. 2020). The flow in this region displays homogenous decaying turbulence.
The coherent structures (tip-vortices, etc.) are carried downstream by the flow until
instabilities occur, eventually leading to their destruction (Widnall 1972; Felli, Camussi
& Di Felice 2011; Lignarolo et al. 2015). Among these, mutual inductance is of great
importance, particularly for low-turbulence inflows; as they move downstream, helical
vortices are affected by neighbouring vortices and interact with each other until they break
up. For flows with high turbulence, mutual inductance may not be the main factor in the
breakup of helical vortices (Hodgkin, Deskos & Laizet 2023). In the near-wake, it was
shown by Lignarolo et al. (2015) that the tip-vortices shield the wake from the outer
flow and prevent the exchange of momentum that provides re-energisation to the wake,
as predicted by Medici (2005). The recovery process thus starts when the tip vortices
become unstable, which marks the beginning of the transition region. From there, the
shear layer (highly turbulent region), which separates the wake from the undisturbed
flow, grows radially. Momentum is transported from the outer region to the wake, and
turbulence builds up. Farther downstream, the shear layers merge at the centre. Here, the
amount of turbulence in the wake is at its maximum and then gradually decreases as it
moves downstream (similar to the behaviour of the wake of a fractal grid as shown by
Hurst & Vassilicos (2007)). Around this position, the wind speed along the centre line
begins to recover, indicating the start of the far-wake, which features a characteristic
Gaussian wind deficit profile. The far-wake can be separated into a decay region and
a fully developed far-wake when turbulence has reached a homogeneous-isotropic state
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(Pope 2000). The size of each region, the intensity of the recovery and the turbulence of
the wake depend greatly on the type of inflow and the operating conditions of the turbine
(Wu & Porté-Agel 2012; Iungo, Wu & Porté-Agel 2013; Neunaber et al. 2017; Gambuzza
& Ganapathisubramani 2023). It is clear that the emergence of the far-wake is directly
linked to the phenomena that happen closer to the rotor; however, in the far-wake, the
detailed features of its turbulence appear to be universal (Ali et al. 2019).

(ii) Wake meandering of a fixed wind turbine. An important property of the wake of
a wind turbine is its tendency to oscillate side-to-side and up and down, so-called wake
meandering (Medici & Alfredsson 2006; Larsen et al. 2008; Howard et al. 2015). This
phenomenon originates from two different causes. On the one hand, the turbulent flow of
the atmosphere contains large eddies whose scale is larger than the wake width. These
large eddies pass through the rotor and are responsible for the wake’s low frequency and
large amplitude oscillation (Larsen et al. 2008; Espana et al. 2011; Heisel, Hong & Guala
2018).

On the other hand, wake instabilities can cause meandering in the far-wake, where the
wake tends to oscillate within a range of frequencies, expressed in terms of a meandering
Strouhal number, Stm = fmD/U∞ ∈ [0.1, 0.5]. This phenomenon is more likely to occur
when the inflow’s turbulence intensity is low, i.e. TI∞ ≤ 0.05. Observations from various
studies, such as Okulov et al. (2014), Foti, Yang & Sotiropoulos (2018), Heisel et al.
(2018) and Gupta & Wan (2019), have revealed a broad peak in the spectrum around Stm,
indicating that wake oscillations differ from classical vortex shedding, which typically
exhibits a sharp peak at the shedding frequency. It is, therefore, inappropriate to define a
particular meandering frequency but rather a range of frequencies. After Gupta & Wan
(2019), wake meandering occurs in the far wake due to the ‘amplification of upstream
disturbances by shear flow instabilities’, a phenomenon also observed by Gambuzza
& Ganapathisubramani (2023). Periodic excitation in the range of Stm, where wake
meandering naturally occurs, can lead to an early onset of meandering (Mao & Sørensen
2018; Gupta & Wan 2019; Hodgson, Madsen & Andersen 2023). Following this idea, some
control strategies, such as the helix approach (a blade pitching control method), trigger
instabilities that lead to the formation of large coherent structures in the wake (Frederik
et al. 2020; Korb, Asmuth & Ivanell 2023). This strategy enables a faster transition to
far-wake and a more efficient wake mixing, i.e. a faster wake recovery.

(iii) Wake of a floating wind turbine. The latest topic of floating wind turbines raises
fundamental questions about the impact of rotor movements on the development of the
wake. Another aspect not further discussed here is the impact on rotor aerodynamics.
Firstly, the motions of a floating turbine are responsible for unsteady aerodynamic
phenomena. Unsteadinesses are observed for high-frequency motions, characterised by the
dimensionless Strouhal number, St = fpD/U∞ (where fp is the frequency of motion, D is
the rotor diameter and U∞ is the inflow speed), typically for St > 0.5 (Sebastian & Lackner
2013; Farrugia, Sant & Micallef 2014; Sant et al. 2015; Bayati et al. 2017a; Fontanella et al.
2021). Secondly, the wake generated by a floating wind turbine is impacted by the different
motions, which was shown through various wind tunnel studies with model turbines and
porous disks (Rockel et al. 2014, 2017; Bayati et al. 2017b; Fu et al. 2019; Kopperstad,
Kumar & Shoele 2020; Schliffke, Aubrun & Conan 2020; Belvasi et al. 2022; Fontanella,
Zasso & Belloli 2022; Meng et al. 2022).

Bayati et al. (2017b) discussed the relevance of the so-called ‘wake reduced velocity’,
equivalent to a Strouhal number, for characterising unsteady aerodynamic conditions. Fu
et al. (2019) measured with particle image velocimetry the wake of a pitching and rolling
model turbine with relatively high amplitudes (up to 20◦) and low frequencies (St < 0.03).
They observed a higher recovery for the floating turbine and enhanced turbulent kinetic
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energy, which Rockel et al. (2017) also observed. Schliffke et al. (2020) carried out a more
systematic study in which they measured at 4.6D downstream the wake of a surging porous
disc with St ∈ [0, 0.24] under realistic turbulent conditions. No impact of motions on the
recovery of the wake was measured. However, a signature of the motions in the spectra of
the wake was observed for all frequencies. Kopperstad et al. (2020) investigated in a wind
tunnel and with computational fluid dynamics (CFD) the wake of a spar and barge floating
turbine. They showed that a floating turbine’s wake recovers faster than a fixed turbine in
a laminar wind. Also, the recovery depends on the wave excitation.

Numerical simulations using free-wake vortex code and CFD were carried out to study
the different wake regions of a floating turbine (Farrugia, Sant & Micallef 2016; Lee & Lee
2019; Chen, Liang & Li 2022; Kleine et al. 2022; Li, Dong & Yang 2022; Ramos-García
et al. 2022). Farrugia et al. (2016) outlined the possibility for surge motion ‘to induce the
onset of complex interactions between adjacent tip vortices’. These instabilities induced
by surge motion on the complex helical vortex system could explain the faster recovery
of the wake of a surging turbine for a range of St ∈ [0.4, 1.7], studied by Ramos-García
et al. (2022). Based on the stability theory of vortices, Kleine et al. (2022) showed
that the motion of a floating turbine ‘excites vortex instabilities modes’, which were
predicted by Farrugia et al. (2016). They showed that disturbances at frequencies of 0.5 and
1.5 times the rotor’s 1P frequency produce the most significant disruptions. Chen et al.
(2022) carried out CFD simulations of the wake of a surging turbine with amplitude
Ap ∈ [0.03D, 0.1D], and frequency St ∈ [0.41, 1.64]. They showed the positive impact of
motions on the recovery of the wake of a surging turbine, where up to 10 % more recovery
compared with the fixed turbine was found. Last but not least, Li et al. (2022) used CFD to
study the onset of wake meandering arising from the sideways motion of a floating turbine.
They demonstrated that sway motion for St ∈ [0.2, 0.6] helps the wake to recover up to
25 % more compared with the fixed case. They showed that side-to-side turbine motions
lead to large wake meandering, even with small amplitude of motions (Ap/D ≈ 0.01). This
important result is particularly pronounced for low turbulent conditions (TI∞ < 0.05).
In a wind farm configuration, wake oscillations can increase the movement of downstream
floating wind turbines (Wise & Bachynski 2020).

The discussion mentioned above shows that the current understanding of the wake of
floating wind turbines is based on many specific investigations. It remains unclear which
frequency range and type of motion influence the wake generated by a FOWT. Moreover,
the effects on wake dynamics are not yet sufficiently understood. The lack of systematic
studies in this area limits the ability to draw general conclusions. The papers published so
far have focused mainly on cases of high turbulence (TI∞ > 0.08) where the effect of the
motions is mixed with the effect of the turbulence, which makes the problem particularly
complex. In Pimenta et al. (2021), we reported on pp. 4–5 on wind tunnel experiments that
we conducted in 2021 on cases similar to Li et al. (2022). In this paper, we extended our
experiments to side-to-side and fore–aft harmonic motions (see figure 1 for the different
DoFs) to obtain a more global understanding of the wake development of a FOWT.
A particular focus was given to the influence of the frequency of movements. In order
to examine solely the impact of the motion on the wake and to exclude any impact of
inflow turbulence, the turbine was operated in laminar wind.

This simplification to laminar inflow conditions was made in order to reduce the
complex environment of a FOWT, necessary to gain a more fundamental understanding
of the wake dynamics of this new type of wind turbine. Our work focuses on analysing
the impact of a periodic motion on wake recovery and studying underlying mechanisms
affecting the recovery. We discovered rich nonlinear dynamics in the wake, which are
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Figure 1. (a) Fore–aft (surge and pitch) and (b) side-to-side motions (sway and roll) of a FOWT.

driven by the motions of the platform. We believe these results are of interest not only in
the context of wind energy but also for fluid mechanics of turbulent wakes in general, with
a new insight on the transition to far-wake in high Re flow (Re > 105) periodically excited.

Section 2 details the experimental set-up and the cases investigated. Section 3 presents
the averaged results, i.e. the profiles of wake deficit and turbulence intensity. Here, we
show the dependency on the DoF on the wake. We describe the effects of side-to-side
motions with St ∈ [0, 0.58] and fore–aft motions with St ∈ [0, 0.97] on wake recovery.
We identify two regions in the wake corresponding roughly to the transition region and
the far-wake (see (i) above). Section 4 first examines the dynamics of the far-wake (for
x ≥ 6D) and discusses the results regarding nonlinear dynamics. Section 5 then focuses
on the development of wake dynamics in the shear layer for x ≥ 3D (i.e. in the transition
region). Section 6 finally brings together the recovery results with the nonlinear dynamics.
We finish by discussing the transition to far-wake in a broader context.

2. Experiments

2.1. Set-up
The experimental set-up used to perform the investigations is illustrated in figure 2. The
experiments were done in the 3 m × 3 m × 30 m test section of the large wind tunnel of
the University of Oldenburg (Kröger et al. 2018). The set-up consists of the Model Wind
Turbine Oldenburg 0.6 (MoWiTO 0.6) with a diameter of 0.58 m mounted on a six-DoF
motorised platform, designed specifically for the MoWiTO 0.6 (Messmer et al. 2022).
With this system, the model turbine can be moved following predefined motion signals in
the six-DoF: the three translations – surge, sway and heave; and the three rotations – roll,
pitch and yaw. In this paper, we use the terminology ‘floating wind turbine’ to describe
our experimental set-up, despite the fact that we consider idealised conditions (harmonic
motion and laminar wind).

The model turbine was equipped with a strain gauge to measure the thrust, T , of the
ensemble (tower and rotor). For any case investigated, power produced, rotational speed
and thrust of the turbine were recorded. The movements of the platform were recorded to
verify the adequacy of the motions. The streamwise wind speed, U, was measured with an
array of 19 one-dimensional hot-wires of ∼1 mm length, resolving turbulent scale of this
size.

The probes were operated with multichannel constant temperature anemometer
(54N80-CTA) modules from Dantec Dynamics. Data were acquired with a sampling rate
of 6 kHz, gathering around 106 points for each measurement. The time of measurements,
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Figure 2. Scheme of the experimental set-up, the MoWiTO 0.6 mounted on a six-DoF platform installed in
the wind tunnel (a) side view and (b) front view. The figure is not to scale.

Tmeas, was sufficient to reach statistical convergence of any postprocessed data shown and
discussed in this paper. The hot-wire probes were calibrated twice daily, and temperature,
humidity and air pressure were recorded throughout the day to track any drift effects, which
turned out to be negligible. The inflow wind speed was measured with a Prandtl-tube
approximately 2 m in front of the model turbine.

The array was mounted on a moving motorised cart, which allowed us to measure
the wind speed at a downstream position, x, from 1.5D to 12D (cf. figure 2a). The
hot-wires were placed on a horizontal line at hub height (around 1 m above floor level)
and span lateral positions, y from −2.5R to 2.5R (R = D/2) with respect to the hub centre
(cf. figure 2b).

2.2. The MoWiTO 0.6
The MoWiTO 0.6 used for the experiments has a rotor diameter D of 0.58 m. The turbine
was developed at the University of Oldenburg (Schottler et al. 2016; Jüchter et al. 2022).
The properties of the turbine are depicted in table 1. The model turbine was used for several
measurement campaigns with a focus on wake flow; further details of the experimental
procedure and wake measurements can be found in Hulsman et al. (2020), Neunaber et al.
(2020) and Neunaber, Hölling & Obligado (2024).

For the experiments, we used wind speeds between 3 and 5 m s−1. We fixed the tip speed
ratio for all cases so that 〈TSR〉 = 6 ± 0.1. We operated the turbine at a constant blade
pitch angle, around the optimum, which gives 〈CT〉 = 0.86 ± 0.05 for U∞ = 3 m s−1 and
〈CT〉 = 0.81 ± 0.05 for U∞ = 5 m s−1. The thrust coefficient account for rotor and tower
aerodynamic loads (in a previous study by Neunaber et al. (2020), the load on the tower
and nacelle without the blades of the MoWiTO 0.6 was measured to be 17 % of the total
thrust coefficient). The power performance of the turbine depends on Re, we measured
〈Cp〉 = 0.21 ± 0.01 at U∞ = 3 m s−1 and 〈Cp〉 = 0.3 ± 0.01 at U∞ = 5 m s−1.

2.3. Non-dimensional parameters that drive the wake behaviour
Our experimental research involves numerous quantities. We briefly discuss the selection
of necessary parameters for a complete characterisation. Therefore, we use the basis
of the π-theorem. For a given DoF, the system investigated involves nine independent
parameters: platform motion frequency and amplitude; inflow wind speed; rotor diameter;
air viscosity; air density; turbine thrust and power; and rotational speed. These are noted
as fp, Ap, U∞, D, μ, ρ, T , P, ω. The π-theorem suggests that, a problem characterised
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Parameter Notation Value Unit

Rotor diameter D 0.58 m
Rotor radius R 0.29 m
Hub height Hhub 0.96 m
Tower length Tlength 0.45 m
Cut-in wind speed Uin 2.5 m s−1

Rated wind speed Urated 7.5 m s−1

Rated power Prated 25.4 W
Rotational speed ω 400–1600 rpm
Tip speed ration TSR 4–9 (−)

Table 1. The MoWiTO 0.6 characteristics.

Thrust coef. Power coef. Tip speed ratio Reduced amplitude Strouhal number Reynolds number
CT Cp TSR A∗ St Re

T
1/2ρπR2U2∞

P
1/2ρπR2U3∞

Rω

U∞
Ap

D
fpD
U∞

ρU∞D
μ

Table 2. Dimensionless parameters that drive the wake of a FOWT.

by m dimensional variables can always be reduced to a set of m − n dimensionless
parameters (π-groups), with n the fundamental units of measure (dimensions) as depicted
by Buckingham (1914). Therefore, this problem with nine variables and three dimensions
can be reduced to six dimensionless parameters. These are all defined in table 2, namely
the thrust coefficient, CT , power coefficient, CP, tip speed ratio, TSR, reduced amplitude,
A∗, Strouhal number, St, and Reynolds number, Re. Thus, in a laminar flow, the properties
of the wake of a FOWT, wakeFOWT , are determined by these six dimensionless numbers:
wakeFOWT = f (CT , CP, TSR, A∗, St, Re).

The dependency on CT of wake recovery and expansion of a wind turbine wake was
characterised extensively (Porté-Agel et al. 2020). The tip speed ratio also plays an
important role in the development of the wake of a FOWT (Farrugia et al. 2016). Both
the amplitude and frequency of motions can impact the wake of a moving turbine, as
demonstrated by Chen et al. (2022), Li et al. (2022) and Ramos-García et al. (2022).
As mentioned above, motion frequency has a greater influence on wake dynamics, even
at low amplitudes (Ap ∼ 0.01D). Based on these works and the set of parameters, we
concluded that it is worth focusing on the impact of different St values at a small amplitude
of motions.

2.4. Cases investigated
Floating offshore wind turbines operate in the atmospheric boundary layer, which exhibits
various turbulent conditions. Usually, the turbulence intensity in free flow, TI∞, is found
in [0.02, 0.15]. (Jacobsen & Godvik 2021; Angelou, Mann & Dubreuil-Boisclair 2023).
In our experiments, we used idealised conditions (laminar wind with TI∞ ≈ 0.003 and
one-DoF harmonic motions). We also carried out experiments with TI∞ = 0.03 and
observed similar results as the ones shown and discussed in this paper. Our study
investigates the following DoFs: surge; sway; roll; pitch (see figure 1). We examined these
DoFs independently, without combining them. We imposed the following motion signal
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on the platform, ξ , for a given DoF: ξ(t) = Ap sin(2πfpt) = A∗D sin(2π(StU∞/D)t). Here,
Ap denotes the amplitude of motion (in m or ◦), and fp represents the frequency of motion
(in Hz).

In order to investigate a relevant range of St, we looked at the typical movements of a
FOWT, which we briefly present below. The motions of a floating wind turbine are greatly
influenced by the type of foundation used (tension-leg platform, semisubmersible, barge
or spar). Three distinct ranges of frequencies are usually observed in the motion spectra of
a floating turbine.

(i) Wave frequency. A floating platform is subject to ocean waves, which cause motions
at frequencies around 0.1 Hz (wave period around 10 s). Although the wave-induced
motions are rather low in amplitude (A∗ ∼ 0.01), they are high in frequency. For
a 10 MW turbine at rated wind speed, this type of motion typically gives St ∼ 1.5
(Messmer et al. 2022).

(ii) Rotational natural frequency. When a floating turbine is displaced from its
equilibrium position (due to a gust or a series of waves), it goes back to equilibrium
as a damped harmonic oscillator at a frequency that depends on the DoF. For a spar
or a semisubmersible, the pitch and roll natural frequencies are typically around
0.035 Hz (Robertson et al. 2014). For a 10 MW turbine at rated wind speed, such
motions give St ∼ 0.5 and A∗ up to ∼ 0.04.

(iii) Translation natural frequency. As with rotational DoF, a floating turbine undergoes
translational movements at its natural frequencies. These can be large in amplitude
(A∗ up to ∼0.1) but at low frequency ( fp ∼ 0.01 Hz). A typical Strouhal number is
St ∼ 0.1 (Leimeister, Kolios & Collu 2018).

This discussion shows that, typically, the motions of floating turbines cover a range
of Strouhal numbers, St ∈ [0, 1.5]. While high-frequency movements are relatively low
in amplitude (A∗ ∼ 0.01), oscillations at lower frequencies can reach amplitudes up to
10 % of the rotor diameter. To test a wide range of St, we conducted experiments at
frequencies ranging from 0.3 to 5 Hz with low motion amplitudes. We covered St ∈
[0, 0.97] (corresponding to the maximum operability range of the set-up). Table 3 details
all the cases investigated in this paper.

To quantify the differences between the cases, we took as reference the fixed case
(St = 0). To make this study of our different cases comparable, it is essential to note that
the mean power and thrust of the moving turbine were the same as those of the fixed turbine
for a given wind speed. If this were not the case, comparing the wake flows between cases
would be less meaningful, as there would be differences in mean operating conditions.

It was also confirmed by examining the wake deficit in the very near-wake (x ≈ 1.5D),
which was the same for any case with the same Re, 〈CT〉, 〈CP〉 and 〈TSR〉. With this, we
concluded that the induction factor of the turbine was the same, which was also observed
by Fontanella et al. (2022). In particular, such a result is not evident for fore–aft DoF
as motions cause temporal variations in turbine power and thrust. We found that they do
not affect the mean turbine output values, at least for such low amplitudes. However, the
impact of the motions is directly related to their effects on the dynamics of the wake.

3. Results on average wake values

The scheme after which we present our results is briefly explained next. We consider four
DoFs, for which we compare the wakes. The analysis is first done at three downstream
positions (x ∈ [[6D, 8D, 10D]]) and then for x ≥ 3D. The downstream dependence of
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Nonlinear dynamics in the wake of a floating offshore wind turbine

Test DoF Amplitude A∗ Frequency Wind speed St CT Re
(−) (−) (mm) or (◦) (−) (Hz) (m s−1) (−) (−) (×105)

A.1 Fixed 0 0 0 5 0 0.81 2.3
A.2 Sway 4 mm 0.007 3.3 5 0.39 0.81 2.3
A.3 Roll 0.5◦ 0.007 3.3 5 0.39 0.81 2.3
A.4 Sway 38 mm 0.065 0.3 5 0.03 0.81 2.3
A.5 Roll 5◦ 0.065 0.3 5 0.03 0.81 2.3
B.1 Fixed 0 0 0 5 0 0.81 2.3
B.2 Surge 4 mm 0.007 3.3 5 0.39 0.81 2.3
B.3 Pitch 0.5◦ 0.007 3.3 5 0.39 0.81 2.3
B.4 Surge 38 mm 0.065 0.3 5 0.03 0.81 2.3
B.5 Pitch 5◦ 0.065 0.3 5 0.03 0.81 2.3
C.1 Fixed 0 0 0 5 0 0.81 2.3
C.2 Sway 4 mm 0.007 1, 2, 3.3 5 0.12, 0.23, 0.38 0.81 2.3

3.6, 4.2, 5 0.42, 0.49, 0.58
C.3 Fixed 0 0 0 3 0 0.86 1.4
C.4 Sway 4 mm 0.007 1, 1.5, 2 3 0.19, 0.29, 0.38 0.86 1.4

10 mm 0.017
D.1 Fixed 0 0 0 3 0 0.86 1.4
D.2 Surge 4 mm 0.007 1, 2, 2.7 3 0.19, 0.38, 0.52 0.86 1.4

3, 3.3, 3.6 0.58, 0.64, 0.7
4.2, 4.5, 5 0.81, 0.88, 0.97

D.2* Surge 4 mm 0.007 1, 1.5, 2 3 0.19, 0.29, 0.38 0.86 1.4
10 mm 0.017

D.2** Surge 4 mm 0.007 4.2, 4.5, 5 3.2 0.76, 0.81 0.86 1.4
3.4 0.71, 0.76
3.6 0.68, 0.81

D.3 Fixed 0 0 0 5 0 0.81 2.3
D.4 Surge 4 mm 0.007 1, 2, 3 5 0.12, 0.23, 0.35 0.81 2.3

3.33, 3.9, 4 0.38, 0.45, 0.46
4.2, 4.3, 4.6 0.49, 0.5, 0.53

4.8, 5 0.55, 0.58

Table 3. Motion cases investigated. For all cases, 〈TSR〉 = 6.0 ± 0.1. For rotational DoFs:
A∗ = Tlength × tan(Ap) (see table 1).

the streamwise wake velocity deficit and turbulence intensity profiles, as well as wake
recovery, is shown for different St. Appendix A describes the postprocessing methodology
used.

We begin this section by presenting, in § 3.1, the similarity between DoF that led us to
reduce the analysis to two generic DoFs, namely sway and surge. Second, the dependency
of the wake recovery on the St is shown in § 3.2 for sway. Third, we present corresponding
results for surge motions in § 3.3. Finally, we discuss in § 3.4 the results on wake recovery.

3.1. Equivalence between different DoF
In a previous study from Bayati et al. (2017a), the authors simplified the modelling of the
aerodynamics of a FOWT by linearising rotational motions into translation. We checked
whether this simplification also applies to the wake of a turbine with sway/roll motions or
surge/pitch motions, respectively.
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Figure 3. Wake deficit (a–c) and TI profiles (d–f ) at 6D, 8D and 10D for fixed and two roll and sway cases
with the same St and A∗, Re = 2.3 × 105. Tests A.1–A.5 in table 3.

To address this issue, we measured the wake of the floating turbine with small
(Ap = 0.5◦) and large (Ap = 5◦) amplitudes of platform roll around the zero value.
Additionally, we performed tests with the turbine swaying at an equivalent amplitude.
We carried out the same tests with pitch and surge DoFs (with no tilt angle). The results of
side-to-side motions (sway and roll) are presented in figure 3, while the fore–aft motions
are shown in Appendix B.

For the sway and roll cases, figure 3 demonstrates that the match of �U/U∞ and TI is
nearly perfect for the low amplitude (A∗ = 0.007) and the high amplitude (A∗ = 0.065).
This suggests that the approximation made in Bayati et al. (2017a) can also be applied
to the wake for these types of motions. We notice in figure 3(a–c) an asymmetry of the
wake; the deficit is greater at y = R than at y = −R, meaning the wake tends to deviate
to the left. We attribute this phenomenon to a slight misalignment of the turbine with the
incoming wind. For the lowest value of Re, we repeated the experiments by correcting the
misalignment; as seen later the wake is more symmetric (this slight asymmetry has no
significant influence on our results).

Our findings allowed us to simplify the study by focusing only on sway for side-to-side
motion and surge for fore–aft motion. We can extend the conclusions of these DoFs to
pitch and roll motions as long as the equivalent amplitude is below a specific value, which
we estimate to be around 2◦, i.e. A∗ ≈ 0.025.
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Figure 4. Wake deficit (a–c) and TI profiles (d–f ) at 6D, 8D and 10D for fixed and five sway cases with
varying St and constant A∗ = 0.007, Re = 2.3 × 105. Tests C.1 and C.2 in table 3.

3.2. Sway motion
From the results presented in figure 3, we already see that the wake is strongly influenced
by the frequency of the motion, i.e. by St. We observed that the wake velocity profile is
flatter with increasing frequency of motion. To investigate the St dependency, we measured
the wake for different platform motion frequencies at constant amplitude (A∗ = 0.007 and
St ∈ [0.12, 0.58]) similar to the CFD simulations done by Li et al. (2022).

Figure 4 shows the wake deficit and turbulence intensity profiles at 6D, 8D and 10D for
the fixed and five sway cases. Most interestingly, we find that for St = 0.42, the wake has
the lowest deficit (figure 4b,c; green stars). Similar results are observed for the profiles of
TI; see figure 4(e, f ). Another interesting property of wakes, discussed by Porté-Agel et al.
(2020), is the merging of the shear layers characterised by the vanishing of the two peaks
in the profile of TI. In figure 4(d–f ), it can be seen that the merging occurs for fixed and
St < 0.25 between 8D and 10D. In contrast, the merging is found already at 6D for higher
St.

To quantify the impact of motion frequency on the wind speed recovery, we computed
the average wind speed in the rotor area behind the turbine, so-called wake recovery
(cf. Appendix A). Figure 5 shows our results together with the CFD simulations of Li
et al. (2022). Although the two datasets are obtained for quite different Re, they match very
well. We found that for each downstream position, the amount of wind recovered gradually
increases to a maximum for St ≈ 0.4, after which it decreases. Sway motions of the turbine
positively impact the recovery for St ∈ [0.2, 0.6], and the impact is less significant outside
of this range and approaches that of the fixed case as St ↘ 0. Comparing the results
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Figure 5. Wake recovery expressed by the normalised average wind speed in the rotor area (defined in
Appendix A) at 6D (a), 8D (b) and 10D (c) for fixed and six sway cases with varying St and constant
A∗ = 0.007, Re = 2.3 × 105. Tests C.1 and C.2 in table 3. Also plotted with red squares: equivalent data from
CFD simulations by Li et al. (2022), for which A∗ = 0.01, Re = 9.6 × 107 and equivalent CT .
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Figure 6. Wake deficit (a–c) and TI profiles (d–f ) at 6D, 8D and 10D for fixed and five surge cases with
varying St, and A∗ = 0.007, Re = 1.4 × 105. Tests D.1 and D.2 in table 3.

between St = 0 (fixed) and St ≈ 0.4 (optimum with A∗ = 0.007), we found differences
up to 25 % in the recovery; this means that a wind turbine downstream could produce, in
this case (St ≈ 0.4), significantly more power.
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Figure 7. Wake recovery expressed by the normalised average wind speed in the rotor area (defined in
Appendix A) at 6D (a), 8D (b) and 10D (c) for fixed and surge cases with varying St, and A∗ = 0.007, for
two Re: 1.4 × 105, 2.3 × 105. Tests D.1–D.4 in table 3.

3.3. Surge motion
We now present the results with surge motion in a similar way to that of sway. Based
on previous experiments, we concluded the necessity of investigating higher values of St
than for sway. In fact, we observed a plateau in the recovery for St > 0.5, which differs
from the behaviour with sway motion (figure 5). Thus, we carried out experiments with
St ∈ [0, 0.97]. To achieve this range of St, we used an inflow wind speed, U∞, of 3 m s−1,
see table 3 (tests D.1 and D.2).

The �U/U∞ and TI profiles are shown in figure 6. Notably, the wake for St = 0.81
has the lowest deficit; see profiles marked by yellow pentagons in figure 6(b,c). Likewise,
the profile of TI is the lowest at 10D for St = 0.81 (figure 6f ). The merging of the shear
layers occurs at around 6D for St ∈ [0.5, 0.8] (figure 6d) and between 8D and 10D for other
cases.

We also did the same experiments with U∞ = 5 m s−1, with which we could investigate
St up to 0.58 (D.3 and D.4 in table 3). We thus have results for two Re, respectively,
Re = 1.4 × 105 and Re = 2.3 × 105. We calculated the wake recovery to quantify the
effect of different values of St on the averaged wind speed in the wake, which we display in
figure 7. For each position, the recovery increases for St ∈ [0, 0.6], stays almost constant
for St ∈ [0.6, 0.8] and then decreases. Both Re show comparable results.

3.4. Discussion and further results on wake recovery
The results show that, for both surge and sway motions, St significantly impacts wake
recovery. Sway provides the highest wake recovery in the range of St ∈ [0.2, 0.6] (figure 5).
For the surge case, the high recovery range extends to higher Strouhal values; St ∈
[0.3, 0.9]. Sway motion shows an optimal recovery well centred at Stopt ≈ 0.4, whereas,
for surge, the optimum is spread over a range of Stopt ∈ [0.5, 0.8]. Therefore, we conclude
that the dynamic behaviour of the wake is likely to differ depending on the DoF.

Concerning the turbulence intensity, the merging of the shear layers is a binding
property of the wake, which provides information about its development. We found that
both kinds of motion cause an early merging (x ≤ 6D) compared with fixed case (x > 8D);
see TI profiles in figures 4(d) and 6(d). Additionally, the maximum value of TI is higher for
the motion cases (up to 20 % more than the fixed case). This indicates that the movements
lead to increased turbulence in the wake. As detailed later in the article, this increase
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Figure 8. Evolution of recovery against downstream position for sway (a) and surge (b). Panel (a) shows data
from tests C.3 and C.4 in table 3 together with CFD data from Li et al. (2022) (St = 0, 0.3, 0.4; A∗ = 0.02).
Panel (b) displays cases D.1, D.2 and D.2* from table 3. In the CFD simulations, Re = 9.6 × 107; in the
experiments, Re = 1.4 × 105.

occurs through the formation of coherent structures that accelerate the transition between
near-wake to far-wake.

Figure 5 shows the recovery for two Re (Re ∼ 108 from CFD and Re ∼ 2 × 105 in
the experiments). The fact that these results match very well is strong evidence that the
independence of wake properties from Re for fixed turbines is also valid in our case with a
moving turbine. For surge, we have no corresponding CFD results, as for sway, we could
only show that the recovery is similar for Re = 1.4 × 105 and Re = 2.3 × 105, but due to
the similarity of both DoFs, we take as a strong hint that it holds for both motion types.
We conclude that the wake of a floating turbine does not depend sensitively on Re, at least
for Re > 105.

The results presented so far show the impact of the motion frequency at a constant
amplitude (A∗ = 0.007) on wake recovery and focus on the region where x ≥ 6D. Also of
great interest is the evolution of wake recovery between the near- and far-wake. Hereafter,
we present and discuss the evolution of recovery from x = 3D. For a few cases, we also
investigated larger amplitudes.

Figure 8 shows the evolution of recovery for sway (figure 8a) and surge (figure 8b),
respectively, from 3D to 10D with A∗ = 0.007. For some St, we also tested A∗ = 0.017.
We considered cases equivalent to those of the CFD simulations of Li et al. (2022) for
sway motion.

Firstly, for both DoFs, a strong recovery gradient is observed from x = 4D, whereas it
only takes place at x = 7D for the fixed case, supporting the idea that the recovery process
is enhanced by motion. Secondly, figure 8(a) shows that, for sway with St = 0.29, A∗ =
0.017, the wake achieves a better recovery than with St = 0.38, A∗ = 0.017 (for x ≥ 6D).
The trend is similar to that of the CFD results. Furthermore, for St = 0.29, A∗ = 0.007
the recovery is approximately 14 % lower than for St = 0.29, A∗ = 0.017, indicating the
significant impact of the amplitude of the movement on wake recovery.

984 A66-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.175


Nonlinear dynamics in the wake of a floating offshore wind turbine

2 4 6 8 10 12

x/D (–)

0.5

0.6

0.7

0.8

R
ec

o
v
er

y
 (

–
)

x∗0 (St = 0)

2 4 6 8 10 12

x/D + (x∗
0(St = 0) − x∗

0(St,A∗)) (–)

0.5

0.6

0.7

0.8

St = 0
St = 0.19
St = 0.29
St = 0.38
St = 0.48
St = 0.58

St = 0.68
St = 0.77
St = 0.81
St = 0.87
St = 0.97
St = 0.38
A∗ = 0.017 D

(b)(a)

Figure 9. Evolution of wake recovery against downstream position for surge motion with different St (a) and
virtual origin-based rescaling (b). Panel (a) shows the recovery evolution together with the position of x∗

0
marked by the dotted lines (downstream position where the recovery is R∗

0 = 0.58). Panel (b) displays the
same plot as for (a) but with a shift of the recovery curves based on x∗

0. Cases D.1, D.2 and D.2* with St ∈
[0, 0.97], A∗ = 0.007 and St = 0.38, A∗ = 0.017 from table 3 are displayed, with Re = 1.4 × 105.

For surge, i.e. in figure 8(b), we see that the evolution of the recovery for St = 0.81, A∗ =
0.007 and St = 0.38, A∗ = 0.017 is almost identical. We saw previously in figure 6 that for
A∗ = 0.007, the recovery is much higher with St = 0.81 compared with St = 0.38. These
results reveal that, as for sway, the amplitude of motions also plays an important role in the
recovery process. We investigate this point in more detail later in § 5, based on the energy
of the platform motion, which depends on St and A∗.

The recovery evolution for surge motion seems to behave similarly across the different
cases once the slope of the wake recovery increases sharply (around x ≈ 5D for St = 0.81
or x ≈ 8D for fixed in figure 8b). Depending on the frequency and amplitude of motion
(St and A∗), the position at which the wake begins to re-energise significantly is more or
less close to the rotor. Based on previous work from Gambuzza & Ganapathisubramani
(2023) and Neunaber et al. (2024), we define for fixed and surge cases a virtual origin, x∗

0
depending on St and A∗, which corresponds to the position at which the recovery gradient
increases significantly. In a first and trivial approach, we identify the downstream location
where the recovery is equal to a given value, R∗

0, which we take as 0.58 (here specific
to the conditions of our experiments). Figure 9(a) shows the recovery evolution for St ∈
[0, 0.97], A∗ = 0.007 and St = 0.38, A∗ = 0.017 with the position of x∗

0 (ranging from
∼5D to ∼8D). In figure 9(b), we display the recovery evolution renormalised, i.e. shifted
by (x∗

0(St = 0) − x∗
0(St, A∗)). Figure 9(a) shows that the location of x∗

0 corresponds to
the position at which the slope of the recovery curve increases steeply. This is more or
less the position at which the shear layers merge, i.e. when the far-wake kicks in. With
this rescaling, the recovery curves of figure 9(a) appear to merge together in figure 9(b).
This suggests that once the process of wake recovery has completely started, the wakes
behave very similarly for all the cases. For sway, the impact of St and A∗ on wake recovery
is similar to surge, although covering different optimum ranges. On the other hand, the
renormalisation of the recovery curves is not as straightforward as for surge and requires
more investigation.

To get further insights into the phenomena happening, in § 4 we examine the wake
dynamics of the floating turbine in the region beyond x∗

0, i.e. for x/D ≥ 6D (in the far-wake
for most of the cases). We then focus in § 5 on the area around x∗

0, i.e. the transition region
closer to the rotor, for x ≥ 3D, where the wake dynamics are developing.
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4. Far-wake dynamics

Next, we analyse the impact of the periodic excitation on wake dynamics for downstream
positions beyond x∗

0, i.e. in the far-wake. Section 4.1 first provides a short basis on energy
concepts needed to quantify the effects of platform motions on wake dynamics. Sections
4.2 and 4.3 focus then on the impact of the platform motions on the dynamics of the
developed wake (x ≥ 6D) for sway and surge, respectively. Sections 4.4 discusses the
results in terms of nonlinear dynamics. Sections 4.5 finally compares wake dynamics of
sway and surge.

4.1. Basic energy concepts
In this subsection, we provide a basic mathematical framework for the energy concepts
of driving motion from the platform as well as coherent structures in the wake. We start
with quantifying the specific energy (i.e. energy per unit mass) of the rotor movements,
which is at least partially brought to the wake. The movement velocity is ξ̇(t) = dξ(t)/dt =
2πApfp cos(2πfpt) with ξ(t) = Ap sin(2πfpt).

The specific energy, em, and specific power, pm, of the movement are given by

em(t) = ξ̇2(t) = 4π2A2
pf 2

p cos2(2πfpt),

pm(t) = dem(t)/dt = −16π3A2
pf 3

p sin(2πfpt) cos(2πfpt).

⎫⎬
⎭ (4.1)

The mean specific energy of the motions, εp is expressed as follows:

εp = 〈ξ̇2〉 = 2π2A2
pf 2

p . (4.2)

Expressed without dimension, this gives

εp

U2∞
= 2(πStA∗)2

. (4.3)

Equation (4.3) shows that the mean specific energy of the driving motions is
quadratically dependent on (StA∗). In § 3.4, it was seen that for a given frequency of motion
St, the wake recovery depends on A∗, showing that the energy of the driving motions is an
important parameter. In figure 9, we mainly compared surge cases with the same amplitude
A∗ = 0.007, but different St, so with varying εp, which cannot be omitted otherwise the
comparison of different St is misleading.

As shown later in the paper, the wake of the moving turbine contains coherent structures.
A turbulent wind speed signal containing a number N of coherent structures can be
decomposed as the summation of the mean speed, the contributions of the coherent
structures and the purely stochastic part (Reynolds & Hussain 1972; Baj & Buxton 2019).
The multiple decomposition of U(t) can be written as follows:

U(t) = 〈U〉 +
N∑

n=1

Ũ(φn(t)) + us(t). (4.4)

In (4.4), Ũ(φn(t)) is the nth periodic fluctuation which describes the coherent
structure’s velocity which oscillates with a period 1/fn such that Ũ(φn(t)) = anf (t + 1/fn).
The complex wake flow of a floating wind turbine might contain multiple coherent
structures. Thus, we consider n ∈ [[1, N]]. The power spectrum of u′ = U(t) − 〈U〉
984 A66-16
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(noted Φx) contains the specific energy of each coherent structure, e( fn) as well as of
the stochastic fluctuations, es. We express 〈u′2〉 as

〈u′2〉 =
∫ fK

0
Φx( f ) df

=
N∑

n=1

∫ fn+�f

fn−�f
Φx( f ) df +

∫
f /∈⋃

n∈[[1,N]][ fn−�f ,fn+�f ]
Φx( f ) df

=
N∑

n=1

e( fn) + es = ẽ + es. (4.5)

In (4.5), fK is the highest frequency that is physically meaningful, i.e. that contains
energy from the flow (note here that we assume that turbulence is frozen (Taylor
hypothesis), and so whether we consider time scale or length scale, the outcomes are
the same). fK is the frequency associated with the smallest eddy in the flow, in the
dissipation region of the spectrum, called the Kolmogorov scale (Pope 2000). In (4.5),
e( fn) is calculated following the methodology described in Appendix A(e).

We next define an amplification factor, k, to quantify the energy contained in the
coherent structures that form in response to the motions with respect to the ‘specific energy
of the driving motions’, εp. We use as a basis the study of Fiedler & Mensing (1985), who
quantified the energy contained in coherent structures formed in a sinusoidally excited
shear layer for low Reynolds (Re < 103). Although the wake of a moving wind turbine is
quite different to that of a conventional shear layer, the two systems show some similarities
in the dynamics. We define k as the ratio of the sum of the specific energy of the coherent
structures, ẽ (defined in (4.5)) to the ‘specific energy of the driving motions’, εp (defined
in (4.3)) as

k =
∑N

n=1 e( fn)
εp

= ẽ
2(πStA∗U∞)2 (4.6)

In this study, we restrain N ≤ 4, which is sufficient to account for the most energetic
coherent structures. We use the term energy to refer to any specific energy and use the
letter e for this quantity. We identified in each spectrum the N most energetic peaks, for
which we calculate the amount of energy associated. For some cases, no periodic structures
are found (N = 0), and for some others, only f1 makes sense (so N = 1) and fits with the
formulation of (4.4)–(4.5).

4.2. Far-wake dynamics under sway motion
During a sway motion cycle, wakes are generated at various horizontal positions spanning
y ∈ [−Ap, +Ap]. The mixing and interaction of these ‘multiple’ wakes affect the mean
wake. For low frequencies, the wakes emitted at different horizontal positions superpose
linearly (as shown in Appendix B and also observed in Meng et al. (2022)). As in our case
we are interested in small amplitudes (A∗ ∼ 0.01) we assume that this linear superposition
holds if the profiles of �U/U∞ and TI coincide the fixed case. Clear deviations are
interpreted as a nonlinear response. As seen in figure 5, for St = 0.12, the wake profiles
match well the fixed case, but is not the cases for higher St.

To further investigate the wake generated by the swaying turbine, we computed the
power spectra, Φx (see Appendix A(d) for details) from the hot-wire measurements of the
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Figure 10. Power spectrum, Φx, of the wind speed fluctuations in the wake at 6D, 8D, 10D for fixed case (a,d)
and two sway cases – St = 0.12 (b,e) and St = 0.42 (c, f ) – at two locations: y/R = 0 (a–c) and y = 0.75R
(d–f ). Here A∗ = 0.007, Re = 2.3 × 105. Tests C.1 and C.2 in table 3.

local velocity time series. Figure 10 displays Φx computed at y = 0 (figure 10a–c) and
y = 0.75R (figure 10d–f ) for the following cases: fixed (figure 10a,d); St = 0.12
(figure 10b,e); St = 0.42 (figure 10c, f ) for x ∈ [[6D, 8D, 10D]].

For St = 0.42, the spectra along the centreline more or less collapse for fD/U∞ > 1, see
figure 10(c). In the inertia subrange ( fD/U∞ ∈ [1, ∼ 20]), Φx ∝ f −5/3, which shows that
turbulence in the wake centre is fully developed (Pope 2000; Neunaber et al. 2020). Thus,
the far-wake is already reached at x ≤ 6D for St = 0.42, which aligns with the merging of
the shear layers seen in figure 4(d).

All three spectra are unequal for St = 0 (figure 10a) and St = 0.12 (figure 10b), showing
that the fully developed region takes place at x > 8D.

At y = 0.75R, the spectra of the fixed turbine display a region of high turbulent
energy for fD/U∞ ∈ [0.1, 0.5], showing the presence of flow structures with characteristic
frequencies in this range (figure 10d). According to Foti et al. (2018), the far-wake of a
wind turbine experiences meandering at natural frequencies, typically in the range of fm ∈
[0.1, 0.5]U∞/D. Gupta & Wan (2019) explain that the inherently erratic wake tends to
amplify small perturbations, resulting in unstructured wake meanderings far downstream.
The broad peak at fmD/U∞ ≈ 0.3 is consistent with this explanation, suggesting that such
meanderings result from shear flow instabilities and differ from vortex shedding.

The spectra for St = 0.42 show a distinct peak at the frequency of movements for
all downstream positions as well the harmonic at 2St, see figure 10( f ). Meanwhile, for
St = 0.12 (figure 10e), a barely distinguishable peak at St is found. For the higher St,
around 60 % of the energy contained in the range of fD/U∞ ∈ [0.1, 0.5] is concentrated
in the peak at St and secondarily at 2St (see figure 11i). The peak at the motion frequency
is a clear signature of the motions in the wake, indicating that the far-wake contains a
coherent structure at a scale of St. This was likewise observed by Fu et al. (2019) and
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Figure 11. (a–d) Evolution of the two main (largest) frequencies in the spectra of (a) fixed case and (b–d) three
sway cases at y = 0.75R for x ≥ 6D. (e–h) Evolution of the total turbulent energy, contribution of the different
frequencies, energy in [0.1,0.5]D/U∞ for the four cases.

Li et al. (2022). In contrast, for St = 0.12, the energy content is broad and very similar to
that of the fixed case.

For St = 0.42, the wake flow locks on to the excitation frequency, somehow having
a synchronisation-like effect. For the lowest frequency, this does not appear. This
pseudo-lock-in phenomenon, as described in Gupta & Wan (2019), occurs when the wake
flow gets in a way synchronised with the forcing frequency imposed by the upstream
periodic disturbance and amplifies those perturbations (in our case, the movements of
the platform). Pseudo-lock-in depends on the frequency, St of the excitation as well as the
energy contained in the initial disturbances, εp (Fiedler & Mensing 1985; Karniadakis &
Triantafyllou 1989; Pikovsky, Rosenblum & Kurths 2002; Gupta & Wan 2019). A simple
representation for synchronisation in the space (St-εp) is the Arnold tongue, which we
do not represent here due to insufficient data. Based on the approach of Gupta & Wan
(2019), we define the following criterion of ‘synchronisation’: (i) the main frequency in
the spectrum corresponds to the excitation frequency (i.e. f1D/U∞ = St); (ii) the amount
of energy contained in this mode is much higher than the next most energetic mode in
[0.1, 0.5]D/U∞; (iii) independent of the periodic motion excitation and related to natural
meandering (noted Stm), such as

e(St)
e(St) + e(Stm)

> 0.95 =⇒ synchronisation. (4.7)

The intensity of the lock in can be measured by the amount of energy contained
in the peak at St. Figure 11(a–d) shows, for fixed and three sway cases, the evolution
of the two main frequencies in the spectrum at y = 0.75R for the three downstream
positions. Figure 11( e–i) display the amount of energy contained in the two main peaks
of figure 11(a–d). We note that for St = 0 (figure 11a,e) and St = 0.12 (figure 11b, f ), the
most energetic peak (shown in blue) has low energy and for St = 0.12 this peak appears at
a frequency different than St. In contrast, for higher values of St, the clear peak at St found
in figure 10( f ) contains a large amount of the total turbulent energy, 〈u′2〉/U2∞ (up to
20 %). With respect to the formulation of (4.4), only a coherent structure at St is found for
sway DoF (and weakly at 2St). Other frequencies are not related to any specific structure
in the flow; thus, mainly, f1 makes sense. Based on the criterion (4.7), we conclude that
with A∗ = 0.007, synchronisation happens for St ∈ [∼ 0.2, ∼ 0.5] (in Appendix C, we
show some wind speed time series in the wake for synchronised and non-synchronised
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Figure 12. Instantaneous wind field in the wake at 6D, 8D, 10D for fixed case (a,d,g) and two sway cases –
St = 0.12 (b,e,h) and St = 0.42 (c, f,i). Here A∗ = 0.007, Re = 2.3 × 105. Tests C.1 and C.2 in table 3. For the
fixed case, time is multiplied by fm = 0.3 × U∞/D. For moving cases, time is multiplied by fp.

cases). Figure 11(h) highlights the spatial dependence of synchronisation. The greatest
amount of energy in the peak at St is observed at x = 6D. We can, however, expect the
synchronisation to be stronger closer to the rotor and to depend on A∗. This is investigated
later on in § 5.1.

After this energy analysis, the signals from the array of hot-wires, with 19 probes aligned
horizontally (see figure 2b), are used to visualise the instantaneous wake flow of the
turbine (see Appendix A( f ) for more details on the methodology). Figure 12 shows the
time evolution of U(x, y, t) for the fixed case (figure 12a,d,g), St = 0.12 (figure 12b,e,h)
and St = 0.42 (figure 12c, f,i) at the three downstream positions. For the fixed case, time
(x-axis) is multiplied by StmU∞/D ≈ 0.3U∞/D. In the case of the moving turbine, time
is multiplied by the frequency of motion of the platform.

For the above-mentioned case of the highest lock in response (St = 0.42 at x = 6D),
we see correspondingly a clear, coherent meandering pattern at the imposed frequency,
fp (figure 12c). As we move downstream, the amplitude of meandering increases and the
structures become fuzzier.

For fixed and St = 0.12, the meandering structures become more prominent for larger
distances but are disordered, especially for St = 0.12, the frequency of the motion is not
visible in the wake movements, in accordance with figure 10(e).

Overall, the clearest ordered meandering structures are obtained for St = 0.42. Close
to the rotor (x = 6D), they are very coherent. The coherent structures have approximately
the lateral size of the rotor diameter, ∼D, while the exciting amplitude Ap of the motions
is much smaller. This reveals a large amplification of the disturbances (quantified later in
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Figure 13. Cross-correlation between U(x, −1/2R, t) and U(x, 1/2R, t + τ), noted (U−1/2R 
 U1/2R)(τ ), for
fixed and sway cases with varying St at 6D, 8D, 10D (a–c). Plot of (U−1/2R 
 U1/2R)(τ ≈ 0) versus St (d–f ).
Here A∗ = 0.007, Re = 2.3 × 105. Tests C.1 and C.2 in table 3. Panel (g) illustrates the cross-correlation for
τ = 0.

§ 5.1). This is a remarkable difference from the other cases, which have a tendency to build
up way less clear meandering structures only farther downstream.

Coming back to the profiles of wake deficit, we found that the wake expansion is
the largest for St = 0.42 (figure 4b,c), which coincides with the biggest meandering
amplitudes of the wake field (figure 12c, f,i). In figure 5, we define the wake recovery over
a range of y ∈∼ [−R, R], which corresponds to the energy available for a virtual turbine
operating in this wake. If a larger range is considered, the recovery is less significant
but still higher. From our time-resolved measurements, we find that, compared with the
fixed case, the platform’s oscillating motions increase the wake’s lateral motions, which
distributes the energy more uniformly within y ∈ [−2.5R, 2.5R].

The spectra in figure 10 only indicate the presence of some coherent structures in
the wake of the swaying wind turbine, but not their type. On the other hand, the
instantaneous wake flow fields in figure 12 indicate that these are coherent meandering
structures. To further quantify the periodic meandering at a given frequency, we calculated
the cross-correlation function (depicted in Appendix A(g)) between U(x, −1/2R, t) and
U(x, 1/2R, t + τ) for τ varying from 0 to 3/fp. Figure 13 shows this quantity computed
at 6D (figure 13a), 8D (figure 13b) and 10D (figure 13c) for both fixed and a few swaying
cases. We plot (U−1/2R 
 U1/2R)(τ ) versus τ × fp, except for the fixed case where we set
τ × fp = τ . In figure 13(a), it can be seen that for St ∈ [0.2, 0.5], (U−1/2R 
 U1/2R)(τ ) is a
harmonic function with a period equal to the platform’s oscillation period, 1/fp, consistent
with the pseudo-lock-in phenomenon. The function attains its minimum value (negative
value) at τ ≈ 0. For x = 6D and St = 0.42 (figure 13a), the minimum value of (U−1/2R 


U1/2R)(τ ≈ 0) is approximately −0.3, which indicates that the signals U(−1/2R, t) and
U(1/2R, t) are anticorrelated. This anticorrelation quantifies the side-to-side motion of the
wake at a specific frequency. When the wake meanders to the left, U(1/2R, t) decreases
and U(−1/2R, t) increases and vice versa (for illustration, see figure 13g). Consistently,
the correlation is maximal at τ ≈ 1/2fp.
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Figure 14. Power spectrum, Φx, of the wind speed fluctuations in the wake at 6D, 8D, 10D for fixed case (a,d)
and two surge cases – St = 0.38 (b,e) and St = 0.81 (c, f ) – at two locations: y/R = 0 (a–c) and y = 0.75R
(d–f ). Here A∗ = 0.007, Re = 1.4 × 105. Tests D.1 and D.2 in table 3.

In figure 13(d–f ), (U−1/2R 
 U1/2R)(τ ≈ 0) is plotted versus St for the three downstream
positions. In figure 13(d), the anticorrelation is significant in the range of St ∈ [0.2, 0.5]
and close to zero for other values, confirming the range of motion frequencies that initiates
large coherent wake meandering.

4.3. Far-wake dynamics under surge motion
Unlike sway motions, surge motions induce variations of CT that affect the dynamics of the
overall wake (Fontanella et al. 2021). We can write CT(t) = 〈CT〉 + �CT sin(2πfpt + φ),
with �CT the amplitude of thrust oscillation and φ the phase shift with the signal of
motion. In our case, following quasisteady theory, the highest value of thrust coefficient
variation is �Cmax

T ≈ 0.07 for fp = 5 Hz, Ap = 0.004 m, U∞ = 3 m s−1. Besides the
CT variations, the wake is generated behind the turbine at various x locations spanning
[−Ap, +Ap] during one cycle of motion.

As with sway, when St < 0.1, the wake of the surging turbine is similar to that of the
fixed turbine, even at high amplitude (see Appendix B), which is consistent with Schliffke
et al. (2020), Meng et al. (2022) and Belvasi et al. (2022). When the frequency is higher,
St ≥ 0.2, the interactions of the wakes emitted at different x positions and with CT(t)
become more complex.

To understand the impact of surge motions on the dynamics of the wake we carried out
a similar analysis to that made for sway (§ 4.2). Figure 14 shows the power spectra of fixed
(figure 14a,d), surge with St = 0.38 (figure 14b,e) and surge with St = 0.81 (figure 14c, f )
for x = 6D, 8D, 10D at y = 0 (figure 14a–c) and y = 0.75R (figure 14d–f ).

The spectra of St = 0.81 at y = 0 all collapsed to one spectrum for fD/U∞ > 1.0,
and Φx ∝ f −5/3 (for fD/U∞ ∈ [1, ∼ 20]) which confirms that the far-wake is reached for
x ≤ 6D. Whereas for the lowest St and the fixed case, the far-wake is found for larger
distances, x > 6D. This behaviour is very similar to that observed for the swaying turbine.
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Figure 15. Instantaneous wind field in the wake at x = 6D for surge, St = 0.38, A∗ = 0.017 (a,b); and
St = 0.81, A∗ = 0.007, c,d). Tests D.2 and D.2∗ in table 3 (Re = 1.4 × 105). For St = 0.38, time is multiplied
by fp and for St = 0.81 is multiplied by f ∗ ≈ 0.31U∞/D. Panels (b,d) are zoom-in of the region y ∈
[−1.6R, 1.6R], t∗ ∈ [55, 62].

Here Φx at y = 0.75R (figure 14e, f ) exhibit a pronounced peak at the motion frequency,
St, for both surge cases, in line with results from Schliffke et al. (2020) and Belvasi et al.
(2022). As with sway, this indicates that the wake of the surging turbine contains coherent
flow structures with a characteristic frequency of fp. The peak is for both St maximum at
x = 6D and then decreases.

When looking at the spectra of the fixed turbine at y = 0.75R, the frequency range with
the largest amount of energy is similar (0.1 < fD/U∞ < 0.5) to that of the other fixed
case in figure 10(d). The maximum energy is located at fm ≈ 0.3U∞/D, which is close to
that of figure 10(d). These two cases have a Re from 2.3 × 105 in figure 10 to 1.4 × 105 in
figure 14.

Looking at the case with St = 0.38, it is interesting to note that all the frequency
components of the fixed case are dominated by the narrow peak corresponding to the
excitation frequency, i.e. at St = 0.38. This is somehow similar to the sway case (see
figure 10f ). For St = 0.81, compared with the sway case, a new dynamical behaviour
is observed; we find two frequencies in the spectra with apparent mixing components
(see figure 14f ). One peak is at the excitation frequency, i.e. St = 0.81. The other
peak at ∼0.31U∞/D seems to be due to a self-generated mode, f ∗ of the wake (in
[0.1, 0.5]U∞/D). Most interestingly, the further smaller peaks are related to linear
combinations of the two frequencies, i.e. with aSt + b( f ∗D/U∞). One small peak is
around (a, b) = (1, −1/2) and another one at (a, b) = (1, −1). This proves nonlinear
mode coupling, which is discussed later in § 4.4. For other values of St ∈ [0.6, 0.9], we
also observe a second large peak at a frequency, f ∗ in [0.1, 0.5]U∞/D like the one at
0.31U∞/D for St = 0.81. We emphasise here that the value of f ∗ does not appear to be
universal.

As with sway, we are interested in the spatiotemporal structure of these oscillating
modes. We show in figure 15 the instantaneous wake flows field for surge with
St = 0.38, A∗ = 0.017 (figure 15a,b), and St = 0.81, A∗ = 0.007 (figure 15c,d) at x = 6D.
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Figure 16. Cross-correlation between U(x, −1/2R, t) and U(x, 1/2R, t + τ), noted (U−1/2R 
 U1/2R)(τ ), for
fixed case and surge cases with varying St at 6D, 8D, 10D (a–c). Plot of (U−1/2R 
 U1/2R)(τ ≈ 0) versus St
(d–f ). A∗ = 0.007, Re = 1.4 × 105 and Re = 2.3 × 105. Tests D.1–D.4 in table 3. Panel (g) depicts the wake
of the fixed turbine, panel (h) shows a typical pulsating motion of the wake and panel (i) displays a typical
coherent meandering pattern.

For the lowest St, we show the case with the largest amplitude because it features the most
distinct structures.

For St = 0.38 (figure 15a,b), the wake exhibits a clear pulsating pattern at the platform
frequency, fp. This coherent structure is directly linked to the peak at St in figure 14(e).
The wind speeds at y = ±R are in phase, and the wake motions act like a pump, pumping
the outer fluid into the inner wake (see the alternation of high and low speeds in the wake
in figure 15b). As with sway, the coherent structures are of the order of the rotor diameter,
showing the large amplification of the turbine’s motions.

The flow dynamics for St = 0.81 are quite different, as the wake at 6D (figure 15c,b)
reveals a coherent meandering structure with a frequency of f ∗ ≈ 0.31U∞/D, fully
consistent with the spectrum of this case (figure 14f ). The pulsating mode found for the
lowest St is almost not observed for the highest St, and the wake of the surging turbine
with St = 0.81 unexpectedly closely resembles that of the swaying turbine (figure 12c).
However, compared with sway, the coherent meandering mode of surge seems less
structured, which is discussed further in § 4.5.

To investigate the pulsing and meandering modes of the wake in more detail, we
computed the cross-correlation between the wind speed signals U(x, −1/2R, t) and
U(x, 1/2R, t + τ) (cf. Appendix A(g)). We calculated (U−1/2R 
 U1/2R)(τ ) for surge cases
D.1–D.4 (see table 3). Figure 16 shows (U−1/2R 
 U1/2R)(τ ) against τ × fp. In figure 16(a),
we observe that the cross-correlation is almost zero everywhere for St < 0.2 and St ≈ 1.0,
indicating that the wake does not oscillate at a clear frequency.

For 0.2 < St < 0.55, (U−1/2R 
 U1/2R)(τ ) is a harmonic function with a period of 1/fp,
and the cross-correlation is maximal (positive) at τ ≈ 0. The velocity fluctuations between
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Nonlinear dynamics in the wake of a floating offshore wind turbine

y = −1/2R and y = 1/2R are in phase, which implies that the wake undergoes pulsating
movements and not meandering.

On the other hand, for St = 0.81, (U−1/2R 
 U1/2R)(τ ) is a harmonic function with a
period of ∼D/(0.31U∞), and the cross-correlation is minimum (negative) at τ ≈ 0. This
behaviour is associated with coherent meandering movements of the wake at a given
frequency, as discussed for sway in § 4.2 and is consistent with the instantaneous flow
fields shown in figure 15(c,d).

Next, we show that the analysis of the cross-correlation functions allows us to
distinguish the different ranges of St for which the dynamic behaviour of the wake changes.
In figure 16(d–f ), the St dependency of the cross-correlation at τ ≈ 0 is shown. The
fit of this cross-correlation allows us to identify three distinct regions, highlighted in
figure 16(d) and schematically visualised in figure 16(g–i). For St < 0.2 and St ≈ 1.0
(zone (g)), the motions do not significantly impact the wake’s dynamic, which is similar
to that of the fixed turbine (as illustrated in figure 16g). It shows disordered natural
meandering. For St ∈ [0.2, 0.55] (zone (h)), the positive correlation values indicate that
the wake undergoes pulsing movements (maximum correlation at St ≈ 0.4). A clear,
coherent structure at the excitation frequency St is found in the wake. For the range of
St in the zone (h), the criterion of (4.7) is satisfied, which shows that synchronisation is
occurring (as observed with sway in figure 13d). In Appendix C, we display some wind
speed time series in the wake for St ∈ [0, 0.4] illustrating instances of synchronisation
and non-synchronisation. Figure 16(h) shows a typical pulsating pattern in the wake. For
St > 0.55, (U−1/2R 
 U1/2R)(τ ≈ 0) decreases and becomes negative, indicating that the
wake undergoes coherent meandering, as shown in figure 16(i).

Farther downstream, figure 16(e, f ) indicate that pulsating wake movements, as well as
the periodic meandering ones, gradually vanish.

4.4. Discussion in terms of nonlinear dynamical system
The following discussion concentrates on the boundary region of the wake, which is
dominated by shear (y ∈ [0.5R, 1.3R]). First, we summarise the observations made in the
wake of the fixed turbine. For this case, we found a kind of broadband coloured noise in the
range of fD/U∞ ∈ [0.1, 0.5] (see figures 10d and 14d) with a maximum at approximately
0.3 which we denoted as meandering frequency, Stm (but it does not appear as a clear peak
in the spectra in figures 10d and 14d). As mentioned in the introduction, this broadband
noise is consistent with Okulov et al. (2014), Foti et al. (2018), Heisel et al. (2018) and
Gupta & Wan (2019). These dynamics are the result of the development of shear layer
instabilities.

Clear differences in wake dynamics are seen between sway and surge motions. Whereas
under sway motions, one clear coherent wake meandering mode is found (for St ∈
[0.2, 0.5]), we observe two modes for surge, namely a pulsing (for St ∈ [0.2, 0.55]) and
a meandering mode (for St ∈ [0.55, 0.9]) as seen in figure 16(d). The pulsing mode
vanishes, or gets damped out, for larger distances (x > 8D) as well as for higher St numbers
(St > 0.6). Adjacent to this pulsing mode region, a smeared-out coherent meandering
mode is observed for higher St (see figure 15d).

These modes can be interpreted in terms of general characteristics of nonlinear
dynamics (Peinke et al. 2012; Argyris et al. 2015). The first remarkable feature is the
synchronisation of the wake dynamics to the forcing frequency of the platform motion
(see figure 10f for sway and figure 14e for surge). Compared with the spectra of the fixed
case, we clearly see how the broadband frequency gets slaved to a narrow band peak
(Haken 2012). Such a synchronisation effect, or pseudo-lock-in, is a prominent feature
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Figure 17. Power spectrum, Φx, of the wind speed fluctuations at x = 6D, 8D, 10D for fixed case (a) and
eight surge cases (b–i) at y = 0.75R. Here A∗ = 0.007, Re = 1.4 to 2.3 × 105. Tests D.1–D.4 in table 3.

of nonlinear dynamics discussed in various contexts (Pikovsky et al. 2002). Here, the
results suggest that the synchronisation effect is caused by the driving surge or sway
motion, which has a similar effect to that of the coupling of pendulums (Acebrón et al.
2005). This is consistent with our observations that the amplitude of the meandering
and pulsing due to platform movements is approximately one to two orders of magnitude
larger (∼D) than the amplitude of the platform’s motion (∼0.01D), indicating a significant
amplification of the small disturbances that develop downstream (quantified later on in
§ 5). Another characteristic of synchronisation is that it is robust to changes in the driving
frequency within a finite range (Fiedler & Mensing 1985; Karniadakis & Triantafyllou
1989; Pikovsky et al. 2002; Gupta & Wan 2019). At the end of such a synchronisation
range, other nonlinear effects emerge. The tracking to the driving frequency is clearly
seen for our experiments (see figure 17c–f ). In summary, we observe a synchronisation of
the dynamics of the boundary region of the wake to the platform motion, together with
a high amplification of the amplitude. A strong reduction of the broadband structure of
the initial frequency (wake of the fixed turbine) and locking to the exciting frequency is
clearly observed for St ∈ [0.2, 0.55] for both sway and surge. This effect corresponds to a
significant reduction in the wake dynamical DoF, in the sense that the nonlinear dynamic
oscillation has a low dimension, with only two DoF.

In contrast to sway, the wake under surge motion shows further phenomena of nonlinear
dynamics. Two spatiotemporal wake patterns are observed, namely the pulsing and the
meandering mode (figure 16h,i). As discussed above, for surge with St > 0.55, two
frequencies with mixing components are seen in the spectra (figure 14f ), the exciting
frequency, St and a self-generated narrow band mode, f ∗D/U∞ ∈ [0.1, 0.5]. A coupling
of these frequencies is a clear sign of nonlinear dynamics. Figure 17 shows the power
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Nonlinear dynamics in the wake of a floating offshore wind turbine

St 0.58 0.68 0.71 0.73 0.76 0.78 0.81 0.88

f ∗D/U∞ 0.15 0.1 0.32 0.3 0.2 0.36 0.3 0.3

Table 4. Values of f ∗(St), the self-generated meandering mode from surge motion for St > 0.55. For each
given value, the precision of St is �St = 0.01 and of f ∗D/U∞ is �f ∗D/U∞ = 0.02.

spectra at y = 0.75R and x ∈ [[6, 8, 10]]D for a few surge cases with St ∈ [0, 0.97]. The
spectra of St = 0.58, St = 0.7 and St = 0.81 in figure 17( f –h), respectively, are very
interesting. We see a peak at St and at f ∗D/U∞ (the self-generated mode) as well as
mixing components in the form of aSt + b( f ∗D/U∞). For St = 0.70, for instance, we
identify two further peaks with (a, b) = (1, −1) and (a, b) = (1, −2). Such a dynamic
is part of the class of quasiperiodic systems, described with the generic model of circle
map, which characterises the quite complex and fast-changing dynamical behaviour under
such nonlinearities (Argyris et al. 2015). We observe that one time, the amplitude of
the driving frequency is larger, and the other time, the amplitude of the self-generated
mode is greater (see figure 17g x = 6D and x = 8D). Mixing components are more or
less pronounced, similar to previous observations of nonlinearities with semiconductors
as shown in figure 3.56 in Peinke et al. (2012).

The origin of the self-generated meandering mode induced by surge motion is unclear.
It is surprising that fore–aft rotor movements induce sideways oscillation of the wake.
We measured at x = 6D the wake for many surge cases with St ∈ [0.6, 0.9] (cases D.2∗∗
in table 3). We report in table 4 all the values of f ∗ that we measured. They lie in the
interval [0.1, 0.5]D/U∞ and are concentrated around fm ≈ 0.3D/U∞. This indicates that
the self-generated meandering mode is within the region of natural meandering. However,
f ∗ = function(St) is still unclear. Further fine-tuned investigations are needed to find a
potential relationship, as this is expected from the features of nonlinear dynamics (see
circle map behaviour in Peinke et al. (2012)).

4.5. Comparison of coherent meandering between sway and surge
We saw that for surge motion, when the quasiperiodic state appears, the wake
tends to generate coherent meandering structures at a frequency f ∗ ∈ [0.1, 0.5]D/U∞
(figures 15c,d and 17f –h). It is of interest to compare this mode with the coherent
meandering caused by sway motions. We make a comparison, in figure 18, of the wake
from the turbine moved in surge at St = 0.81 which generates a coherent meandering
mode at f ∗D/U∞ ≈ 0.3 with the coherent meandering structures due to swaying turbine
movements at St = 0.29 (in both cases A∗ = 0.007).

In figure 18(a), we show the wind speed deficit profiles at x = 6D, which follow very
closely for surge and sway, giving a very similar recovery (also observed in figure 8).
The wake of the swaying wind turbine, however, expends more, which is also seen in the
TI profiles (figure 18d). Moreover, the swaying motions generate more turbulence. The
instantaneous flow fields are shown in figure 18(b) for surge and figure 18(c) for sway and
the spectra at y = 0.75R in figures 18(e) and 18( f ), respectively. Coherent meandering is
made very clear for sway, driven by the excitation frequency St. In contrast, for surge, the
structures are not as clear. The instantaneous flow contains the main structure at f ∗D/U∞
together with the interacting modes (St − f ∗D/U∞ for instance), making in contrast to
sway the whole wake less coherent. A closer look at the pattern in figure 18(b) shows that
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Figure 18. Comparison of coherent meandering from sway motion (St = 0.29, A∗ = 0.007) with surge (St =
0.81, A∗ = 0.007) induced wake meandering at x = 6D. Plot of wake deficit and TI profiles (a,d). Instantaneous
flow at x = 6D for surge (b) and sway (c). Power spectrum at y = 0.75R for the two cases, surge (e) and
sway ( f ). Cases C.1, C.4 and D.2 in table 3 (Re = 1.4 × 105).

a temporal change between meandering (tf ∗ ∈ [45, 48]) and pulse-like structures (tf ∗ ∈
[48, 50]) occur, which supports the idea of interacting modes. The energy contained in
the motions is approximately eight times greater for surge compared with sway in this
example (see εp in § 4.1), but the effect on recovery is very similar for both DoFs. We
conclude that for sway, the wake tends to better use the energy of the motion than for
surge (at least when comparing sway, St ≈ 0.3 with surge, St > 0.55). We also highlight
the more complex structures of the wake with surge motion.

5. Transition-region dynamics

The results presented so far have focused on the far-wake region, i.e. in the region after
the virtual origin, x∗

0 defined in § 3.4 (for x ≥ 6D). There, the recovery of the whole wake
is advanced and coherent motion-related structures are already decaying. Based on the
similar recovery curves beyond x∗

0, we may address this region as ‘quasifully developed’.
It is definitely of fundamental interest to see how the transition to this developed region
evolves. In order to gain further insight, we focus now on the region closer to the rotor (x ≥
3D) for both sway and surge DoFs, i.e. before x∗

0. This new section relates the recovery
results presented in figures 5, 7, 8, 9 to the development of coherent modes in the wake
and their energies.

We begin in § 5.1 by presenting the results for sway, showing the amplitude influence on
the development of coherent meandering structures and quantifying further the nonlinear
synchronisation described in § 4.2. Section 5.2 focuses on surge motion, for which
we quantify the evolution of structures related to synchronisation and then examine
quasiperiodic modes. Finally, in § 5.3, we bring together all the results and discuss the
findings on nonlinear wake dynamics in relation to the recovery results and transition to
far-wake.
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Figure 19. Evolution of turbulent energy, 〈u′2〉/U2∞, energy of the coherent mode, e(St), and energy contained
in the range of frequency [0.1, 0.5]U∞/D at y = 0.75R for fixed (a), sway with St = 0.29, A∗ = 0.007 (b) and
sway with St = 0.29, A∗ = 0.017 (c). For panels (b,c) the amplification factor is represented with solid red line
(defined in § 4.1). Instantaneous flow at x = 4D is displayed in (d) for A∗ = 0.007 and in (e) for A∗ = 0.017.
Tests C.3 and C.4 in table 3 (Re = 1.4 × 105).

5.1. Development of coherent meandering and amplitude dependency for sway motion
We have seen in figure 8(a) that for two sway cases with the same motion frequency
but varying amplitudes, differences in recovery occur (around 14 % more with the largest
amplitude). We also noticed that for a higher amplitude (A∗ ≈ 0.02), the most favourable
St for the recovery is smaller, around St ≈ 0.3 here, which is in good agreement with the
CFD results from Li et al. (2022). In the following, we look at the wake development for
St = 0.29 with two amplitudes and show the results for x ∈ [[4, 6, 8]]D.

Figure 19 compares the amount of energy contained in the wake at y = 0.75R for fixed
case (figure 19a) and for sway with St = 0.29; A∗ = 0.007 (figure 19b) and A∗ = 0.017
(figure 19c). Figure 19(b,c) also display the energy contained in the most energetic mode
related to the coherent meandering motion of the wake at St (blue thick line) as well as the
amplification factor, k (defined in (4.6)) (red solid line).

First, the motions largely enhance the total turbulent energy, 〈u′2〉/U2∞ at x = 4D. Here
〈u′2〉/U2∞ is more than two times higher for A∗ = 0.017 (figure 19c) compared with the
fixed case (figure 19a). A large amount of this turbulent energy is contained in the coherent
structure at St (thick blue line in figure 19b,c). For A∗ = 0.017, the maximum energy of
the mode at St is found at x = 4D and around 6D for A∗ = 0.007. This shows that the
spatial development of the structures depends on the energy of the motions. With the
same excitation frequency, St = 0.29, the higher amplitude accelerates the build-up.

A visualisation of the instantaneous flows for the two swaying cases at x = 4D is
given for A∗ = 0.007 in figure 19(d) and for A∗ = 0.017 in figure 19(e). In line with
the energy content of the structures, for the highest amplitude (figure 19e), a very clear
pattern of coherent meandering is observed, while for the lowest amplitude, the structures
are still developing at 4D (figure 19d). The most prominent synchronisation is observed
for the largest amplitude at x = 4D. Here, 90 % of the energy in the frequency range
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[0.1, 0.5]D/U∞ is contained in the coherent mode (see the blue thick line and the dotted
dashed line in figure 19c).

In § 4.1 we derived a formula for the energy of motion, εp (4.3) and defined
an amplification factor, k (4.6). Between the two sway cases presented here, εp is
approximately six times bigger for the highest amplitude than the lowest. In figure 19(b,c),
k is plotted against x/D in red for the two sway amplitudes. Here, only the energy of the
most energetic structure is taken into account, the other modes being insignificant and
irrelevant. We find that the structure’s energy at St is 90 times greater than that of the
rotor motions (for A∗ = 0.007 at 6D (figure 19b)). This indicates that the initial periodic
perturbations are strongly amplified in the wake, forming large, coherent, meandering
structures. It is a typical effect of nonlinear synchronisation, which strongly amplifies the
energy of the motions. This is somewhat similar to the observations made by Fiedler &
Mensing (1985) for a periodically excited shear layer (even tough at much lower Re of
approximately 103). The results in figure 19(b,c) also highlight the amplitude dependence
of the amplification, where lower amplitudes give a ‘stronger’ response (i.e. a higher k),
even though, in real terms, the higher amplitude provides more energy to the wake
movements.

5.2. Development of coherent structures under surge motion
Depending on the frequency of the surge motion, two different types of coherent
structures have been found in the wake (figure 16). On the one hand, we observed a
synchronisation-like effect of the wake with St ∈ [0.2, 0.55], which leads to the formation
of coherent pulsating structures in the wake. On the other hand, for higher St, we saw
that the wake not only responds directly to excitation with a peak at St but also tends to
generate a coherent meandering mode with a frequency f ∗ in the range [0.1, 0.5]D/U∞. In
this case, additional structures are found combining St and f ∗D/U∞. In this subsection, we
detail the spatial development of the different structures. We start with the synchronisation
cases and then move on to the quasiperiodic state.

In figure 20, we display the evolution of the two primary frequencies in the power
spectrum of the wind speed fluctuations at y = 0.75R (i.e. in the shear layer) for x ≥ 3D
for the fixed case (figure 20a) and surge cases with St = 0.19, A∗ = 0.007 (figure 20b),
St = 0.38, A∗ = 0.007 (figure 20c), St = 0.38, A∗ = 0.017 (figure 20d). Figure 20(e–h)
shows the evolution of the energy associated with each of these frequencies, as well as their
sum and the total turbulent energy (following the formulation of § 4.1). In direct relation
to the results presented previously in figure 16, for St < 0.2 (figure 20b, f ), the wake does
not synchronise with the periodic platform excitation. Here, up to x = 7D the main peak
in the spectrum differs from St. Beyond (x ≥ 7D), the primary mode becomes St but
contains almost the same energy as the platform’s motion-independent second peak, see
figure 20( f ). The energy of the mode is too low to classify the structure as a pseudo-lock-in
mode (criterion (4.7) is not fulfilled). Moreover, 〈u′2〉/U2∞ is slightly higher but still very
close to the energy of the fixed case, by comparing figures 20(e) and 20( f ).

For increasing St, synchronisation is made clear by the main peak in the spectrum; see
figure 20(c,d) at St = 0.38. The main peak in the spectrum contains much more energy
than the secondary peak and satisfies our synchronisation criterion (4.7). Moreover, the
turbulent energy, 〈u′2〉/U2∞, is much higher than for St = 0. The coherent pulsating mode
contains more energy for A∗ = 0.017 (figure 20h) than for A∗ = 0.007 (figure 20g), and
the structure develops earlier for the larger amplitude. As we shall see later, this provides
a reasonable explanation for the enhanced recovery observed in figure 8(b) between the
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Figure 20. Evolution of the two main frequencies in the power spectrum at y = 0.75R (a–d) and associated
energies as well as turbulent energy, 〈u′2〉/U2∞, and energy contained in [0.1, 0.5]U∞/D (e–h); for St = 0
(a,e), surge with St = 0.19, A∗ = 0.007 (b, f ), St = 0.38, A∗ = 0.007 (c,g) and St = 0.38, A∗ = 0.017 (d,h).
Cases D.1, D.2 and D.2∗ in table 3 (Re = 1.4 × 105).
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Figure 21. Downstream evolution of the amplification factor, k = e(St)/εp at y = 0.75R for the cases where
synchronisation occur (here only St ∈ [0.29, 0.38] are shown, displayed in blue without markers). Evolution of
k = ∑4

n=1 e( fn)/εp for the cases where quasiperiodic state is found (St ∈ [0.58, 0.81] here, represented in red
with markers). Cases D.1, D.2 and D.2∗ in table 3 (Re = 1.4 × 105).

two cases of various amplitude. As for sway, when synchronisation happens, most of
the energy in [0.1, 0.5]D/U∞ is concentrated in the peak at St. The wind turbine’s wake
tends to amplify the initial disturbances leading to the formation of coherent structures, a
phenomenon that we quantify by the amplification factor, k (4.6). In figure 21, we plot k for
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Figure 22. Evolution of the four main frequencies in the spectrum at y = 0.75R (a–d) and associated energies
as well as turbulent energy, 〈u′2〉/U2∞, and energy contained in [0.1, 0.5]U∞/D for St = 0 (a,e), surge with
St = 0.58 (b, f ), St = 0.81 (c,g) and St = 0.97 (d,h). Cases D.1 and D.2 in table 3 (Re = 1.4 × 105 and A∗ =
0.007).

some surge cases as a function of x/D. The blue lines without markers represent the cases
where synchronisation occurs (to calculate k, we have only taken the first mode, f1 = fp,
since the other frequencies are not linked to the platform excitation). We can see that the
strongest amplification is obtained for the smallest St, i.e. when the input energy is the
lowest. Accordingly, it is consistent with the results obtained for sway. Here, at St = 0.29
(maximum), the coherent structure contains almost 40 times more energy than the driving
movements provide. With increasing St, the position where k reaches its maximum moves
closer to the rotor, showing the spatial dependency of the synchronisation. For St = 0.38,
the highest amplitude exhibits a lower amplification (maximum of 10 for A∗ = 0.017
against 25 for A∗ = 0.007).

Figure 22 shows results for cases where St > 0.5 and A∗ = 0.007, i.e. when
quasiperiodic states occur. Similar to the previous figure 20, we plot in figure 22(a–d) the
evolution of the four main frequencies in the spectrum (N = 4) at y = 0.75R for x ≥ 3D;
fixed case (figure 22a) and surge cases with St = 0.58 (figure 22b), St = 0.81 (figure 22c),
St = 0.97 (figure 22d). The energy content of the modes and the total turbulent energy are
displayed in figure 22(e–h). The evolution of the energy contained in the first four most
energetic peaks for St ∈ [0.55, 0.9] evolves erratically; at a given position, one mode has
more energy than the other and vice versa. This is a typical feature of energy exchange
between modes in a quasiperiodic system (Peinke et al. 2012). When quasiperiodicity
occurs, the four frequencies are linked to coherent structures and contain close amounts of
energy. Nevertheless, the peak at f ∗ is always the most energetic, at least for x > 5D (see
the blue thick line in figure 22f,g).

984 A66-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.175


Nonlinear dynamics in the wake of a floating offshore wind turbine

The surge case with St = 0.58, figure 22(b, f ), is particularly interesting because it lies at
the boundary between synchronisation and quasiperiodicity. The path to quasiperiodicity
begins with weak synchronisation before moving towards a higher DoF. The amount
of energy contained in the first four modes represents approximately 30 % of the total
turbulent energy, again showing the large amount of energy contained in coherent
structures with turbine motions. For motions with St ∈ [0.5, 0.9], the amount of turbulent
energy is much higher and develops closer to the rotor (figure 22f,g) than in the fixed
case (figure 22e). For St = 0.97, the total turbulent energy is lower than in cases where
St is smaller, even though the amount of energy introduced by the motions is the highest
for St = 0.97 (cf. (4.3)). This result suggests that for St > 0.9, the platform excitation
frequency is too far away from the natural wake frequencies, and consequently, the effects
on wake dynamics are less marked.

For the quasiperiodic cases, we calculate k taking into account the energy contained in
the four most energetic modes, which are combinations of St and f ∗D/U∞. We plot in
figure 21 in red the evolution of k for some surge cases with St > 0.55. The maximal value
of k is found for St = 0.58. Compared with the cases where synchronisation occurs (blue
lines), k decreases less sharply than for synchronised cases. This suggests that structures
that interact and exchange energy with each other remain in the wake for longer, although
gradually decaying. For the highest St, a very small value of k is found, showing that the
wake reacts or, respectively, synchronises weakly to this frequency.

5.3. Discussion about enhanced recovery and the nonlinear dynamics
So far, we have seen that sway and surge motion can have an important impact on the
recovery of the wake. We quantified the downstream development of the coherent modes
at a local point at y = 0.75 (in the shear layer) and showed the strong dependence on both
St and A∗ (figures 19, 20, 21, 22). Most importantly, the impact of sway and surge motion
takes place in the transition region before the virtual origin x∗

0. After this region, a similar
wake recovery is found (see figure 9). We discuss two aspects in the following: the increase
in momentum transport caused by coherent structures and the interaction of excited modes
(nonlinear dynamics) with the turbulent cascade.

As already discussed in § 1, it is known that structures of the wake can enhance or
block recovery. Whereas tip vortices hinder the transport of momentum to the inner core
of the wake (Lignarolo et al. 2015), large wake structures, like coherent meandering, can
enhance the transport. Frederik et al. (2020), Korb et al. (2023) and Hodgson et al. (2023)
have shown that periodic excitation of the wake can lead to faster recovery. The different
studies found an optimum excitation frequency around St ≈ 0.3, similar to our results.
In our case with rotor motions, we showed in figures 19, 20, 21, 22 that for both sway
and surge, the energy of the motions is amplified within the wake (up to 90 times more)
and lead to the formation of coherent structures (figures 12, 15, 16). Our results clearly
show that nonlinear dynamics lead over synchronisation-like and quasiperiodic states to
such an amplification. The finding of mixing components in the quasiperiodic state proves
the nonlinear interaction of the excitation frequency with a self-generated mode, f ∗. It is
astonishing how clear the low-dimensional dynamics are, with one or two fundamental
frequencies collecting initially high-dimensional multimodal (turbulent) dynamics. The
transition to the fully developed decaying turbulence in the recovery zone is cut short
by these nonlinear dynamics. The maximal energy of the low-dimensional dynamics is
found at downstream distances, x ∈ [4, 7]D where tip vortices are already mixed up (see
figures 20 and 22). Thus, this is a phenomenon of the whole wake, as confirmed by the
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Figure 23. Energy of the coherent modes, ẽ/U2∞ at y = 0.75R (§ 4.1) against downstream positions for surge
cases with St ∈ [0.29, 0.81], A∗ = 0.007 (a). Evolution of x∗

0 against x/D from recovery (figure 9) and from the
position where ẽ is maximal. Premultiplied power spectrum, Φx × f −5/3, at y = 0.75R for St = 0.38 (c) and
St = 0.81 (d). Cases D.1 and D.2 in table 3 (Re = 1.4 × 105 and A∗ = 0.007).

instantaneous wind fields of the wakes, like in figures 12 and 15. As these low-dimensional
dynamics lead to motion amplitude of the wake of approximately the wake width, it is clear
that correspondingly, the momentum transport from the unperturbed flow outside to the
wake centre is changed fundamentally.

Next, we discuss the consequence of the energy growth of the low-dimensional modes
on the transition to the far-wake. At a particular position downstream, these modes reach
their maximum energy and then begin to break up and decay, causing them to dissipate
their energy. In figure 23(a), we show the downstream evolution of the energy of the
coherent modes for surge cases with St ∈ [0.29, 0.81], A∗ = 0.007 at the local position
y = 0.75R. For each case, we identified the position at which the maximum is reached.
Figure 23(b) shows these positions together with the position of x∗

0, the virtual origin
that we defined in § 3.4 using the recovery curves. A close link between the positions of
maximal energy and the virtual origin is evident. To our interpretation, after the maximum
energy is reached, the low-dimensional modes do not only break up and dissipate their
energy but also initiate the recovery of the far wake. Here, we should note the similarity
of our argumentation with those for the flow evolution behind a fractal grid (Vassilicos
2015).

The evolution of the power spectra at y = 0.75R from the transition region to the
far-wake is looked at to investigate further the link between the coherent structures and
the turbulent cascade. In figure 23(c,d), we show the premultiplied spectra (Φx × f 5/3)
for x ∈ [3, 10]D for surge motion with St = 0.38 (figure 23c) and St = 0.81 (figure 23d).
In the shear layer, the spectra feature a self-similar region (so-called inertial subrange)
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Nonlinear dynamics in the wake of a floating offshore wind turbine

that follows the Kolmogorov K41 theory, i.e. Φx ∝ f −5/3 (Pope 2000). This K41 law,
Φx ∝ f −5/3, is linked to the turbulent cascade, which transfers energy from large scales
(low frequencies) to small dissipative scales (high frequencies). We used premultiplied
spectra to identify the ranges of the inertial subrange, here seen as flat regions highlighted
by horizontal lines. In contrast to decaying turbulence, the size of the inertial subrange
increases with the downstream position. This indicates that energy is fed into the cascade
that broadens the spectral range following the K41 law.

In figure 23(c), the spectra are displayed for a synchronised case, with an excitation
frequency of St = 0.38. Close to the rotor (at x = 3D, blue curve), the main coherent
mode at St is clearly to the left of the inertial subrange. At the transition point (x∗

0 ≈ 6D,
red curve), the amplitude of the synchronised mode has grown as well as the inertial
subrange so that now the mode at St = 0.38 is at the starting point (low-frequency
part) of the turbulent cascade. Farther downstream, at x = 10D (green curve), the
amplitude of the synchronised mode has decreased, consistent with the interpretation
that this periodic mode becomes unstable and inserts its energy into the turbulent
cascade.

Figure 23(d) shows the spectra for an excitation frequency at St = 0.81 of a
quasiperiodic case. Here, the amplified exciting mode at St = 0.81 is already within
the inertial subrange at x = 3D, but the self-generated mode at f ∗D/U∞ is out.
Figure 22(a) showed that the maximum energy of low-dimensional modes is for
x ∈ [5, 6]D. At x = 5D (orange curve in figure 23d), we see that the inertial subrange
has extended to the lower frequency f ∗D/U∞. Farther downstream, the amplitudes of
the quasiperiodic modes and the turbulent K41 spectrum decrease (see spectrum at 10D,
green curves). This is consistent with decaying turbulence in the recovery region of the
far wake.

Overall, these results support the interpretation that the nonlinear dynamics cut short the
transition to fully developed turbulence and recovery. The building up of low-dimensional
dynamics leads not only to a fast growth of their amplitudes but also couples at the
transition point (maximal energy at x∗

0) to the turbulent cascade, thus transferring energy
from coherent structures to turbulence.

Last but not least, we complete this discussion by describing the physical significance
of the virtual origin, x∗

0. We have seen from the recovery curves in figure 9(b) that beyond
x∗

0, wake recovery for the different cases shows close similarities, suggesting that once this
region is reached, the wake exhibits universal behaviour. To support this idea, we present in
figure 24 the power spectrum of wind speed fluctuations at y = 0, i.e. at the wake’s centre.
Figure 24(a) shows the spectra for the fixed case (St = 0) and two surge cases (St = 0.38
and St = 0.81) at x = 6D. In line with the previous figures 6 and 14, the wake of the surge
case with St = 0.81 is the most developed, exhibiting a greater amount of energy in the
region where fD/U∞ > 1, followed by St = 0.38 and the least developed fixed case. If
we examine the spectrum for these three cases also at y = 0 but at x = x∗

0(St, A∗), all the
spectra are surprisingly merged, with almost the same energy distribution for fD/U∞ > 1.
Thus at the position x∗

0, the recovery of the whole wake is initiated and the far-wake starts
which appears to be universal, i.e. independent of St and A∗.

6. Summary and conclusion

Next, we summarise in § 6.1 our main new findings on the impact of the motions of a
floating wind turbine on the wake generated. We then comment on the link between wake
dynamics results and enhanced recovery in § 6.2. In § 6.3, we discuss the results in terms

984 A66-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.175


T. Messmer, M. Hölling and J. Peinke

10–2 10–1 100 101 102
10–9

10–7

10–5

10–3

10–1

10–2 10–1 100 101 102
10–9

10–7

10–5

10–3

10–1
St = 0
St = 0.38
St = 0.81

Φ
x 

(m
2

s–
1
)

y/
R

=
 0

f D/U∞ (–) f D/U∞ (–)

(a) (b)

Figure 24. Universality of the far-wake. Power spectrum, Φx at the centreline (y = 0) of the wind speed
fluctuations at x = 6D (a) and x = x∗

0 (b) for fixed case (St = 0) and surge cases with St = 0.38 and St = 0.81,
A∗ = 0.007. Here x∗

0, defined in figure 9, is considered: x∗
0(St = 0) = 8.2, x∗

0(St = 0.38, A∗ = 0.007) = 6.3,
x∗

0(St = 0.81, A∗ = 0.007) = 4.9. Here Re = 1.4 × 105. Tests D.1 and D.2 in table 3.

of applications for wind farms with floating wind turbines. Finally, in § 6.4, we open up
the discussion regarding routes to turbulence, a basic fluid dynamical phenomenon.

6.1. Summary of the results
First, our results demonstrate the equivalence between surge and pitch, as well as between
sway and roll on the wake generated (see figure 3 in § 3.1). Therefore, we focused our
research on sway for side-to-side and surge for fore–aft motions.

Second, the experimental results are in excellent agreement with the CFD simulations
from Li et al. (2022) about the wake of a swaying turbine in a laminar wind (figure 5).
This suggests that the wake of a floating turbine does not depend on the Reynolds number,
at least for Re > 105.

Third, our findings indicate that both types of turbine movement (side-to-side and
fore–aft) significantly enhance wake recovery (up to 25 % more than for the fixed
case), especially for St ∈ [0.2, 0.6] with sway (figures 5, 8) and St ∈ [0.3, 0.9] for surge
(figures 7, 9). Amplitude and frequency of the driving motion are important parameters
impacting wake recovery (figures 8 and 9).

Fourth, the wake recovery curves for different surging cases (various St and A∗) can
be rescaled based on the definition of a virtual origin x∗

0 that corresponds roughly to the
position where the far-wake is reached (§ 3.4). With such renormalisation, the recovery
curves appear to merge into one, demonstrating the universality of the wake once the
far-wake starts. This idea is further supported by the close similarity of the power spectrum
at x = x∗

0 in the wake centre (see figure 24b).
Fifth, we worked out different coherent structures in the wake. For St ∈ [0.2, ∼0.5],

sway motion leads to the formation of coherent meandering structures (see figures 12c, f
and 19d,e). For surge, with St ∈ [0.2, ∼0.55], the wake shows clear pulsing structures
(cf. figure 15b). Astonishingly, for surge motion with St ∈ [∼0.55, 0.9], the wake features
coherent meandering patterns coupled with a mild pulsing (see figure 15d).

Sixth, these structures are linked to special low-order nonlinear dynamics, which
are particularly visible in the shear layer region (y ∈ [0.5, 1.3]R). Unlike the complex
broadband frequency range observed in the wake of the fixed turbine (figures 10d and 14d),
the wake of the moving turbine gets slaved to the excitation frequency St (figure 10f for
sway and figure 14e for surge). Further, for surge, the wake dynamics feature a combination

984 A66-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.175


Nonlinear dynamics in the wake of a floating offshore wind turbine

of St and a self-generated mode f ∗, along with coupling components (figures 14f and
17f –h). This organised, low-dimensional (monochromatic or oligochromatic) response is
much easier to describe than the complex fixed case.

On one hand, for both DoF and St ∈ [0.2, ∼ 0.5], the wake synchronises
(pseudo-lock-in) with the motion frequency St, directly linked to the formation of coherent
structures. The energy of these structures, quantified at a point in the shear layer
(y = 0.75R), is much higher than that of the driving motions, εp (as defined in § 4.1).
For sway, we found that a meandering structure contains up to 90 times more energy than
the driving motions (cf. figure 19b). Similarly, for surge, up to 40 times more energy than
εp is found in the coherent pulsating structure (see figures 20g,h and 21 blue curves). This
shows the nonlinear amplification of the energy of the driving motions.

On the other hand, for St ∈ [∼ 0.55, 0.9], the surging turbine wake initially synchronises
with St. Moving downstream, a self-generated mode f ∗ emerges and falls into
the natural frequency range of the fixed turbine wake ( f ∗ ∈ [0.1, 0.5]U∞/D). The
mixing components of St and f ∗D/U∞ indicate nonlinear interactions, characteristic of
quasiperiodic systems. These quasiperiodic modes reach energies up to 20 times that
of the driving motion (see figure 21; in red). The erratic evolution of the energy of the
coupling modes, as depicted in figure 22(b,c, f,g), underscores the unpredictable nature of
the interactions between St and f ∗D/U∞ characteristic of nonlinear dynamics.

In summary, we worked out one dynamic mode for sway (meandering) and two dynamic
modes for surge (pulsating and meandering).

6.2. Enhanced recovery due to nonlinear dynamics
These nonlinear dynamical behaviours play an important role in the recovery process. We
showed and discussed in § 5 how the wake dynamics develop in the transition region.
The synchronised and quasiperiodic modes grow by amplifying the energy of the driving
motion. At a position downstream, the modes become unstable. The structures then break
down and decay, feeding the turbulent cascade (see figure 23). The movements of the
platform enable a faster transition to the far-wake, meaning that the recovery processes
start closer to the rotor, around x∗

0. In addition, the coherent modes likely transport
momentum and thus improve recovery but also periodically deflect the wake outwards,
resulting in greater recovery on average, similar to the effect of blade pitching control
strategy on wake dynamics and recovery (Korb et al. 2023).

For surge cases with St > 0.9, our interpretation is that the periodic fluctuations in
the near wake destabilise the tip-vortex system closer to the rotor and enhance the
generation of small-scale turbulence, which seems to be a reasonable explanation of the
high turbulence found close to the rotor (see figure 22h for x = 3D). This might explain
why the recovery remains high even though no clear coherent mode is found.

6.3. Application to wind energy
The results of this paper show that wake excitation due to platform motion is carried
downstream, amplified and interacts nonlinearly, resulting in large coherent meandering
or pulsating structures. At the same time an increase in wake recovery compared with a
fixed wind turbine (up to 25 % more) is found. As the power is proportional to the cube
of the wind speed such a faster recovery of the wind speed in the wake is important for
the power production of a wind farm. This potentially compensates partially the effect that
the power produced in a wind farm decreases from the first to the following rows, a drop
of 40 % is reported in Barthelmie et al. (2009) for the worst wind direction. However, it
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should be noted that large coherent structures could contribute to increasing loadings on
downstream turbines. Further studies are needed to work out the balance between the
favourable increase in power and the unfavourable increase in loads.

A further aspect concerns turbulent inflow conditions. To verify the relevance of
our study, we performed measurements with TI∞ up to 0.03. These represent typical
conditions for stable atmospheric situations where TI∞ is low, cf. Angelou et al. (2023).
We found that the effects of platform motion remain, in good agreement with the CFD
results of Li et al. (2022) (see Appendix D, up to 8 % more recovery for the best sway
case is found with TI∞ = 0.03). Beyond these stable conditions of low turbulence, other
situations including higher turbulence intensity, shear and six-DoF stochastic platform
motions may lead to different dynamics. Based on the results of Li et al. (2022), for
TI∞ > 0.05, the impact of the motions seems to be more or less cancelled out by the
effect of the inflow turbulence. The impact of moving turbines on the wake with broader
conditions remains to some extent open. Nevertheless, we have shown that for stable
meteorological conditions our results are of importance.

6.4. Routes to turbulence
The classical picture of a transition to turbulence is that a laminar flow becomes unstable
with increasing parameters, like the Reynolds or Rayleigh numbers. Periodic oscillations
occur, which due to further instabilities become higher-dimensional like quasiperiodic, and
subsequently chaotic. The chaotic range leads to noisy power spectra, which then evolves,
like in the Rayleigh–Bénard system, to weak and finally hard turbulence, cf. Castaing
et al. (1989). The final turbulence is characterised by its fractal ordering of many different
modes, typically expressed in the K41 law of the inertia subrange by the f −5/3 power
spectra. Interestingly, some large scales or superstructures may reappear in the turbulent
state as discussed recently by Hartlep, Tilgner & Busse (2003) and Pandey et al. (2018).

For a wake, like behind a wind turbine, the transition to turbulence differs from a closed
system. Given the experimental set-up, the evolution to turbulence occurs with distance
to the turbine, as the flow is carried away. Similar to fractal grid, see for instance (Hurst
& Vassilicos 2007; Vassilicos 2015), the turbulence builds itself up to a point of maximal
turbulent energy (see figure 23a) and then a transition to a universal, or fully developed
decaying turbulence is seen, which we denoted as the far-wake where the recovery of the
whole wake takes place (see figure 24b). Here again a turbulence with its common fractal
properties is found (see figure 23c,d).

For the fixed turbine, we found that this transition region has a quite complex multimode
structure, which tends to form some erratic meandering structures (see figure 12g)
like the so-called re-establishment of a turbulent vortex street or the just-mentioned
superstructures. An interesting finding is that this changes fundamentally if the turbine
moves periodically in a special range of St numbers. Even very small exciting motions
of the turbine lead to large periodic and quasiperiodic structures in the wake. The
re-establishment or superstructures get slaved or synchronised to a low-dimensional
coherent dynamics, like an excitation of a weakly damped mode. The astonishing finding
is that this deviating path to turbulence via nonlinear dynamics is ultimately a short cut,
as we find a faster recovery.

There are different open details for this scenario of transition to turbulence.

(a) Is it the nonlinear growth of the low-dimensional nonlinear dynamics that makes
these structures finally unstable and leads to accelerated transition? Is there an
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intrinsic Re number for the growing structures with a threshold, Rec where they
become unstable or collapse like breaking water waves?

(b) Does chaos play a role? From nonlinear dynamics it is well known that periodically
driven damped modes, or quasiperiodicity are good candidates for chaos. A low
dimensional dynamic which becomes chaotic would be accompanied by a spectral
broadening of the initially well localised frequencies.

(c) Is the increase in the background turbulence’s inertial subrange towards lower
frequencies destabilising the periodic structures? This would require some kind
of backward cascade leading to larger structures, as known from two-dimensional
turbulence.

For the first two scenarios, the transition is marked by the periodic structures’ instability
that drives the far-wake’s turbulence. The last scenario would be a more complex interplay
between low-dimensional dynamics and turbulence. However, it is astonishing that the
enhanced recovery, or the faster transition to turbulence, goes along with simple and clear
phenomena of low-dimensional nonlinear dynamics.
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Appendix A. Postprocessing of measured data

This appendix describes the methods used to post-process the data. In order to
quantify the different wake measurements, we analysed the time series of local
wind velocity by one- and two-dimensional statistics and by their instantaneous flow
fields, defined hereafter. The measured time series of the streamwise component of
the wind speed are given in the form of U(x, y, z = zhub, t) with x ∈ [[1.5D, 12D]],
y ∈ [−2.5R, 2.5R] and t ∈ [0, Tmeas ≈ 180 s]. Here 〈·〉 denotes a temporal average
for t ∈ [0, Tmeas]. The following quantiles/methods were used to analyse the wind
speed data.

(a) Normalised wind speed deficit (wake deficit) is quantified by �U(x, y)/U∞ =
(U∞ − 〈U(x, y, t)〉)/U∞. In the paper, we show profiles of wind deficit, the closer
the deficit to zero the more the wake has recovered.

(b) Wake recovery (∼ rotor normalised averaged wind speed) is defined as
Recovery(x) = ∫ y0+R

y0−R 〈U(x, y, t)〉dy/U∞. With y0 the estimated centre of the wake.
This quantity gives an order of magnitude of the average rotor area wind speed in
the wake a specific downstream position, similar quantity were calculated by Chen
et al. (2022) and Li et al. (2022).

(c) Turbulence intensity is given by TI(x, y) = σ(U(x, y, t))/〈U(x, y, t)〉.
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(d) Power spectra, Φx(x, y), is the power spectral density of the wind speed fluctuations,
u′(x, y, t) = U(x, y, t) − 〈U(x, y, t)〉 computed with an algorithm that uses Welch’s
method.

(e) Peak identification, for a given Φx(x, y), we identify the N largest peaks in the
spectrum and evaluate the specific energy of each of them by calculating e( fn) =∫ fn+�f

fn−�f Φx( f ) df (see § 4.1, (4.5)). To do this, we fit a given peak with a Gaussian
function and calculate the area under the curve, which corresponds to e( fn). Here
�f is only defined for the mathematical formulation.

( f ) Instantaneous wind field is based on U(x, y, z = zhub, t) to visualise the
instantaneous wake at hub height for a specific case and downstream position.
A low-pass filter with a cut-off frequency of 10 Hz is applied to remove small-scale
fluctuations from the signals for each y ∈ [−2.5R, 2.5R]. The signals are resampled
at a frequency of 500 Hz and plotted on a colourmap.

(g) Cross-correlation between U(x, y = −1/2R, t) and U(x, y = 1/2R, t) is given by
(U−1/2R 
 U1/2R)(x, τ ) = 〈U(x, y = −1/2R, t)U(x, y = 1/2R, t + τ)〉/σ−1/2Rσ1/2R

Appendix B. Additional wake profiles

This appendix shows complementary results on the equivalence between DoF (figure 25)
and superposition of wake for sway motion (figure 26). Figure 25 demonstrates that for
low-amplitude cases (A∗ = 0.007), the wind speed deficit and turbulence intensity profiles
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Figure 25. Wake deficit (a–c) and TI profiles (d–f ) at 6D, 8D and 10D for fixed and two pitch and surge cases
with same St and A∗, Re = 2.3 × 105. Tests B.1–B.5 in table 3.
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Figure 26. Wake deficit profiles at 6D (a), 8D (b), 10D (c) for: fixed case, fixed with an offset of ±0.12D
(70 mm) in y (horizontal); average of the offset cases and sway with A∗ = 0.12, St = 0.02, Re = 2.3 × 105.

of the wake are very similar for pitch and surge. However, discrepancies arise for larger
amplitudes (A∗ = 0.065). The surge motion of the turbine at low frequency (St < 0.1)
has little impact on the wake, even at high amplitude (see figure 25, the blue curves
marked with triangles follow closely the fixed case marked by black line with dots).
This is consistent with the results of Meng et al. (2022). In contrast, the equivalent
case with pitch motion (see the blue curve with squares) deviates from the fixed case.
As discussed by Rockel et al. 2017 and Fu et al. 2019, the deviations observed are
due to vertical wake movements induced by the rotor tilting. The wake of a pitching
turbine is similar to that of a surging turbine only for low amplitudes (Ap < 2◦) as
seen in figure 25 by the results marked with the red diamond and star symbols.
Figure 26 displays wake profiles for x ≥ 6D for a fixed turbine, fixed with a turbine
position offset of ±70 mm (i.e. 0.12D) and with sway motion at St = 0.02 and A∗ =
0.12. Figure 26 shows that the wake of the swaying turbine (green line with cross
markers) at low frequency but high amplitude (A∗ = 0.12) matches the superposition
of the profiles of the fixed turbine with an offset in the y-direction of ±0.12D
(green line with square markers). This shows that low frequencies of motion (St <

0.1) do not significantly affect the wake of the floating wind turbine, even at high
amplitudes.

Appendix C. Details on synchronised case

This appendix provides further details on wind speed signals for both non- and
synchronised cases. In figure 27, we show some signals from wake velocity measurements
at x = 6D, y = 0.75R as well as filtered signals and phase plots of u′(t − τ) against
u′(t) with (τ = 1/fp and τ = 1 s for the fixed case) for fixed and surge cases. This
figure highlights one case of motion where no synchronisation is found, with St = 0.19
(figure 27d–f ) and two cases where synchronisation occurs, with St = 0.38 (figure 27g–l).
The filtered signals of wind speed fluctuations show no particular frequency for St ≤
0.20 (see figure 27b,e), while a clear oscillation at τ = 1/fp is found for St = 0.38
(figure 27h,k). The phase plot shows how, in the absence of synchronisation, the phase
curve evolves randomly (figure 27c, f ) whereas it follows a straight diagonal for the
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Figure 27. Plot of raw wake signals versus t/τ (τ = 1/fp and 1 s for fixed case) at x = 6D and y = 0.75 for
fixed case (a) and surges cases without synchronisation, St = 0.19, A∗ = 0.007 (d); and with synchronisation,
St = 0.38, A∗ = 0.007 (g) and St = 0.38, A∗ = 0.017 ( j). Plot of the filtered signal of turbulent fluctuations
for each case (b,e,h,k). Phase plot of u′(t − τ) versus u′(t) (c, f,i,l). Here Re = 1.4 × 105. Tests D.1–D.2∗ in
table 3.

synchronised cases, showing phase synchronisation between the wake and the motions
(figure 27i,l).

Appendix D. Recovery with turbulent inflow

This appendix presents wake measurements for some sway cases with turbulent inflow
generated by an active grid. Figure 28 displays wake recovery versus x/D with an inflow
turbulence intensity, TI∞ of 0.015 (figure 28a) and of 0.03 (figure 28b). The results show
that wake recovery remains higher with sway motion compared with the fixed turbine (up
to 8 % more recovery for St = 0.35, A∗ = 0.01 in figure 28b). As with laminar flow, the
frequency and amplitude of motion are key parameters. The impact of the turbine motions
on the wake decreases progressively with increasing turbulence level in the inflow, which
is consistent with Li et al. (2022).
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Figure 28. Recovery against downstream position for sway cases with turbulent inflow: TI∞ = 0.015 (a)
and TI∞ = 0.03 (b). Fixed case, St = 0 ( , purple), sway with St = 0.23, A∗ = 0.007 ( , blue),
sway with St = 0.35, A∗ = 0.007 ( , green), sway with St = 0.46, A∗ = 0.007 ( , yellow), sway with
St = 0.35, A∗ = 0.01 ( , red). Here Re = 2.3 × 105.
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