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A theoretical study is made of the stability of propagating internal gravity wave modes
along a horizontal stratified fluid layer bounded by rigid walls. The analysis is based on
the Floquet eigenvalue problem for infinitesimal perturbations to a wave mode of small
amplitude. The appropriate instability mechanism hinges on how the perturbation spatial
scale relative to the basic-state wavelength, controlled by a parameter μ, compares to the
basic-state amplitude parameter, ε � 1. For μ = O(1), the onset of instability arises due
to perturbations that form resonant triads with the underlying wave mode. For short-scale
perturbations such that μ � 1 but α = μ/ε � 1, this triad resonance instability reduces
to the familiar parametric subharmonic instability (PSI), where triads comprise fine-scale
perturbations with half the basic-wave frequency. However, as μ is further decreased
holding ε fixed, higher-frequency perturbations than these two subharmonics come into
play, and when α = O(1) Floquet modes feature broadband spectrum. This broadening
phenomenon is a manifestation of the advection of small-scale perturbations by the
basic-wave velocity field. By working with a set of ‘streamline coordinates’ in the frame
of the basic wave, this advection can be ‘factored out’. Importantly, when α = O(1) PSI is
replaced by a novel, multi-mode resonance mechanism which has a stabilising effect that
provides an inviscid short-scale cut-off to PSI. The theoretical predictions are supported
by numerical results from solving the Floquet eigenvalue problem for a mode-1 basic state.

Key words: internal waves

1. Introduction

The original motivation for the present work comes from a recent asymptotic treatment
of small-scale instabilities of finite-width internal gravity wave beams in an unbounded
uniformly stratified fluid (Fan & Akylas 2021). The focus of the earlier study was on
validating the approximate models for parametric subharmonic instability (PSI) of internal
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wave beams proposed by Karimi & Akylas (2014, 2017). PSI is a particular case of triad
resonance instability (TRI), where the unstable perturbations which form resonant triads
with the basic wave state are fine-scale disturbances at half the basic-wave frequency. This
small-scale instability mechanism has been studied widely for sinusoidal plane waves (e.g.
Staquet & Sommeria 2002) and more recently for wave beams (e.g. Dauxois et al. 2018)
owing to its potential significance in the dissipation of the oceanic internal tide (Hibiya,
Nagasawa & Niwa 2002; MacKinnon & Winters 2005).

As wave beams are time-periodic states, Fan & Akylas (2021) used Floquet-type normal
mode analysis. The associated eigenvalue problem was solved asymptotically in the
limit where PSI may arise (namely, for a small-amplitude uniform wave beam subject
to fine-scale perturbations under nearly inviscid conditions), but without assuming that
perturbations at half the beam frequency are the dominant components of the unstable
Floquet modes. Apart from assessing the validity of the earlier PSI models, this asymptotic
treatment also revealed a short-scale instability that, unlike PSI, involves a broadband
spectrum of frequency components. Importantly, this novel instability mechanism can
affect wave beams that are not susceptible to PSI.

In view of the findings of Fan & Akylas (2021) for wave beams in an unbounded
fluid, it is natural to ask whether a similar small-scale instability would apply to
internal wave modes propagating along a waveguide, such as the ocean thermocline. This
question is addressed here for propagating gravity wave modes in the simplest waveguide
configuration of a horizontal stratified fluid layer bounded by rigid walls. Background
rotation also is ignored.

In contrast to plane waves in an unbounded stratified fluid, there are only few prior
studies devoted to the stability of internal wave modes. Thorpe (1966) first showed that
wave modes in a continuously stratified fluid layer with a rigid bottom and a fixed or free
upper surface, can form resonant triads. The conditions for such triads require that the
horizontal wavevectors and the frequencies of the participating modes sum up to zero.
Davis & Acrivos (1967) presented experimental evidence and theoretical confirmation of
TRI for a propagating mode-1 wave in a thin stratified layer separating two homogeneous
fluid layers. In a follow-up laboratory experiment, Martin, Simmons & Wunsch (1972)
investigated the TRI of a mode-3 wave in a uniformly stratified fluid layer (constant
background buoyancy frequency) bounded by rigid walls. Their observations of unstable
disturbances generally are consistent with the theoretically predicted modes forming
resonant triads with the mode-3 wave.

In more recent related work, Joubaud et al. (2012) reported the first experimental
measurement of TRI growth rates for a mode-1 wave propagating along a uniformly
stratified fluid tank. Varma & Mathur (2017) examined theoretically resonant triads that
comprise two modes with the same frequency, in a stratified layer bounded by rigid
walls and also including background rotation. Their results recover the triad resonance
conditions of Thorpe (1966) and confirm that resonant triad interactions are more
likely to occur in non-uniform background stratification than a uniformly stratified fluid.
Sutherland & Jefferson (2020) explored the stability of mode-1 waves in a stratified layer
with rigid bottom and top and in the presence of background rotation, via numerical
simulations of an initial-value problem using small-amplitude noise as initial perturbation.
These simulations suggest that PSI is the dominant instability for uniform background
stratification but this may not be the case for other stratifications. Finally, Young, Tsang
& Balmforth (2008) developed a theory for near-inertial PSI, where the frequencies of the
subharmonic perturbations are assumed to be close to the inertial frequency, based on the
approximate equations of Young & Jelloul (1997). This theory predicts strong instability
for a mode-1 wave under conditions representative of the oceanic internal tide.
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Stability of internal gravity wave modes

The present stability analysis is based on the eigenvalue problem that governs
Floquet-mode perturbations in the moving frame where the basic wave mode is steady in
time and spatially periodic along the horizontal. It follows from this problem that the onset
of instability in the limit of small basic-state amplitude parameter (ε � 1), arises due to
TRI. The triad resonance conditions are consistent with Thorpe (1966), and the associated
O(ε) growth rate is computed for general background stratification from a certain 2 × 2
eigenvalue problem.

Attention then is focused on small-scale instabilities that involve perturbations
of high modal number and short wavelength relative to the basic wave mode,
assuming for simplicity constant background buoyancy frequency. The appropriate
small-scale instability mechanism hinges on how the perturbation scale, controlled
by a parameter μ � 1, compares to the basic-state amplitude ε: for ε � μ � 1
(α = μ/ε � 1) TRI reduces to PSI; however, as μ is further decreased holding ε

fixed, higher-frequency perturbations than the two subharmonics at half the basic-wave
frequency come into play, and when α = O(1) Floquet modes feature broadband
spectrum.

Similar to Fan & Akylas (2021), this broadening phenomenon is a result of the advection
of small-scale perturbations by the basic-state velocity field and can be ‘factored out’
by working with a set of ‘streamline coordinates’ in the frame of the basic wave. We
find that when α = O(1) PSI is replaced by a multi-mode resonance mechanism, which
has a stabilising effect and provides a short-scale cut-off to PSI. An important factor in
this stabilisation is the Lagrangian mean flow due to the ‘Stokes drift’ of the basic wave
mode (Thorpe 1968). The theoretical predictions are supported by numerical results from
solving the Floquet eigenvalue problem for a mode-1 basic state. Furthermore, estimates
of instability growth rates based on dimensional scales representative of the oceanic
internal tide, suggest that PSI and the inviscid cut-off discussed here could be relevant in
the field.

It appears that the present asymptotic analysis of small-scale instabilities of internal
wave modes can be extended to allow for non-uniform stratification and background
rotation. However, a wave mode with nearly twice the inertial frequency, where
near-inertial PSI becomes relevant, would require special treatment.

2. Floquet stability problem

Consider an inviscid, continuously stratified, horizontal fluid layer of uniform depth
bounded by rigid walls. This configuration supports a countable infinity of horizontally
propagating internal gravity wave modes (e.g. Yih 1979). The focus here is on
the stability of these modes to infinitesimal two-dimensional perturbations. We use
dimensionless variables with λ∗/2π as the length scale and 1/N∗ as the time scale.
Here, λ∗ denotes the wavelength in the horizontal (x) direction of the basic mode and
N∗ is a characteristic value of the background buoyancy frequency, which generally
is a function of the vertical coordinate z pointing upwards (antiparallel to gravity).
The fluid is assumed to be incompressible and the Boussinesq approximation will be
made. Incompressibility is satisfied automatically by working with a streamfunction
Ψ (x, z, t) such that Ψz and −Ψx are the horizontal and vertical velocity components,
respectively.

It is convenient for the stability analysis to make the basic wave steady by moving along
x with the wave speed c > 0. In this reference frame, the (linearised) equations governing
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the perturbation streamfunction ψ(x, z, t) and density ρ(x, z, t) read
D
Dt

∇2ψ − ρx + J(∇2Ψ̄, ψ) = 0, (2.1a)

D
Dt
ρ + N2ψx + J(ρ̄, ψ) = 0. (2.1b)

Here, Ψ̄ (x, z) is the basic-wave streamfunction (i.e.Ψ = Ψ̄ + ψ), ρ̄(x, z) is the basic-wave
density, N(z) is the background buoyancy frequency profile and

D
Dt

≡ ∂

∂t
− c

∂

∂x
+ J(·, Ψ̄ ), (2.2)

denotes the (linearised) advective time derivative, where J(a, b) = axbz − azbx is the
Jacobian. Furthermore, ψ obeys

ψx = 0 (z = 0,H), (2.3)

on the channel walls (z = 0,H), where H is the dimensionless fluid depth.
Before proceeding to the stability analysis, we specify {Ψ̄, ρ̄; c}. Our choice for basic

state is a finite-amplitude progressive wave mode with (normalised) wavelength 2π along
x and phase speed c, which generally is a function of the wave amplitude (Yih 1974). Such
finite-amplitude waves of permanent form are steady solutions of the nonlinear stratified
flow equations and need to be computed separately, by amplitude expansions (Thorpe
1968; Yih 1974) or numerically.

Our interest here is on the onset of instability, which occurs when the amplitude of the
basic state is small. Accordingly, we introduce the small-amplitude parameter ε,

ε = 2πU∗
λ∗N∗

� 1, (2.4)

where U∗ is a characteristic velocity of the basic wave. In this limit, {Ψ̄, ρ̄; c} may be
approximated as Yih (1974)

Ψ̄ = ε f̄n(z) cos x + O(ε2), (2.5a)

ρ̄ = ε
N2

cn
f̄n(z) cos x + O(ε2), (2.5b)

c = cn + O(ε2). (2.5c)

Here, the wave speed cn and mode shape f̄n(z) are the eigenvalue and eigenfunction
corresponding to a certain eigensolution (n = 1, 2, . . .) of the problem

d2 f̄n
dz2 +

(
N2

c2
n

− 1
)

f̄n = 0, (2.6a)

f̄n = 0 (z = 0,H). (2.6b)

It should be noted that for uniform background stratification (N = 1), the problem (2.6)
has the simple closed-form solution

f̄n = H
nπ

sin
nπ

H
z; cn = H

(n2π2 + H2)1/2
(n = 1, 2, . . .), (2.7a,b)

where f̄n has been normalised such that U∗ in (2.4) is the peak horizontal velocity of the
mode-n wave. Moreover, when N = 1 the assumed background flow conditions conform
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to ‘Long’s model’ for steady stratified flow (Dubreil-Jacotin 1932; Long 1953), so the
small-amplitude basic state (2.5) with f̄n and cn given by (2.7a,b) also satisfies the full
nonlinear equations of motion. Accordingly, in this instance it is permissible to use this
basic state in a stability analysis for any ε below the threshold for overturning εc = cn.

Returning now to the governing equations (2.1), we follow the procedure used in the
stability analysis of a Stokes surface gravity wave (e.g. McLean 1982): as the basic state
(2.5) is steady in t and 2π-periodic in x, we look for Floquet-mode solutions in the form

(ψ, ρ) = e−iσ t eipx
∞∑

m=−∞
(Qm(z),Rm(z)) eimx. (2.8)

Here, in keeping with a temporal stability analysis, p is a prescribed real wavenumber and
σ is a possibly complex frequency to be determined along with the Fourier coefficients
Qm and Rm. It should be noted that, without loss of generality, p can be restricted in the
range 0 ≤ p < 1; however, here we find it convenient to treat p as a free parameter (−∞ <

p < ∞).
Upon substituting (2.8) in (2.1), we first eliminate the density coefficients Rm(z) and then

simplify the equations for the streamfunction coefficients Qm(z) by using the O(1) balance
of terms to eliminate third-order z-derivatives at O(ε). Finally, Qm(z) are governed by the
infinite equation system (−∞ < m < ∞)

d2Qm

dz2 + ( p + m)2
(

N2

Ω2
m

− 1
)

Qm

= ε

2Ωm

(
K+

m Qm+1 + K−
m Qm−1 + D+

m
dQm+1

dz
+ D−

m
dQm−1

dz

)
+ O(ε2), (2.9)

where

K±
m = ( p + m ± 1)

{
N2 df̄n

dz

[
1
c2

n
+ p + m

cnΩm
− ( p + m ± 1)

Ωm±1

(
p + m
Ωm

+ p + m ± 1
Ωm±1

)]

∓ (N2)zf̄n

(
p + m
ΩmΩm±1

+ p + m ± 1
Ω2

m±1
∓ 1

c2
n

∓ p + m
cnΩm

)}
, (2.10a)

D±
m = ∓N2 f̄n

(
( p + m)( p + m ± 1)

ΩmΩm±1
+ ( p + m ± 1)2

Ω2
m±1

− 1
c2

n
− p + m

cnΩm

)
, (2.10b)

with

Ωm = σ + ( p + m)cn. (2.11)

Furthermore, in view of (2.3), Qm(z) satisfy the boundary conditions

Qm = 0 (z = 0,H). (2.12)

The equation system (2.9) along with the boundary conditions (2.12) constitute an
eigenvalue problem for σ = σr + iσi. Given that the governing equations (2.1) are real,
eigenvalues appear in complex conjugate pairs and σi /= 0 is sufficient for instability.
The following discussion focuses on solving the eigenvalue problem (2.9) and (2.12) for
0 < ε � 1 and understanding the various instability mechanisms in this limit.
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3. Triad resonance instability

3.1. Resonant triads
As expected, if the basic wave is absent (ε = 0), the eigenvalue problem (2.9) and (2.12)
recovers the free propagating modes in the fluid layer. Specifically, as the coefficients Qm
are entirely uncoupled when ε = 0, we write

Qm = qm,l(z; p + m) (l = 1, 2, . . .), (3.1)

for any given −∞ < m < ∞, with the rest of the Q being zero. Here, qm,l denote the
eigenfunctions of the problem

d2qm,l

dz2 +
(

N2

c2
m,l

− ( p + m)2
)

qm,l = 0, (3.2a)

qm,l = 0 (z = 0,H), (3.2b)

and c2
m,l are the corresponding eigenvalues, with

c2
m,l = Ω2

m

( p + m)2
(l = 1, 2, . . .). (3.3)

It should be noted that (3.3) are the dispersion relations of (the countable infinity of)
free propagating modes (l = 1, 2, . . .), and Ωm = ±( p + m)cm,l (with cm,l > 0) are the
frequencies (in the rest frame) of these modes at the wavenumber p + m. Hence, in view of
(2.11), for ε = 0, the stability eigenvalues σ are simply the (Doppler-shifted) frequencies
of these waves in the frame moving with cn,

σ = σ±≡ − ( p + m)cn ± ( p + m)cm,l (l = 1, 2, . . .). (3.4)

Next, we inquire into how the interaction with the underlying wave affects σ in the
small-amplitude limit (0 < ε � 1). According to (2.9), to leading order in ε, each Qm
is coupled to its nearest neighbours Qm±1 only. As this coupling is weak, it is natural
to attempt to solve the eigenvalue problem (2.9) and (2.12) approximately in an iterative
manner, starting from the known solution for ε = 0 (cf. (3.1)–(3.3)). Specifically, for any
given −∞ < m < ∞ and l = 1, 2, . . ., one may anticipate that

Qm = qm,l(z; p + m)+ O(ε2), Qm±1 = εq̂m±1,l(z)+ O(ε2), (3.5a,b)

with the rest of the Q being smaller than O(ε) and

σ = σ±+O(ε2). (3.6)

Here, qm,l and σ± are the free-mode eigenfunctions and (real) frequencies defined in (3.2)
and (3.4), respectively, and the correction terms q̂m±1,l satisfy the forced equations

d2q̂m±1,l

dz2 + ( p + m ± 1)2
(

N2

Ω2
m±1

− 1

)
q̂m±1,l = 1

2Ωm±1

(
K∓

m±1qm,l + D∓
m±1

dqm,l

dz

)
,

(3.7a)
subject to the boundary conditions

q̂m±1,l = 0 (z = 0,H). (3.7b)

According to (3.5a,b), to leading order, the interaction with the basic wave induces the
nearest two neighbours of Qm to O(ε). Furthermore, as indicated by (3.6), no instability is
predicted at O(ε).

961 A22-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.265


Stability of internal gravity wave modes

It is important to note, however, that the above (naive) approximation procedure breaks
down if Ω2

m±1/( p + m ± 1)2 in (3.7a) happens to coincide with a free-mode eigenvalue
(i.e. an eigenvalue c2

m±1,l of the problem (3.2)). Under this resonance condition, which
as discussed in the following may be interpreted as two free modes forming a resonant
triad with the underlying wave, the forced problems (3.7) generally cannot be solved, and
(3.5a,b)–(3.6) need to be revised. Moreover, in this instance it turns out that σi = O(ε), so
triad resonances are associated with the onset of instability in the limit ε � 1.

To analyse this TRI, without loss of generality (−∞ < p < ∞ is a free parameter),
suppose that (m = 0, l) and (m = 1, l + r) are resonant free modes, where l and l + r are
positive integers. Then, in view of (2.11) and (3.3), the corresponding eigenvalues c0,l and
c1,l+r must satisfy

(σ + pcn)
2 = p2c2

0,l, (3.8a)

(σ + ( p + 1)cn)
2 = ( p + 1)2c2

1,l+r. (3.8b)

Hence,
± pc0,l = −cn ± ( p + 1)c1,l+r, (3.9)

where the ± signs above can be chosen independently. Therefore, the wavenumbers k0 = p
and k1 = p + 1, along with the corresponding frequencies (in the rest frame) ω0 = ±pc0,l
and ω1 = ±( p + 1)c1,l+r of free modes that satisfy the resonance conditions (3.8), are
linked via

k1 − k0 = 1, ω1 ± ω0 = cn. (3.10a,b)

This confirms that such modes form a resonant triad with the basic wave as the latter
has (normalised) wavenumber 1 and frequency (in the rest frame) cn. Alternatively, in the
moving frame where the basic wave has zero frequency, the two resonant free modes have
the same frequency, σ , and the frequency condition in (3.10a,b) is met trivially.

3.2. TRI eigenvalue problem
For given l and r, conditions (3.8) determine specific (real) p = pc and σ = σc, say, at
which the triad conditions (3.10a,b) are met. (Equation (3.8) may admit multiple such
solutions.) Close to these critical values, we write

p = pc + p̂ε, σ = σc + λε, (3.11a,b)

where p̂ is a real O(1) wavenumber detuning and λ is a possibly complex eigenvalue
perturbation. In this neighbourhood, we seek solutions of the eigenvalue problem (2.9)
and (2.12) in the form

Q0 = A0q0,l(z; pc)+ εq̂0,l(z)+ O(ε2), (3.12a)

Q1 = A1q1,l+r(z; pc + 1)+ εq̂1,l+r(z)+ O(ε2), (3.12b)

with Q−1,Q2 = O(ε) and the rest of the Q (ε). Here, q0,l and q1,l+r are the eigenfunctions
corresponding to the resonant eigenvalues c0,l and c1,l+r of the problem (3.2), under the
normalisation ∫ H

0
N2q2

0,l dz =
∫ H

0
N2q2

1,l+r dz = 1, (3.13)

and A0,A1 are constants.
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Upon substituting (3.12) along with (3.11a,b) in (2.9) and (2.12), the O(1) balance of
terms is satisfied automatically. Next, the O(ε) corrections to Q0 and Q1 in (3.12) are to be
found by solving the forced problems

d2q̂0,l

dz2 +
(

N2

c2
0,l

− k2
0

)
q̂0,l = R0,l, (3.14a)

q̂0,l = 0 (z = 0,H), (3.14b)

and

d2q̂1,l+r

dz2 +
(

N2

c2
1,l+r

− k2
1

)
q̂1,l+r = R1,l+r, (3.15a)

q̂1,l+r = 0 (z = 0,H). (3.15b)

Here,

R0,l = 2A0q0,l

{
k0p̂ − N2 k2

0

ω2
0

(
p̂
k0

− λ+ cnp̂
ω0

)}

+ A1

2ω0

(
K+

0 q1,l+r + D+
0

dq1,l+r

dz

)
, (3.16a)

R1,l+r = 2A1q1,l+r

{
k1p̂ − N2 k2

1

ω2
1

(
p̂
k1

− λ+ cnp̂
ω1

)}

+ A0

2ω1

(
K−

1 q0,l + D−
1

dq0,l

dz

)
, (3.16b)

where k0 = pc, ω0 = σc + cnpc and k1 = pc + 1, ω1 = σc + cn( pc + 1) are the resonant
triad wavenumbers and frequencies (in the rest frame), and the constants K+

0 ,K−
1 ,D+

0 and
D−

1 are evaluated using (2.10) at p = pc and σ = σc.
Now, similar to the forced problems (3.7), we ask whether the forced problems (3.14) and

(3.15) can be solved, given that the corresponding homogeneous problems have non-trivial
solutions, namely the eigenfunctions q0,l(z; pc) and q1,l+r(z; pc + 1), respectively. It turns
out that, for (3.14) and (3.15) to be solvable, the forcing terms R0,l and R1,l+r must be
orthogonal to these homogeneous solutions:

∫ H

0
R0,lq0,l dz = 0,

∫ H

0
R1,l+rq1,l+r dz = 0. (3.17a,b)

The above solvability conditions are a particular instance of the Fredholm alternative (e.g.
Haberman 2012). Here, they are obtained by multiplying both sides of (3.14a) and (3.15a)
with q0,l(z; pc) and q1,l+r(z; pc + 1), respectively, and integrating in z from 0 to H. After
two integrations by parts and using the boundary conditions (3.14b) and (3.15b), it follows
that the left-hand sides of these equations vanish; thus, the right-hand sides must do so as
well, implying (3.17a,b).
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Stability of internal gravity wave modes

Inserting the forcing terms (3.16) in the solvability conditions (3.17a,b) yields the
following 2 × 2 eigenvalue problem for λ

(λ− c0
gp̂)A0 = E1A1, (3.18a)

(λ− c1
gp̂)A1 = E2A0. (3.18b)

Here, using (2.10), the interaction coefficients E1 and E2 can be brought to the form

E1 = ω2
0

4k2
0

{
(k1I1 + I3)

(
k2

1

ω2
1

+ k0k1

ω0ω1
− k0

cnω0
− 1

c2
n

)

+k1I2

(
k0

ω0ω1
+ k1

ω2
1

− k0

cnω0
− 1

c2
n

)}
, (3.19a)

E2 = ω2
1

4k2
1

{
(k0I1 − I4)

(
k2

0

ω2
0

+ k0k1

ω0ω1
− k1

cnω1
− 1

c2
n

)

−k0I2

(
k1

ω0ω1
+ k0

ω2
0

+ k1

cnω1
+ 1

c2
n

)}
, (3.19b)

where the constants I1, . . . , I4 are given by

I1 =
∫ H

0
N2 f̄ ′

nq0,lq1,l+r dz, (3.20a)

I2 =
∫ H

0
(N2)′ f̄nq0,lq1,l+r dz, (3.20b)

I3 =
∫ H

0
N2 f̄nq0,lq′

1,l+r dz, (3.20c)

I4 =
∫ H

0
N2 f̄nq′

0,lq1,l+r dz = −(I1 + I2 + I3), (3.20d)

with prime denoting derivative with respect to z. Finally, the constants c0
g and c1

g in (3.18)
are associated with the wavenumber detuning in (3.11a,b). From (3.17a,b), also making
use of (3.13), these constants can be expressed as

c0
g = −cn + ω0

k0

(
1 − ω2

0

∫ H

0
q2

0,l dz
)
, (3.21a)

c1
g = −cn + ω1

k1

(
1 − ω2

1

∫ H

0
q2

1,l+r dz
)
, (3.21b)

and they represent the group velocities (in the frame moving with the basic wave) of the
modes that form a resonant triad with the basic wave. (Ignoring their interaction with the
underlying wave, these modes would be free propagating waves, so a wavenumber shift p̂ε
would cause a frequency shift cgp̂ε in (3.11a,b); i.e. λ = c0

gp̂, c1
gp̂, consistent with (3.18)

for E1 = E2 = 0.)
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T.R. Akylas and C. Kakoutas

Based on the eigenvalue problem (3.18), instability (λ = λr + iλi complex) requires
E1E2 < 0. Moreover, under this condition, instability is present within the O(ε)
wavenumber window p = pc + p̂ε specified by

p̂2 < − 4E1E2

(c1
g − c0

g)
2 , (3.22)

with the maximum growth rate

σi |max= ελi |max= ε(−E1E2)
1/2, (3.23)

realised at p̂ = 0 ( p = pc).

3.3. The case N = 1
In the case of uniform background stratification (N = 1), the eigenfunctions qm,l of the
eigenvalue problem (3.2) are sines that depend on the modal number l but not on the
wavenumber p + m,

qm,l = C sin
lπ
H

z (l = 1, 2, . . .), (3.24)

where C is a normalisation constant, and the free-mode dispersion relations (3.3) read

Ω2
m = ( p + m)2

( p + m)2 + (lπ/H)2
(l = 1, 2, . . .). (3.25)

Thus, the eigenfunctions of possible resonant modes (m = 0, l) and (m = 1, l + r), under
the normalisation (3.13), take the form

q0,l =
(

2
H

)1/2

sin
lπ
H

z, q1,l+r =
(

2
H

)1/2

sin
(l + r)π

H
z. (3.26a,b)

Next, based on (3.19) and (3.20), we compute the interaction coefficients E1,E2 in the TRI
eigenvalue problem (3.18). These are linear combinations of I1, . . . , I4 and, according to
(3.20b), I2 ≡ 0 when N is constant. Moreover, using (3.26a,b) and the basic-wave mode
(2.7a,b), it follows from (3.20) that the rest of the I vanish as well, unless r = ±n. Thus, in
the case of uniform background stratification, TRI requires that perturbations, apart from
the resonant triad conditions (3.10a,b), also satisfy

l1 − l0 = ±n, (3.27)

where n is the basic-wave modal number (cf. (2.7a,b)) and l0, l1 denote the modal numbers
of the perturbations. This condition is reminiscent of that satisfied along the vertical by the
wavevectors of resonant triads in the TRI of propagating plane waves in an unbounded fluid
(e.g. Mied 1976). Here, however, the basic state as well as the perturbations are standing
waves in the vertical; moreover, in contrast to the triad conditions (3.10a,b), the constraint
(3.27) applies only when N is constant. The fact that uniform background stratification
limits possible resonant triad interactions of wave modes was also noted by Varma &
Mathur (2017).
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Stability of internal gravity wave modes

To be specific, we satisfy (3.27) by taking l0 = l and l1 = l + n, where l = 1, 2, . . ..
Then, from (3.19), making also use of (2.7a,b), (3.20) and (3.26a,b), we find that

E1 = 1
8n
(nk0 − l)

ω2
0

k2
0

{
k2

1

ω2
1

+ k0k1

ω0ω1
− k0

cnω0
− 1

c2
n

}
, (3.28a)

E2 = 1
8n
(nk0 − l)

ω2
1

k2
1

{
k2

0

ω2
0

+ k0k1

ω0ω1
− k1

cnω1
− 1

c2
n

}
. (3.28b)

Here, in keeping with (3.10a,b), k0 = pc, k1 = pc + 1, ω0 = σc + cnk0 and ω1 = σc +
cnk1 are the triad wavenumbers and frequencies, where p = pc and σ = σc are obtained
from the resonance conditions (3.8). In view of (3.25), for N = 1 these conditions take the
form

ω2
0 = p2

c

p2
c + (lπ/H)2

, (3.29a)

ω2
1 = ( pc + 1)2

( pc + 1)2 + ((l + n)π/H)2
. (3.29b)

Expressions (3.28) agree with Martin et al. (1972) after converting to their
non-dimensional variables.

3.4. Comparison with Joubaud et al. (2012)
The laboratory experiments of Joubaud et al. (2012) employed a wave generator at one
end of a uniformly stratified fluid tank to excite monochromatic mode-1 waves which
eventually became unstable due to TRI as they propagated along the tank. For each basic
wave, Joubaud et al. (2012) verified experimentally that the unstable disturbances satisfied
the triad resonance conditions and also measured the instability growth rate. Furthermore,
they compared the observed TRI growth rates with theoretical estimates based on the TRI
of a sinusoidal plane wave in an unbounded fluid.

Here, we make a brief comparison of these observations with the theoretically predicted
TRI for mode-1 (n = 1) waves in a uniformly stratified fluid (N = 1). Specifically, we
focus on the basic wave corresponding to cn = 0.95, H = 9.2 and ε = 0.14 (in our
dimensionless variables), for which Joubaud et al. (2012) report the strongest TRI. In
this instance, the resonance conditions (3.29) for l = 9 yield k0 = 1.3, ω0 = −0.39,
k1 = 2.3 and ω1 = 0.56. This resonant triad is a good approximation to the frequencies
ω0 = −0.38, ω1 = 0.57 as well as the wavenumbers of the observed unstable disturbances
in figures 1 and 2 of Joubaud et al. (2012). The growth rate found from (3.23) and
(3.28) for this triad is σi|theor = 6.8 × 10−2 whereas the measured growth rate is σi|exp ≈
5.3 × 10−2. This fair agreement seems reasonable given that the theory does not account
for viscous damping so σi|theor is expected to overpredict σi|exp.

4. Short-scale disturbances

We now focus on small-scale instabilities that involve disturbances with high modal
number (l � n) and large wavenumber ( p � 1) relative to the basic wave mode. In
this limit, although the eigenvalue problem (3.2) generally cannot be solved exactly by
analytical means, it is possible to compute the eigenfunctions (3.1) and dispersion relations
(3.3) of free modes via the WKB approximation. For simplicity, however, here and in
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T.R. Akylas and C. Kakoutas

the rest of the paper, we assume uniform background stratification (N = 1), where exact
expressions are available (cf. (3.24)–(3.25)).

4.1. Parametric subharmonic instability
To analyse short-scale instabilities, we introduce a parameter μ that controls the
perturbation vertical length scale and also we scale the horizontal wavenumber p in
sympathy with 1/μ,

μ = H
πl
, p = κ

μ
, (4.1a,b)

where κ = O(1) is a re-scaled wavenumber. Thus, conditions (3.29) for determining p =
pc and σ = σc at which the onset of TRI occurs for given l, take the form

κ2
c

(
1
ω2

0
− 1

)
= 1, (4.2a)

(κc + μ)2

(
1
ω2

1
− 1

)
=
(

1 + nπ

H
μ
)2
. (4.2b)

These re-scaled conditions specify κc = μpc and ω0 = σc + cnpc (ω1 = ω0 + cn), for
given μ.

In the short-scale limit of interest here, (4.2) are solved by expanding in μ � 1

κc = κ0 + μΔκ + · · · , ω0 = −cn

2
+ μΔω0 + · · · , (4.3a)

where

κ0 = ± cn

(4 − c2
n)

1/2 , Δκ = 1
2

(nπ

H
κ0 − 1

)
, Δω0 = − c3

n

8κ3
0
Δκ. (4.3b)

Therefore, in this limit, TRI involves two short-scale modes with frequencies (in the rest
frame) half the basic-wave frequency: ω0 = −cn/2 and ω1 = cn/2. This is the hallmark
of the widely studied PSI of sinusoidal plane internal waves and plane wave beams in an
unbounded uniformly stratified fluid (Staquet & Sommeria 2002; Dauxois et al. 2018).

Using (4.3), we may compute asymptotically the interaction coefficients E1,E2 in (3.28)
of the TRI eigenvalue problem (3.18), in the PSI regime. Specifically,

E1 ∼ − 1
16(1 − cn2)1/2

{(1 − c2
n)

3/2 ± (2c2
n + 1)(1 − c2

n/4)
1/2}, (4.4a)

E2 ∼ −E1, (4.4b)

where the ± sign corresponds to κ0 = ±cn/(4 − c2
n)

1/2 in (4.3b). This confirms that
E1E2 < 0 so, in view of (3.23), PSI is always possible. Furthermore, numerical results
(see § 6) indicate that PSI (for the + sign in (4.4), which provides a higher growth rate) is
the dominant resonant triad instability.

4.2. Beyond PSI
Recent asymptotic analysis of the Floquet stability eigenvalue problem for internal wave
beams (Fan & Akylas 2021) pointed out that, as the length scale of the perturbation is
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Stability of internal gravity wave modes

decreased (for small but fixed beam amplitude), Floquet modes become ‘broadband’: they
develop higher-frequency components than the two subharmonics at half the basic wave
frequency which are dominant in PSI. This broadening of the frequency spectrum had
been noted in earlier numerical work (Onuki & Tanaka 2019) and was attributed to the
advection of the perturbation by the underlying wave beam. By adopting a frame riding
with the wave beam, Fan & Akylas (2021) were able to ‘factor out’ this advection effect
and reveal a novel small-scale instability mechanism, distinct from PSI.

Motivated by these findings, we now return to expansion (3.12) and examine the
behaviour of the O(ε) Fourier coefficients Q−1 and Q2 in the short-scale limit (μ � 1). It
should be noted that, because ω0 ∼ −cn/2 and ω1 ∼ cn/2 in this limit according to (4.3a),
these Fourier coefficients are associated with the ±3cn/2 frequency components (in the
rest frame) of the Floquet mode (2.8).

Specifically, from (2.9) and (2.12) combined with (3.12a), Q−1 satisfies the forced
equation

d2Q−1

dz2 + (k0 − 1)2
(

1
Ω2

−1
− 1

)
Q−1 = εR−1, (4.5a)

subject to
Q−1 = 0 (z = 0,H), (4.5b)

where

R−1 = A0

2Ω−1

(
K+

−1q0,l + D+
−1

dq0,l

dz

)
. (4.6)

In general, the boundary-value problem (4.5) is solvable asΩ−1 = ω0 − cn does not match
the frequency of a free mode at the wavenumber k−1 ≡ k0 − 1; i.e. k−1,Ω−1 do not satisfy
the dispersion relation (3.25) for any (integer) modal number l. Rather than determining
the detailed solution, however, here it suffices to look at the asymptotic behaviour of Q−1
for μ � 1. Briefly, upon combining (2.7a,b), (2.10) and (3.26a,b) with (4.1), (4.3) and
Ω−1 ∼ −3cn/2, we find from (4.6)

R−1 ∼ 16
9

A0

c3
n

(
2
H

)1/2 κ2
0
μ3

{
κ0 cos

nπ

H
z sin

z
μ

+ H
nπ

sin
nπ

H
z cos

z
μ

}
. (4.7)

Therefore, the solution of problem (4.5), in the limit μ � 1, schematically, takes the form

Q−1 ∼ ε

μ

{
A+

−1 sin
(

z
μ

+ nπ

H
z
)

+ A−
−1 sin

(
z
μ

− nπ

H
z
)}

, (4.8)

where A±
−1 are certain O(1) constants. Thus, Q−1 = O(ε/μ) and, by a similar procedure,

it can be deduced that Q2 = O(ε/μ) as well.
The fact that Q−1,Q2 = O(ε/μ) in the joint limit ε, μ � 1 suggests that the coupling

of the two resonant free modes in (3.12) with the basic wave, actually is O(ε/μ). Hence,
the assumption of weak coupling, which enables these modes to form a resonant triad with
the basic wave, is valid when μ � ε only. If this condition is violated (as will be the case
for sufficiently fine-scale perturbations), all Fourier coefficients in the Floquet mode (2.8),
formally, are expected to be equally important and the disturbance frequency spectrum
would be broadband. A similar situation was encountered in the Floquet stability analysis
of internal wave beams by Fan & Akylas (2021). The treatment of broadband instability of
internal wave modes below follows along the lines of this earlier study.
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5. Broadband instability

5.1. Streamline coordinates
Returning to the governing equations (2.1), the dominant coupling of the perturbations
to the basic wave in the limit ε, μ � 1 derives from the Jacobian term in (2.2) which
accounts for the advection due to the underlying wave velocity field. This effect can be
‘factored out’ by working with a new set of coordinates, (x, z) → (ξ, ζ ), defined by

ξ = x + 1
c

∫ x
Ψ̄z dx′, ζ = z − Ψ̄

c
. (5.1a,b)

It should be noted that the curves ζ = constant coincide with the streamlines of the
background steady flow (−c + Ψ̄z,−Ψ̄x), so switching to these ‘streamline coordinates’
is analogous to the change of frame used by Fan & Akylas (2021).

For uniform background stratification, in particular, according to (2.5) and (2.7a,b),

Ψ̄ = εψ̄ ≡ ε
H
nπ

sin
nπ

H
z cos x, (5.2)

so the coordinates (5.1a,b) are given by

ξ = x + ε

cn
cos

nπ

H
z sin x, ζ = z − ε

cn

H
nπ

sin
nπ

H
z cos x. (5.3a,b)

We remark that the basic wave streamfunction Ψ̄ is 2π-periodic in the transformed
horizontal coordinate ξ , a property that is utilised in the following Floquet stability
analysis (see § 5.2). This holds because Ψ̄ in (5.2) does not involve a term uniform in
x; i.e. there is no (Eulerian) horizontal mean flow (under more general flow conditions
where such a mean flow may be present, the definition of ξ in (5.1a,b) would need to be
reconsidered).

Upon implementing the transformation (5.3a,b), the advective derivative (2.2) takes the
form

D
Dt

→ ∂

∂t
− cn

∂

∂ξ
+ ε2

cn

(
ψ̄2

z −
(nπ

H

)2
ψ̄2

x

)
∂

∂ξ
. (5.4)

Thus, the Jacobian term in (2.2) has been eliminated correct to O(ε). Furthermore, using
(5.2), the O(ε2) residual is expressed as

ε2

2cn

(
cos 2

nπ

H
ζ + cos 2ξ

) ∂

∂ξ
+ O(ε3). (5.5)

The first term represents the advection effect due to the ‘Stokes drift’ (Thorpe 1968),

Ūs = ε2

2cn
cos 2

nπ

H
ζ, (5.6)

which here coincides with the Lagrangian horizontal mean flow associated with the
basic wave, because the Eulerian mean flow vanishes. This effect makes an important
contribution to the eigenvalue problem governing broadband instability (see § 5.3). The
second term in (5.5), by contrast, is relatively insignificant and could have been eliminated
by modifying via an O(ε2) term the definition of ξ in (5.3a,b).
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Stability of internal gravity wave modes

In terms of ξ and ζ , the governing equations (2.1) now read

D
Dt

∇2ψ − ρξ + ε

cn

{
ψ̄z

(
1
cn
ψ − ρ

)
ξ

− ψ̄x

(
1
cn
ψ − ρ

)
ζ

}

+ ε2

c3
n

(
ψ̄2

z −
(nπ

H

)2
ψ̄2

x

)
ψξ = 0, (5.7a)

D
Dt
ρ + ψξ − ε2

c2
n

(
ψ̄2

z −
(nπ

H

)2
ψ̄2

x

)
ψξ = 0, (5.7b)

where

∇2 →
(

1 + ε

cn
ψ̄z

)2
∂2

∂ξ2 +
(

1 − ε

cn
ψ̄z

)2
∂2

∂ζ 2

+ 2
ε

cn
ψ̄x

((nπ

H

)2 − 1 − ε

c3
n
ψ̄z

)
∂2

∂ξ∂ζ
+ ε

c3
n

(
ψ̄
∂

∂ζ
+ ψ̄xz

∂

∂ξ

)

+ ε2

c2
n
ψ̄2

x

(
∂2

∂ζ 2 +
(nπ

H

)4 ∂2

∂ξ2

)
. (5.8)

In addition, as the channel walls z = 0,H correspond to the streamlines ζ = 0,H, the
boundary conditions (2.3) translate into

ψξ = 0 (ζ = 0,H). (5.9)

5.2. Floquet stability analysis
As the coefficients of the transformed equations (5.7) are steady in t and 2π-periodic in ξ ,
we seek Floquet-mode solutions similar to (2.8),

(ψ, ρ) = e−iσ teipξ
∞∑

m=−∞

(
Q̃m(ζ ), R̃m(ζ )

)
eimξ , (5.10)

where the Fourier coefficients Q̃m, R̃m (−∞ < m < ∞) and the eigenvalue σ are to be
determined.

Here, our interest is on short-scale perturbations (μ � 1) in the regime

α ≡ μ

ε
= O(1), (5.11)

where, as argued in § 4.2, PSI is replaced by a broadband instability. To analyse this
‘distinguished limit’, we work with the scaled wavenumber κ = pμ = O(1) defined in
(4.1a,b) and the ‘stretched’ coordinate

Z = ζ

μ
. (5.12)

Furthermore, we re-scale Q̃m → μQ̃m (Z, ζ ) so that

dQ̃m

dζ
→ ∂Q̃m

∂Z
+ μ

∂Q̃m

∂ζ
. (5.13)

It should be noted that, in view of the transformation (5.3a,b), exp(ipξ) in (5.10) involves
all harmonics in x. Moreover, for p = O(1/μ) and ε/μ = O(1) these harmonics contribute
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at the same level. Thus, in the regime (5.11) the modes (5.10) are ‘broadband’ even though,
as discussed below, the m = 0, 1 components are dominant in the Fourier series in ξ .

Now, we derive the equations governing R̃m, Q̃m and σ by substituting (5.10) in (5.7)
and implementing the scalings (5.11)–(5.13). Specifically, also making use of (5.5), (5.7b)
yields correct to O(ε)

ΩmR̃m = κQ̃m + ε

{
αm + κ2

2αcnΩm
cos 2

nπ

H
ζ

}
Q̃m

+ ε
κ2

4αcn

{
Q̃m+2

Ωm+2
+ Q̃m−2

Ωm−2

}
, (5.14)

where Ωm is given in (2.11). Next, using (5.5), (5.8) and upon eliminating R̃m via (5.14),
we obtain from (5.7a) the following equation system for Q̃m (−∞ < m < ∞) correct to
O(ε){(

∂

∂Z
+ αε

∂

∂ζ

)2

+ (κ + αmε)2
(

1
Ω2

m
− 1

)}
Q̃m

+ ε

{
cos 2

nπ

H
ζGmQ̃m − cos

nπ

H
ζ(G+

mQ̃m+1 + G−
mQ̃m−1)

+ sin
nπ

H
ζ

(
H+

m
∂Q̃m+1

∂Z
− H−

m
∂Q̃m−1

∂Z

)
+ L+

mQ̃m+2 + L−
mQ̃m−2

}
= 0, (5.15)

where

Gm = κ3

αcnΩ3
m
, (5.16a)

G±
m=κ

2

cn

(
2 − 1

Ω2
m±1

− 1
2ΩmΩm±1

)
, (5.16b)

H±
m = κ

cn

(
H
nπ

)((nπ

H

)2 − 1 + 1
2ΩmΩm±1

)
, (5.16c)

L±
m= κ3

4αcnΩmΩm±2

(
1
Ωm

+ 1
Ωm±2

)
. (5.16d)

5.3. Eigenvalue problem for α = O(1)
Using the equation system (5.15), we now derive the stability eigenvalue problem
appropriate to the asymptotic regime (5.11). To this end, κ and Ω0 are assumed to be in
the vicinity of the critical values κ = κc and Ω0 = ω0 in (4.3) where the triad resonance
conditions (4.2) are met for μ � 1. Accordingly, we write

κ = κ0 + (αΔκ + s)ε, Ω0 = −cn

2
+ (αΔω0 + λ)ε, (5.17)

where κ0, Δκ and Δω0 are given in (4.3b), s = O(1) is a real wavenumber detuning and
λ is a generally complex eigenvalue to be determined. It should be noted that, because

961 A22-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.265


Stability of internal gravity wave modes

μ = αε according to (5.11), the O(αε) terms in (5.17) are the O(μ) corrections to κc and
ω0 in (4.3a). The eigenvalue λ hinges on the detuning s and, more importantly, the resonant
interaction of perturbations with the basic wave, which can cause instability.

For κ , Ω0 and Ω1 = Ω0 + cn in keeping with (5.17), the solution of (5.15) consistent
with the boundary conditions (5.9) takes the form

Q̃0 =
∞∑

r=−∞
A0,r sin

(
Z + rπ

H
ζ
)

+ O(ε2), (5.18a)

Q̃1 =
∞∑

r=−∞
A1,r sin

(
Z + rπ

H
ζ
)

+ O(ε2), (5.18b)

with the rest of Q̃m(m /= 0, 1)O(ε) or smaller. The coefficients A0,r and A1,r (−∞ <

r < ∞) are determined by substituting (5.18) in (5.15) for m = 0, 1 and collecting terms
proportional to sin(Z + (rπ/H)ζ ) correct to O(ε). Specifically, making also use of (5.16)
and (5.17), we find{

λ± s(1 − c2
n/4)

3/2 − α

2
rπ
H

cn(1 − c2
n/4)

}
A0, r

= Ẽ±A1,r+n + Ẽ∓A1,r−n ± D̃
α
(A0,r−2n + A0,r+2n), (5.19a){

λ∓ s(1 − c2
n/4)

3/2 + α

2
(r − n)π

H
cn(1 − c2

n/4)
}

A1, r

= −Ẽ∓A0,r+n − Ẽ±A0,r−n ± D̃
α
(A1,r−2n + A1,r+2n). (5.19b)

Here

Ẽ±=− 1
16(1 − cn2)1/2

{(1 − c2
n)

3/2 ± (2c2
n + 1)(1 − c2

n/4)
1/2}, (5.20a)

D̃ = 1
8(1 − c2

n/4)1/2
, (5.20b)

where the upper (lower) sign in (5.19) and (5.20) corresponds to the positive (negative)
value of κ0 in (4.3b).

The equation system (5.19) is the desired stability eigenvalue problem for short-scale
perturbations (μ � 1) in the broadband regime μ = O(ε). This problem, in contrast to
the 2 × 2 system (3.18) that governs TRI, formally involves infinite number of mode
amplitudes A0,r and A1,r (−∞ < r < ∞): when μ = O(ε) all modes with wavenumber
k0 ∼ κ0/μ(k1 = k0 + 1) and modal number (H/π)/μ+ r are nearly resonant and
participate in the interaction with the basic wave. Of particular note are the interaction
terms proportional to D̃/α in the system (5.19); in view of (5.20b) and (4.3b), ±D̃/α =
k0ε/4cn so these terms arise from the ‘Doppler shift’ k0Ūs of the perturbations by the
Stokes drift Ūs in (5.6).

Finally, as expected when ε � μ � 1(α � 1), the broadband instability eigenvalue
problem (5.19) reduces to the PSI limit of the TRI eigenvalue problem (3.18). Specifically,
in the limit α � 1, A0,0 and A1,n dominate the rest of the amplitudes, so (5.19) simplifies
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to

{λ± s(1 − c2
n/4)

3/2}A0,0 = Ẽ±A1,n, (5.21a)

{λ∓ s(1 − c2
n/4)

3/2}A1,n = −Ẽ±A0,0. (5.21b)

Returning to (5.20a) and noting that Ẽ± and −Ẽ± match the asymptotic expressions (4.4)
for the TRI interaction coefficients E1 and E2, respectively, the 2 × 2 eigenvalue problem
(5.21) agrees with (3.18) in the PSI limit.

6. Numerical results

Here we compare the theoretical predictions for TRI, PSI and broadband instability with
numerical results from solving the full Floquet eigenvalue problem for the n = 1 wave
mode in a uniformly stratified (N = 1) fluid layer. Having in mind the oceanic internal
tide, we choose the horizontal length scale λ∗/2π = 20 km, the background buoyancy
frequency N∗ = 2 × 10−3 s−1 and the fluid depth as 4 km so the dimensionless depth
H = 0.2. It should be noted though that the assumption of constant N, made here for
analytical convenience, is not realistic for the oceans and also that our analysis ignores the
Earth’s rotation.

The differential equation system (2.9) for the Floquet modes (2.8) was tackled by
expanding Qm(z) in Fourier sine series in 0 < z < H consistent with the boundary
conditions (2.12)

Qm(z) =
∞∑

j=1

Bm,j sin
jπ
H

z. (6.1)

Thus, (2.9) and (2.12) reduce to an algebraic eigenvalue problem for Bm,j(−∞ < m <

∞, j ≥ 1) and σ . After truncating to a finite, but large enough to ensure convergence,
number of Fourier modes, this problem was solved using standard MATLAB algorithms.
The resolution used typically involved 10 modes in x and 20 modes in z.

The results below are for the critical wavenumber p = pc, computed from the triad
resonance conditions (3.29) as a function of modal number l (and n = 1). It should be
noted that (3.29) determine two solution branches pc(l) in which pc > 0 or pc < 0. Here,
we report on pc > 0, which features a higher TRI growth rate (3.23). Furthermore, this
choice of p provides the dominant instability (highest growth rate σi) for the values of the
amplitude parameter 10−4 ≤ ε ≤ 6 × 10−3 used in our computations. (This range of ε is
below the threshold εc = 6.35 × 10−2 for overturning of the mode-1 basic state.)

Figure 1 compares the instability growth rates obtained from the TRI stability problem
(3.18) for 3 ≤ l ≤ 30 (and p̂ = 0) with those computed from the Floquet eigenvalue
problem for the same l and ε = 10−4. TRI provides an excellent approximation near the
onset of instability (ε � 1), and for l � 10 the TRI growth rate (3.23) is already very close
to the PSI limit (4.4).

It was argued in § 5 that in the short-scale limit (μ = H/(πl) � 1) PSI applies if α =
μ/ε � 1, but when α = O(1) it is replaced by broadband instability. As a check of this
theoretical prediction, figure 2 plots as a function of 0 < α < 5 the growth rate predicted
by the eigenvalue problem (5.19) (with s = 0 and the upper sign which applies to κ0 > 0)
that pertains to PSI and broadband instability, together with numerical results computed
from the Floquet problem for the same range of α and various ε. Specifically, for ε =
10−4, 10−3 and 3 × 10−3, the computed growth rates are well approximated by PSI when
α � 2, but for α less than about 1.5 the growth rate exhibits a sharp drop and the instability
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Figure 1. Comparison of TRI instability growth rate (×) as a function of modal number l with numerical
results (◦) from the full Floquet stability problem for ε = 10−4. The dotted line indicates the PSI limit (4.4).
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Figure 2. Comparison of theoretical instability growth rate (—) based on the eigenvalue problem (5.19),
as a function of α = μ/ε, with numerical results from the full Floquet stability problem for ε =
10−4 (◦), 10−3 (�), 3 × 10−3 (�) and 6 × 10−3 (�). The dotted line indicates the PSI limit (4.4).

is severely suppressed. Furthermore, for these ε the theoretical predictions based on (5.19)
are in good quantitative agreement with the numerical computations. For the relatively
larger value of ε = 6 × 10−3, when α is decreased the growth rate behaves in a similar
manner as for the smaller ε, but there is only qualitative agreement between theoretical
and numerical results.

The stabilisation of PSI in figure 2 is caused by the terms ±D̃/α in the eigenvalue
problem (5.19) that represent the effect of the Stokes drift of the basic wave (cf. (5.6)). This
becomes apparent from the relative magnitudes of the interaction coefficients Ẽ± and D̃ in
(5.19). Specifically, from (2.7a,b), the mode-1 speed c1 = 0.0635 so, according to (5.20),
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Figure 3. Relative magnitudes of Fourier coefficients Bm,j in (6.1), normalised by the coefficient of largest
magnitude, for ε = 10−3: (a) α = 21.2 (l = 3); (b) α = 1.68 (l = 38); (c) α = 0.637 (l = 100).

Ẽ− = 7.89 × 10−4 is much smaller than Ẽ+ = −1.25 × 10−1 and D̃ = 1.25 × 10−1. As
a result, if the effect of the Stokes drift is ignored (by setting D̃ = 0 in (5.19)), A0,r and
A1,r+1 practically are coupled to each other only. The multi-mode resonance interaction
thus degenerates to a set of (essentially uncoupled) resonant triads (−∞ < r < ∞) and
the dominant instability arises for r = 0, which recovers PSI.

For the dimensional scales chosen here, the (dimensionless) maximum instability
growth rate σi ≈ 0.12ε in figure 2 translates to an e-folding time of roughly 5 ×
10−2/ε days. As an example, taking ε = 3 × 10−3, which corresponds to U∗ = 12 cm s−1

for the peak horizontal velocity of the mode-1 basic state, this e-folding time is 16 days:
about twice the estimate found by Young et al. (2008) for near-inertial PSI.

As discussed in § 5, the transition from PSI to broadband instability is associated
with the broadening of the Floquet mode spectrum as the disturbance scale controlled
by μ is decreased for given ε. This is illustrated in figure 3, which shows the relative
magnitudes of the Fourier coefficients Bm,j in (6.1) for ε = 10−3 and three values of
l = 3 (μ = 2.12 × 10−2, α = 21.2), l = 38 (μ = 1.68 × 10−3, α = 1.68) and l = 100
(μ = 6.37 × 10−4, α = 0.637). For α = 21.2 (figure 3a), B0,l and B1,l+1 are clearly
dominant, as expected in TRI. For α = 1.68 (figure 3b), B0,l and B1,l+1 are still dominant
in keeping with PSI, but the neighbouring Fourier coefficients B−1,l+1 and B2,l associated
with the frequency components ±3cn/2 (in the rest frame) as well as B0,l+2 and B1,l−1
are starting to gain strength. Finally, for α = 0.637 (figure 3c), the PSI assumption is no
longer valid as several Fourier coefficients are of comparable magnitude to B0,l and B1,l+1;
this transition to a ‘broadband’ spectrum is accompanied by a significantly reduced growth
rate relative to PSI for α � 1 (figure 2).

7. Concluding remarks

We have made a systematic stability analysis of internal gravity wave modes in a stratified
fluid layer bounded by rigid walls. The temporal stability of Floquet modes is governed by
an eigenvalue problem that involves an infinite system of differential equations subject to
inviscid conditions on the walls. Examining this problem in the limit of small basic-state
amplitude (ε � 1) shows that the onset of instability is triggered by perturbations that
form resonant triads with the underlying wave mode, and the associated O(ε) growth
rate is determined by the 2 × 2 eigenvalue problem (3.18). In general, the resonant triad
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conditions (cf. (3.10a,b)) require that the (horizontal) wavevectors and the frequencies of
the perturbations sum up to the wavevector and frequency of the underlying wave mode,
consistent with Thorpe (1966). The case of uniform background stratification (constant N)
is exceptional, as the modal numbers of the perturbations also need to satisfy the constraint
(3.27) for TRI to be possible.

A particular case of TRI, where resonant triads comprise fine spatial-scale perturbations
with half the basic wave frequency, is the so-called PSI. Owing to its potential geophysical
significance, PSI has attracted considerable interest in the context of sinusoidal plane
waves and finite-width beams in an unbounded, uniformly stratified fluid. In an effort
to understand the role of PSI for propagating internal wave modes in a waveguide setting,
we have studied the Floquet eigenvalue problem for a small-amplitude basic wave mode
(ε � 1) subject to short-scale (μ � 1) disturbances, assuming for simplicity constant N
background stratification. Our analysis reveals that the nature of the instability mechanism
in this joint limit hinges on the perturbation scale, controlled by μ, relative to the
basic-state amplitude ε: PSI applies only when ε � μ � 1 (α = μ/ε � 1); asμ is further
decreased for fixed ε, higher-frequency perturbations than the two subharmonics at half
the basic-wave frequency come into play, and when α = O(1) Floquet modes feature
broadband spectrum.

A similar situation was encountered in a recent Floquet stability analysis of finite-width
wave beams (Fan & Akylas 2021), which confirmed an earlier claim (Onuki & Tanaka
2019) that the broadening of the Floquet-mode spectrum is due to the advection of the
perturbation by the underlying wave beam. Furthermore, by riding on a frame moving
with the beam velocity field, Fan & Akylas (2021) ‘factored out’ this advection effect and
revealed a novel instability which features broadband frequency spectrum. Following an
analogous approach, switching to the ‘streamline coordinates’ (5.1a,b) enabled us to factor
out the advection due to the underlying-mode velocity field and obtain the eigenvalue
problem (5.19) which pertains to the broadband regime α = O(1).

Unlike the broadband instability of a wave beam, which is of the resonant triad type after
the advection effect has been removed, the instability mechanism found here for α = O(1)
is a multi-mode resonance. This fundamental difference is reflected in the eigenvalue
problem (5.19), which involves infinite number of mode amplitudes. In particular, the
interaction terms in (5.19) that account for the effects of the O(ε2) Lagrangian mean flow
due to the Stokes drift (5.6) of the basic mode, are responsible for the sharp drop of the
instability growth rate below the PSI limit when α is less than about 1.5 (figure 2).

Based on the results presented in § 6, the broadening of the Floquet-mode spectrum as
α is decreased (figure 3) has a strong stabilising effect that provides a short-scale cut-off
to PSI. A similar cut-off effect for μ � 1 would be expected due to viscous dissipation,
given that the viscous decay rate of internal waves is O(ν/μ2) where ν is the inverse
Reynolds number (see, e.g., Lighthill 1978). Although viscous effects would be dominant
in a laboratory setting, the inviscid mechanism discussed here would prevail in a nearly
inviscid environment where ν/μ2 � ε; i.e. ν � ε3 for α = O(1). Assuming a kinematic
viscosity ν∗ = 10−6 m2 s−1 and taking ε = 10−3, this condition is met for the oceanic
scales chosen in § 6.
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