ON THE RELATION BETWEEN THE LOGARITHMIC AND BOREL-TYPE SUMMABILITY METHODS

BY
D. BORWEIN AND B. WATSON

1. Introduction. Suppose throughout that $\left\{s_{n}\right\}$ is a sequence of real numbers, $\lambda>-1, \alpha>0$, and β is real. Let N be any non-negative integer such that $\alpha N+\beta>1$.

We are concerned primarily with the logarithmic summability method L and the Borel-type method (B, α, β). Some known results involve the Abel-type summability method A_{λ}. The methods are defined as follows. Let

$$
\begin{aligned}
& L(x)=\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1}, \\
& S(x)=\alpha e^{-x} \sum_{n=N}^{\infty} \frac{s_{n} x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}, \\
& \sigma(x)=(1-x)^{\lambda+1} \sum_{n=0}^{\infty} s_{n}\binom{n+\lambda}{n} x^{n} .
\end{aligned}
$$

If $L(x)(\sigma(x))$ exists for $|x|<1$ and tends to s as $x \rightarrow 1-$, then we say that $\left\{s_{n}\right\}$ is L-convergent (A_{λ}-convergent) to s and write $s_{n} \rightarrow s(L)\left(s_{n} \rightarrow s\left(A_{\lambda}\right)\right.$).

If $S(x)$ exists for $x \geq 0$ and tends to s as $x \rightarrow \infty$, then we say that $\left\{s_{n}\right\}$ is (B, α, β)-convergent to s and write $s_{n} \rightarrow s(B, \alpha, \beta)$.

The methods A_{0} and $(B, 1,1)$ are the ordinary Abel and Borel exponential methods respectively.

A summability method P is said to be regular if $s_{n} \rightarrow s(P)$ whenever $s_{n} \rightarrow s$. The summability methods L, A_{λ}, and (B, α, β) are all regular. In addition, the following propositions are known.

Proposition 1. If $s_{n} \rightarrow s(B, \alpha, \beta)$ and $\sum_{n=0}^{\infty} s_{n} x^{n}$ converges for $|x|<1$, then $s_{n} \rightarrow s\left(A_{\lambda}\right)$.

Proposition 2. If $s_{n} \rightarrow s\left(A_{\lambda}\right)$, then $s_{n} \rightarrow s(L)$.
The first of these propositions was proved by Shawyer and Yang in [6], and the second by Borwein in [1]. The converse of each of the above propositions is false.

[^0]Propositions 1 and 2 yield:
Proposition 3. If $s_{n} \rightarrow s(B, \alpha, \beta)$ and $\sum_{n=0}^{\infty} s_{n} x^{n}$ converges for $|x|<1$, then $s_{n} \rightarrow s(L)$.
The purpose of this paper is to investigate the reverse problem. That is, assuming the L-convergence of a sequence, what Tauberian condition will imply its (B, α, β)-convergence?
2. The main theorem. Suppose that ϕ is a continuous and unboundedly increasing function on [a, ∞).

A real-valued function f on $[a, \infty)$ is said to be slowly decreasing with respect to ϕ if $\lim \inf (f(y)-f(x)) \geq 0$ as $y>x \rightarrow \infty$ and $\phi(y)-\phi(x) \rightarrow 0$, i.e. if, for each $\varepsilon>0$, there exist positive numbers δ and M such that $f(y)-f(x)>-\varepsilon$ whenever $y>x \geq M$ and $\phi(y)-\phi(x)<\delta$.

For the A_{λ} and (B, α, β) methods, Shawyer and Yang established the following Tauberian result in [7].

Proposition 4. If $s_{n} \rightarrow s\left(A_{\lambda}\right)$ and $S(x)$ is slowly decreasing with respect to $\log x$, then $s_{n} \rightarrow s(B, \alpha, \beta)$.

We established the following result in [4] for the L and A_{λ} methods.
Proposition 5. If $s_{n} \rightarrow s(L)$ and $\sigma(x)$ is slowly decreasing with respect to $\log \log x$, then $s_{n} \rightarrow s\left(A_{\lambda}\right)$.

In the present paper we prove the following Tauberian theorem for the L and (B, α, β) methods.

Theorem 1. If $s_{n} \rightarrow s(L)$ and $S(x)$ is slowly decreasing with respect to $\log \log x$, then $s_{n} \rightarrow s(B, \alpha, \beta)$.

3. Preliminary results.

Lemma 1. $s_{n} \rightarrow s(L)$ if and only if $\frac{\alpha(n+1)}{\alpha n+\beta-1} s_{n} \rightarrow s(L)$.
This result is a simple consequence of Lemma 1 in [2].
Let

$$
J(t)=\frac{1}{\log t} \int_{a}^{\infty} \frac{e^{-u / t}}{u} S(u) d u \quad \text { for } \quad t \geq a>1
$$

Lemma 2. (i) If $s_{n} \rightarrow s(L)$, then $J(t) \rightarrow s$ as $t \rightarrow \infty$.
(ii) If $L(x)$ exists for $|x|<1$ and $J(t) \rightarrow s$ as $t \rightarrow \infty$, then $s_{n} \rightarrow s(L)$.

Proof. Suppose that $L(x)$ exists for $|x| \leq 1$. Then $s_{n}=O\left(c^{n}\right)$ for $c>1$, and hence $S(x)$ exists for all $x \geq 0$.

Let

$$
I(t)=\frac{1}{\log t} \int_{0}^{a} \frac{e^{-u / t}}{u} S(u) d u \quad \text { for } t \geq a
$$

Then

$$
|I(t)| \leq \frac{1}{\log t} \int_{0}^{a}\left|\frac{S(u)}{u}\right| d u \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

since $S(u)=O\left(u^{\alpha N+\beta-1}\right)$ in $(0, a)$ and $\alpha N+\beta-1>0$.
Next we have, for $t \geq a$,

$$
\begin{aligned}
I(t)+J(t)= & \frac{1}{\log t} \int_{0}^{\infty} \frac{e^{-u / t}}{u} \alpha e^{-u} \sum_{n=N}^{\infty} \frac{s_{n} u^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} d u \\
= & \frac{1}{\log t} \sum_{n=N}^{\infty} \frac{\alpha s_{n}}{(\alpha n+\beta-1) \Gamma(\alpha n+\beta-1)} \\
& \times \int_{0}^{\infty} e^{-u(1+t) / t} u^{\alpha n+\beta-2} d u \\
= & \frac{1}{\log t} \sum_{n=N}^{\infty} \frac{\alpha(n+1) s_{n}}{(\alpha n+\beta-1)(n+1)}\left(\frac{t}{1+t}\right)^{\alpha n+\beta-1} \\
= & \left(\frac{t}{1+t}\right)^{\beta-1-\alpha} \frac{-\log (1-T)}{\log t} \cdot \frac{-1}{\log (1-T)} \\
& \times \sum_{n=N}^{\infty} \frac{\alpha(n+1)}{\alpha n+\beta-1} \frac{s_{n}}{n+1} T^{n+1}
\end{aligned}
$$

where $T=[t /(1+t)]^{\alpha}$, the inversion being justified since the final series is absolutely convergent. Also $(t / 1+t)^{\beta-1-\alpha}$ and $-(\log (1-T) / \log t)$ tend to 1 as $t \rightarrow \infty$. In view of Lemma 1, the desired results follow.

Lemma 3. Let $\gamma>1, t>1, a>0$. Then
(ii)

$$
\begin{equation*}
\frac{1}{\log t} \int_{t}^{\infty} \frac{e^{-u / t}}{u} d u \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{i}
\end{equation*}
$$

$$
\frac{1}{\log t} \int_{a}^{t} \frac{e^{-u / t}}{u} d u \rightarrow 1 \quad \text { as } \quad t \rightarrow \infty
$$

(iii)

$$
0<\int_{a}^{t}\left(e^{-u / t}-e^{-u / t}\right) \frac{d u}{u}<1
$$

and
(iv)

$$
\frac{1}{\log t} \int_{t}^{t v} \frac{e^{-u / t v}}{u} d u \rightarrow \gamma-1 \text { as } t \rightarrow \infty .
$$

Proof. (i) $0<\frac{1}{\log t} \int_{t}^{\infty} \frac{e^{-u / t}}{u} d u=\frac{1}{\log t} \int_{1}^{\infty} \frac{e^{-v}}{v} d v \rightarrow 0 \quad$ as $\quad t \rightarrow \infty$.
(ii) $\frac{1}{\log t} \int_{a}^{t} \frac{e^{-u / t}}{u} d u=\frac{1}{\log t} \int_{a / t}^{1} \frac{e^{-v}}{v} d v=e^{-a / t}\left(1-\frac{\log a}{\log t}\right)+\frac{1}{\log t}$

$$
\times \int_{a / t}^{1} e^{-v} \log v d v \rightarrow 1 \quad \text { as } \quad t \rightarrow \infty .
$$

(iii) By the mean-value theorem,

$$
\begin{aligned}
0<\int_{a}^{t}\left(e^{-u / t \gamma}-e^{-u / t}\right) \frac{d u}{u} & \leq \int_{a}^{t}\left(\frac{u}{t}-\frac{u}{t^{\gamma}}\right) \frac{d u}{u} \\
& <\left(\frac{1}{t}-\frac{1}{t^{\gamma}}\right) \int_{0}^{t} d u \\
& =1-t^{1-\gamma}<1 .
\end{aligned}
$$

(iv) By parts (ii) and (iii),

$$
\begin{aligned}
\frac{1}{\log t} \int_{t}^{t \gamma} \frac{e^{-u / \tau}}{u} d u= & \frac{\gamma}{\log t^{\gamma}} \int_{a}^{t \gamma} \frac{e^{-u / t \gamma}}{u} d u-\frac{1}{\log t} \int_{a}^{t} \frac{e^{-u / t}}{u} d u-\frac{1}{\log t} \\
& \times \int_{a}^{t}\left(e^{-u / t \gamma}-e^{-u / t}\right) \frac{d u}{u} \rightarrow \gamma-1 \text { as } t \rightarrow \infty .
\end{aligned}
$$

4. A general Tauberian result.

Theorem 2. Suppose that the following conditions hold:
(1) $K(t, u)$ is defined, real-valued, and non-negative for $t>a, u \geq a$; moreover, $\int_{a}^{\infty} K(t, u) d u$ exists in the sense of Lebesgue for each $t>a$,
(2) $\int_{a}^{\infty} K(t, u) d u \rightarrow 1$ as $t \rightarrow \infty$,
(3) f is real-valued and continuous on $[a, \infty)$,
(4) $F(t)=\int_{a}^{\infty} K(t, u) f(u) d u$ exists in the Cauchy-Lebesgue sense for each $t>a$,
(5) f is slowly decreasing with respect to ϕ,
(6) $\phi(t)-\phi(t-1) \rightarrow 0$ as $t \rightarrow \infty$,
(7) $\int_{a}^{x} K(t, u) d u \rightarrow 0$ whenever $t \geq x \rightarrow \infty$ and $\phi(t)-\phi(x) \rightarrow \infty$,
(8) $\int_{x}^{\infty} K(t, u)(\phi(u)-\phi(x)) d u \rightarrow 0$ whenever $x \geq t \rightarrow \infty$ and $\phi(x)-\phi(t) \rightarrow \infty$, and
(9) $F(t)=O(1)$ for $t>a$.

Then $f(u)=O(1)$ for $u>a$.
This result was established in [3].
5. Proof of Theorem 1. Set $a=1+e^{e}$,

$$
\begin{aligned}
K(t, u) & = \begin{cases}\frac{1}{\log t} \frac{e^{-u / t}}{u} & \text { for } t \geq a, u \geq a, \\
0 & \text { otherwise },\end{cases} \\
\phi(t) & =\log \log t \\
f(u) & \text { for } t \geq a, \\
& \text { for } u \geq a .
\end{aligned}
$$

Then

$$
\int_{a}^{\infty} K(t, u) f(u) d u=J(t) \text { for } t \geq a .
$$

We first show that the conditions of Theorem 1 imply that $S(u)=O(1)$ for $u>a$.

Conditions (1), (3), (5), and (6) clearly hold, and $\int_{a}^{\infty} K(t, u) d u \rightarrow 1$ as $t \rightarrow \infty$ by parts (i) and (ii) of Lemma 3. Furthermore, the L-convergence of $\left\{s_{n}\right\}$ and Lemma 2 guarantee that $F(t)$ exists and is bounded for $t>a$. In view of Theorem 2, to establish the boundedness of $S(u)$ in (a, ∞) it suffices to prove that (7) and (8) hold.

To show that (7) holds, we observe that

$$
\int_{a}^{\infty} K(t, u) d u \leq \frac{1}{\log t} \int_{a}^{x} \frac{d u}{u}=\frac{\log x-\log a}{\log t} \rightarrow 0 \quad \text { as } \quad t \geq x \rightarrow \infty
$$

and

$$
\log \log t-\log \log x \rightarrow \infty
$$

To show that (8) holds, we note that

$$
\begin{aligned}
\int_{x}^{\infty} K(t, u)(\phi(u)-\phi(x)) d u & =\frac{1}{\log t} \int_{x}^{\infty} \frac{e^{-u / t}}{u}(\log \log u-\log \log x) d u \\
& \leq \frac{1}{\log t} \int_{x}^{\infty} \frac{e^{-u / t}}{u}\left(\frac{u-x}{x \log x}\right) d u \\
& \leq \frac{1}{x \log x \log t} \int_{x}^{\infty} e^{-u / t} d u \\
& =\frac{t e^{-x / t}}{x \log x \log t} \rightarrow 0 \text { as } x \geq t \rightarrow \infty .
\end{aligned}
$$

Suppose, as we may without loss of generality, that $s_{n} \rightarrow 0(L)$. Then, by Lemma 2, J(t) $\rightarrow 0$ as $t \rightarrow \infty$. It remains to show that $S(u) \rightarrow 0$ as $u \rightarrow \infty$.

Assign $\varepsilon>0$. Since $S(u)$ is slowly decreasing with respect to ϕ, there exist numbers $x \geq a$ and $\delta>0$ such that $S(u)-S(t)>-\varepsilon$ whenever $u>t \geq x$ and $\log \log u-\log \log t<\delta$. Equivalently, setting $\gamma=e^{\delta}$,

$$
\begin{equation*}
S(t)-\varepsilon<S(u) \quad \text { whenever } \quad x<t<u<t^{\gamma} . \tag{10}
\end{equation*}
$$

Relation (10) implies that, for $t>x$,

$$
\begin{aligned}
I_{1} & =\frac{1}{\log t} \int_{t}^{t v} \frac{e^{-u / t v}}{u}(S(t)-\varepsilon) d u \\
& \leq \frac{1}{\log t} \int_{t}^{t v} \frac{e^{-u / t v}}{u} S(u) d u=I_{2}
\end{aligned}
$$

Now, by Lemma 3, and the fact that $S(u)=O(1)$,

$$
\begin{aligned}
I_{2}= & \gamma J\left(t^{\gamma}\right)-J(t)-\frac{\gamma}{\log t^{\gamma}} \int_{t^{\nu}}^{\infty} \frac{e^{-u / v}}{u} S(u) d u \\
& -\frac{1}{\log t} \int_{a}^{t} \frac{e^{-u / t v}-e^{-u / t}}{u} S(u) d u+\frac{1}{\log t} \int_{t}^{\infty} \frac{e^{-u / t}}{u} S(u) d u \\
= & o(1) \text { as } t \rightarrow \infty .
\end{aligned}
$$

Further, by part (iv) of Lemma 3,

$$
I_{1}=(S(t)-\varepsilon)(\gamma-1+o(1))
$$

Hence

$$
S(t)-\varepsilon \leq \frac{I_{2}}{\gamma-1+o(1)}=o(1)
$$

and therefore

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\limsup } S(t) \leq \varepsilon \tag{11}
\end{equation*}
$$

Rewriting (10) we get

$$
\begin{equation*}
S(u)<S(t)+\varepsilon \quad \text { whenever } \quad x<t^{1 / \gamma}<u<t . \tag{12}
\end{equation*}
$$

Relation (12) implies that, for $t^{1 / \gamma} \geq x$,

$$
\begin{aligned}
I_{3} & =\frac{1}{\log t} \int_{t^{1 / /}}^{t} \frac{e^{-u / t}}{u} S(u) d u \\
& \leq \frac{1}{\log t} \int_{t^{1 / \gamma}}^{t} \frac{e^{-u / t}}{u}(S(t)+\varepsilon) d u=I_{4}
\end{aligned}
$$

By Lemma 3 (with t replaced by $t^{1 / \gamma}$) and the fact that $S(u)=O(1)$,

$$
\begin{aligned}
I_{3}= & J(t)-\frac{1}{\gamma} J\left(t^{1 / \gamma}\right)-\frac{1}{\log t} \int_{t}^{\infty} \frac{e^{-u / t}}{u} S(u) d u \\
& -\frac{1}{\log t} \int_{a}^{t^{1 / \gamma}} \frac{e^{-u / t}-e^{-u / t^{1 / \gamma}}}{u} S(u) d u+\frac{1}{\log t} \int_{t^{1 / \gamma}}^{\infty} \frac{e^{-u / t^{1 / \gamma}}}{u} S(u) d u \\
= & o(1) \text { as } t \rightarrow \infty .
\end{aligned}
$$

Also

$$
I_{4}=(S(t)+\varepsilon)\left(1-\frac{1}{\gamma}+o(1)\right)
$$

Hence

$$
S(t)+\varepsilon \geq \frac{I_{3}}{1-1 / \gamma+o(1)}=o(1)
$$

and therefore

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\lim \inf } S(t) \geq-\varepsilon \tag{13}
\end{equation*}
$$

It follows from (11) and (13) that $S(t) \rightarrow 0$ as $t \rightarrow \infty$, and this completes the proof.

References

1. D. Borwein, On methods of summability based on power series, Proc. Royal Soc. Edinburgh 64 (1957), 342-349.
2. -, A logarithmic method of summability, Journal London Math. Soc. 33 (1958), 212-220.
3. - and B. Watson, Tauberian theorems on a scale of Abel-type summability methods, Journal für die Reine und Angewandte Mathematik 298 (1978), 1-7.
4. -, Tauberian theorems between the logarithmic and Abel-type summability methods, submitted for publication.
5. G. H. Hardy, Divergent Series, Oxford (1949).
6. B. L. R. Shawyer and G. S. Yang, On the relation between the Abel-type and Borel-type methods of summability, Proc. Amer. Math. Soc. 26 (1970), 323-328.
7. -, Tauberian relations between the Abel-type and the Borel-type methods of summability, Manuscripta Math. 5 (1971), 341-357.

The University of Western Ontario London, Ontario, Canada

Memorial University of Newfoundland
St. John's, Newfoundland, Canada

[^0]: Supported in part by the National Research Council of Canada, Grants A-2983 and A-4646
 Received by the editors August 14, 1978.

