
1

History of Moduli Problems

The moduli spaces of smooth or stable projective curves of genus g ≥ 2 are,
quite possibly, the most studied of all algebraic varieties.

The aim of this book is to generalize the moduli theory of curves to surfaces
and to higher dimensional varieties. In this chapter, we aim to outline how this
is done, and, more importantly, to explain why the answer for surfaces is much
more complicated than for curves. On the positive side, once we get the moduli
theory of surfaces right, the higher dimensional theory works the same.

Section 1.1 is a quick review of the history of moduli problems, culminating
in an outline of the basic moduli theory of curves. A’Campo et al. (2016) is
a very good overview. Reading some of the early works on moduli, including
Riemann, Cayley, Klein, Hilbert, Siegel, Teichmüller, Weil, Grothendieck, and
Mumford gives an understanding of how the modern theory relates to the ear-
lier works. See Kollár (2021b) for an account that emphasizes the historical
connections.

In Section 1.2, we outline how the theory should unfold for higher dimen-
sional varieties. Details of going from curves to higher dimensions are given
in the next two sections. Section 1.3 introduces canonical models, which are
the basic objects of moduli theory in higher dimensions. Starting from stable
curves, Section 1.4 leads up to the definition of stable varieties, their higher
dimensional analogs. Then we show, by a series of examples, why flat families
of stable varieties are not the correct higher dimensional analogs of flat fami-
lies of stable curves. Finding the correct replacement has been one of the main
difficulties of the whole theory.

While the moduli theory of curves serves as our guideline, it also has many
good properties that do not generalize. Sections 1.5–1.8 are devoted to exam-
ples that show what can go wrong with moduli theory in general, or with stable
varieties in particular.
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4 History of Moduli Problems

First, in Section 1.5, we show that the simple combinatorial recipe of going
from a nodal curve to a stable curve has no analog for surfaces. Next we give
a collection of examples showing how easy it is to end up with rather horrible
moduli problems. Hypersurfaces and other interesting examples are discussed
in Section 1.6, as are alternative compactifications of the moduli of curves
in Section 1.7. Section 1.8 illustrates the differences between fine and coarse
moduli spaces.

Two major approaches to moduli – the geometric invariant theory of Mum-
ford and the Hodge theory of Griffiths – are mostly absent from this book. Both
of these are very powerful, and give a lot of information in the cases when they
apply. They each deserve a full, updated treatment of their own. However, so
far neither gave a full description of the moduli of surfaces, much less of higher
dimensional varieties. It would be very interesting to develop a synthesis of the
three methods and gain better understanding in the future.

1.1 Riemann, Cayley, Hilbert, and Mumford

Let V be a “reasonable” class of objects in algebraic geometry, for instance, V
could be all subvarieties of Pn, all coherent sheaves on Pn, all smooth curves
or all projective varieties. The aim of the theory of moduli is to understand all
“reasonable” families of objects in V, and to construct an algebraic variety (or
scheme, or algebraic space) whose points are in “natural” one-to-one corre-
spondence with the objects in V. If such a variety exists, we call it the moduli
space of V, and denote it by MV. The simplest, classical examples are given
by the theory of linear systems and families of linear systems.

1.1 (Linear systems) Let X be a smooth, projective variety over an algebrai-
cally closed field k and L a line bundle on X. The corresponding linear system
is

LinSys(X, L) = {effective divisors D such that OX(D) ' L}.

The objects in LinSys(X, L) are in natural one-to-one correspondence with
the points of the projective space P

(
H0(X, L)∨

)
which is traditionally denoted

by |L|. (We follow the Grothendieck convention for P as in Hartshorne (1977,
sec.II.7).) Thus, for every effective divisor D such that OX(D) ' L, there is a
unique point [D] ∈ |L|.

Moreover, this correspondence between divisors and points is given by a
universal family of divisors over |L|. That is, there is an effective Cartier divisor
UnivL ⊂ |L|×X with projection π : UnivL → |L| such that π−1[D] = D for every
effective divisor D linearly equivalent to L.
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1.1 Riemann, Cayley, Hilbert, and Mumford 5

The classical literature never differentiates between the linear system as a
set and the linear system as a projective space. There are, indeed, few reasons
to distinguish them as long as we work over a fixed base field k. If, however,
we pass to a field extension K ⊃ k, the advantages of viewing |L| as a k-variety
appear. For any K ⊃ k, the set of effective divisors D defined over K such
that OX(D) ' L corresponds to the K-points of |L|. Thus the scheme-theoretic
version automatically gives the right answer over every field.

1.2 (Jacobians of curves) Let C be a smooth projective curve (or Riemann sur-
face) of genus g. As discovered by Abel and Jacobi, there is a variety Jac◦(C)
of dimension g whose points are in natural one-to-one correspondence with
degree 0 line bundles on C. As before, the correspondence is given by a uni-
versal line bundle Luniv → C × Jac◦(C), called the Poincaré bundle. That is, for
any point p ∈ Jac◦(C), the restriction of Luniv to C × {p} is the degree 0 line
bundle corresponding to p.

Unlike in (1.1), the universal line bundle Luniv is not unique (and need not
exist if the base field is not algebraically closed). This has to do with the fact
that while an automorphism of the pair D ⊂ X that is trivial on X is also trivial
on D, any line bundle L → C has automorphisms that are trivial on C: we can
multiply every fiber of L by the same nonzero constant.

1.3 (Cayley forms and Chow varieties) Cayley (1860, 1862) developed a
method to associate a hypersurface in the Grassmannian Gr(P1,P3) to a curve
in P3. The resulting moduli spaces have been used, but did not seem to have
acquired a name. Chow understood how to deal with reducible and multi-
ple varieties, and proved that one gets a projective moduli space; see Chow
and van der Waerden (1937). The name Chow variety seems standard, we
use Cayley–Chow for the correspondence that was discovered by Cayley. See
Section 3.1 for an outline and Kollár (1996, secs.I.3–4) for a modern treatment.

Let k be an algebraically closed field and X a normal, projective k-variety.
Fix a natural number m. An m-cycle on X is a finite, formal linear combination∑

aiZi where the Zi are irreducible, reduced subvarieties of dimension m and
ai ∈ Z. We usually assume tacitly that all the Zi are distinct. An m-cycle is
called effective if ai ≥ 0 for every i.

The points of the Chow variety Chowm(X) are in “natural” one-to-one
correspondence with the set of effective m-cycles on X. (Since we did not
fix the degree of the cycles, Chowm(X) is not actually a variety, but a
countable disjoint union of projective, reduced k-schemes.) The point of
Chowm(X) corresponding to a cycle Z =

∑
aiZi is also usually denoted by

[Z].
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6 History of Moduli Problems

As for linear systems, it is best to describe the “natural correspondence” by
a universal family. The situation is, however, more complicated than before.

There is a family (or rather an effective cycle) Univm(X) on Chowm(X) ×
X with projection π : Univm(X) → Chowm(X) such that for every effective
m-cycle Z =

∑
aiZi,

(1.3.1) the support of π−1[Z] is ∪iZi, and
(1.3.2) the fundamental cycle (4.61.1) of π−1[Z] equals Z if ai = 1 for every i.

If the characteristic of k is 0, then the only problem in (2) is a clash between
the traditional cycle-theoretic definition of the Chow variety and the scheme-
theoretic definition of the fiber, but in positive characteristic the situation is
more problematic; see Kollár (1996, secs.I.3–4).

An example of a “perfect” moduli problem is the theory of Hilbert schemes,
introduced in Grothendieck (1962, lect.IV). See Mumford (1966), (Kollár,
1996, I.1–2) or Sernesi (2006, sec.4.3) or Section 3.1 for a summary.

1.4 (Hilbert schemes) Let k be an algebraically closed field and X a projective
k-scheme. Set

H ilb(X) = {closed subschemes of X}.

Then there is a k-scheme Hilb(X), called the Hilbert scheme of X, whose
points are in a “natural” one-to-one correspondence with closed subschemes
of X. The point of Hilb(X) corresponding to a subscheme Y ⊂ X is frequently
denoted by [Y]. There is a universal family Univ(X) ⊂ Hilb(X) × X such that
(1.4.1) the first projection π : Univ(X)→ Hilb(X) is flat, and
(1.4.2) π−1[Y] = Y for every closed subscheme Y ⊂ X.

The beauty of the Hilbert scheme is that it describes not just subschemes, but
all flat families of subschemes as well. To see what this means, note that for any
morphism g : T → Hilb(X), by pull-back we obtain a flat family of subschemes
T ×Hilb(X) Univ(X) ⊂ T × X. It turns out that every family is obtained this way:
(1.4.3) For every T and closed subscheme Z ⊂ T × X that is flat over T , there

is a unique gZ : T → Hilb(X) such that Z = T ×Hilb(X) Univ(X).

This takes us to the functorial approach to moduli problems.

1.5 (Hilbert functor and Hilbert scheme) Let X → S be a morphism of
schemes. Define the Hilbert functor of X/S as a functor that associates to a
scheme T → S the set
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1.1 Riemann, Cayley, Hilbert, and Mumford 7

H ilbX/S (T ) =
{
subschemes Z ⊂ T ×S X that are flat and proper over T

}
.

The basic existence theorem of Hilbert schemes then says that, if X → S is
quasi-projective, there is a scheme HilbX/S such that for any S scheme T ,

H ilbX/S (T ) = MorS
(
T,HilbX/S

)
.

Moreover, there is a universal family π : UnivX/S → HilbX/S such that the
above isomorphism is given by pulling back the universal family.

We can summarize these results as follows:

Principle 1.6 π : UnivX/S → HilbX/S contains all the information about
proper, flat families of subschemes of X/S , in the most succinct way.

This example leads us to a general definition:

Definition 1.7 (Fine moduli spaces) Let V be a “reasonable” class of projec-
tive varieties (or schemes, or sheaves, or . . . ). In practice “reasonable” may
mean several restrictions, but for the definition we only need the following
weak assumption:
(1.7.1) Let K ⊃ k be a field extension. Then a k-variety Xk is in V iff XK :=

Xk ×Spec k Spec K is in V.
Following (1.5), define the corresponding moduli functor that associates to a
scheme T the set

VarietiesV(T ) :=


Flat families X → T such that

every fiber is in V,
modulo isomorphisms over T .

 (1.7.2)

We say that a scheme ModuliV is a fine moduli space for the functorVarietiesV,
if the following holds:
(1.7.3) For every scheme T , pulling back gives an equality

VarietiesV(T ) = Mor
(
T,ModuliV

)
.

Applying the definition to T = ModuliV gives a universal family
u : UnivV → ModuliV. Setting T = Spec K, where K is a field, we see that
the K-points of ModuliV correspond to the K-isomorphism classes of objects
in V.

We consider the existence of a fine moduli space as the ideal possibility.
Unfortunately, it is rarely achieved.

Next we see what happens with the simplest case, for smooth curves.
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8 History of Moduli Problems

1.8 (Moduli functor and moduli space of smooth curves) Following (1.7) we
define the moduli functor of smooth curves of genus g as

Curvesg(T ) :=


Smooth, proper families S → T ,
every fiber is a curve of genus g,
modulo isomorphisms over T .


It turns out that there is no fine moduli space for curves of genus g. Every

curve C with nontrivial automorphisms causes problems; there cannot be any
point [C] corresponding to it in a fine moduli space (see Section 1.8).

It was gradually understood that there is some kind of an object, denoted by
Mg, and called the coarse moduli space (or simply moduli space) of curves of
genus g, that comes close to being a fine moduli space.

For elliptic curves, we get M1 ' A
1, and the moduli map is given by the j-

invariant, as was known to Dedekind and Klein; see Klein and Fricke (1892).
They also knew that there is no universal family over M1. The theory of abelian
integrals due to Abel, Jacobi, and Riemann does the same for all curves, though
in this case a clear moduli-theoretic interpretation seems to have been done
only later; see the historical sketch at the end of Shafarevich (1974), Siegel
(1969, chap.4), or Griffiths and Harris (1978, chap.2) for modern treatments.
For smooth plane curves, and more generally for smooth hypersurfaces in any
dimension, the invariant theory of Hilbert produces coarse moduli spaces. Still,
a precise definition and proof of existence of Mg appeared only in Teichmüller
(1944) in the analytic case and in Mumford (1965) in the algebraic case. See
A’Campo et al. (2016) or Kollár (2021b) for historical accounts.

1.9 (Coarse moduli spaces) Mumford (1965)
As in (1.7), let V be a “reasonable” class. When there is no fine moduli

space, we still can ask for a scheme that best approximates its properties.
We look for schemes M for which there is a natural transformation

TM : Varietiesg(∗) −→ Mor(∗,M).

Such schemes certainly exist: for instance, if we work over a field k, then we
can take M = Spec k. All schemes M for which TM exists form an inverse sys-
tem which is closed under fiber products. Thus, as long as we are not unlucky,
there is a universal (or largest) scheme with this property. Though it is not
usually done, it should be called the categorical moduli space.

This object can be rather useless in general. For instance, fix n, d and let Hn,d

be the class of all hypersurfaces of degree d in Pn+1
k , up to isomorphisms. We

see in (1.56) that a categorical moduli space exists and it is Spec k.
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1.1 Riemann, Cayley, Hilbert, and Mumford 9

To get something more like a fine moduli space, we require that it give a one-
to-one parametrization, at least set theoretically. Thus we say that a scheme
ModuliV is a coarse moduli space for V if the following hold:
(1.9.1) there is a natural transformation of functors

ModMap: VarietiesV(∗) −→ Mor(∗,ModuliV),

(1.9.2) ModuliV is universal satisfying (1), and
(1.9.3) for any algebraically closed field K ⊃ k, we get a bijection

ModMap: VarietiesV(Spec K)
'
−→ Mor(Spec K,ModuliV) = ModuliV(K).

1.10 (Moduli functors versus moduli spaces) While much of the early work
on moduli, especially since Mumford (1965), put the emphasis on the con-
struction of fine or coarse moduli spaces, recently the focus shifted toward the
study of the families of varieties, that is, toward moduli functors and moduli
stacks. The main task is to understand all “reasonable” families. Once this is
done, the existence of a coarse moduli space should be nearly automatic. The
coarse moduli space is not the fundamental object any longer, rather it is only
a convenient way to keep track of certain information that is only latent in the
moduli functor or stack.

1.11 (Compactifying Mg) While the basic theory of algebraic geometry is
local, that is, it concerns affine varieties, most really interesting and important
objects in algebraic geometry and its applications are global, that is, projective
or at least proper.

The moduli spaces Mg are not compact, in fact the moduli functor of smooth
curves discussed so far has a definitely local flavor. Most naturally occurring
smooth families of curves live over affine schemes, and it is not obvious how
to write down any family of smooth curves over a projective base. For many
reasons it is useful to find geometrically meaningful compactifications of Mg.
The answer to this situation is to allow not just smooth curves, but also certain
singular curves in our families.

Concentrating on one-parameter families, we have the following:

Question 1.11.1 Let B be a smooth curve, B◦ ⊂ B an open subset, and π◦ : S ◦ →
B◦ a smooth family of genus g curves. Is there a “natural” extension

S ◦

π◦
��

� � // S
π
��

B◦ �
� // B,

where π : S → B is a flat family of ( possibly singular) curves?
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10 History of Moduli Problems

There is no reason to think that there is a unique such extension. Deligne
and Mumford (1969) construct one after a base change B′ → B, and by now
it is hard to imagine a time when their choice was not the “obviously best”
solution. We review their definition next. In Section 1.6 we see, by examples,
why this concept has not been so obvious.

Definition 1.12 (Stable curve) A stable curve over an algebraically closed
field k is a proper, geometrically connected k-curve C such that

(Local property) the only singularities of C are ordinary nodes, and
(Global property) the canonical class KC is ample.
A stable curve over a scheme T is a flat, proper morphism π : S → T such

that every geometric fiber of π is a stable curve. (The arithmetic genus of the
fibers is a locally constant function on T , but we usually also tacitly assume
that it is constant.) The moduli functor of stable curves of genus g is

Curvesg(T ) :=
{

Stable curves of genus g over T ,
modulo isomorphisms over T .

}
Theorem 1.13 Deligne and Mumford (1969) For every g ≥ 2, the moduli
functor of stable curves of genus g has a coarse moduli space Mg. Moreover,
Mg is projective, normal, has only quotient singularities, and contains Mg as
an open dense subset.

Mg has a rich and intriguing geometry, which is related to major questions in
many branches of mathematics and physics; see Farkas and Morrison (2013)
for a collection of surveys and Pandharipande (2018a,b) for overviews.

1.2 Moduli for Varieties of General Type

The aim of this book is to use the moduli of stable curves as a guideline, and
develop a moduli theory for varieties of general type (1.30). (See (1.22) for
some comments on the nongeneral type cases.)

Here we outline the main steps of the plan with some comments. Most of
the rest of the book is then devoted to accomplishing these goals.

Step 1.14 (Higher dimensional analogs of smooth curves) It has been under-
stood since the beginnings of the theory of surfaces that, for surfaces of Kodaira
dimension ≥ 0 ( p.xiv), the correct moduli theory should be birational, not
biregular. That is, the points of the moduli space should correspond not to iso-
morphism classes of surfaces, but to birational equivalence classes of surfaces.
There are two ways to deal with this problem.
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1.2 Moduli for Varieties of General Type 11

First, one can work with smooth families, but consider two families V → B
and W → B equivalent if there is a fiber-wise birational map between them;
that is, a rational map V d W that induces a birational equivalence of the
fibers Vb d Wb for every b ∈ B. This seems rather complicated technically.

The second, much more useful method relies on the observation that every
birational equivalence class of surfaces of Kodaira dimension ≥ 0 contains a
unique minimal model, that is, a smooth projective surface S m whose canonical
class is nef ( p.xv). Therefore, one can work with families of minimal models,
modulo isomorphisms. With the works of Mumford (1965) and Artin (1974)
it became clear that, for surfaces of general type, it is even better to work with
the canonical model, which is a mildly singular projective surface S c whose
canonical class is ample. The resulting class of singularities has since been
established in all dimensions; they are called canonical singularities (1.33).

Principle 1.14.1 In moduli theory, the main objects of study are projective
varieties with ample canonical class and with canonical singularities.

Implicit in this claim is that every smooth family of varieties of general type
produces a flat family of canonical models, we discuss this in (1.36).

See Section 1.3 for more details on this step.

Step 1.15 (Higher dimensional analogs of stable curves) The correct defini-
tion of the higher dimensional analogs of stable curves was much less clear. An
approach through geometric invariant theory (GIT) was investigated by Mum-
ford (1977), but never fully developed. In essence, the GIT approach starts
with a particular method of construction of moduli spaces, and then tries to see
for which class of varieties it works. The examples of Wang and Xu (2014)
suggest that GIT is unlikely to give a good compactification for the moduli of
surfaces.

A different framework was proposed in Kollár and Shepherd-Barron (1988).
Instead of building on geometric invariant theory, it focuses on one-parameter
families, and uses Mori’s program as its basic tool.

Before we give the definition, recall a key step of the proof of (1.13) that
establishes separatedness and properness of Mg. (The traditional name is stable
“reduction,” but “extension” is more descriptive.)

1.15.1 (Stable extension for curves) Let B be a smooth curve, B◦ ⊂ B a dense,
open subset, and π◦ : S ◦ → B◦ a flat family of smooth, projective curves of
genus ≥ 2. Then there is a finite surjection p : A→ B and a diagram

S ◦ ×B A

��

� � // S ss
A

πss
A
��

τ // S stab
A

πstab
A
��

B◦ ×B A �
� // A A,
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12 History of Moduli Problems

where
(a) πss

A : S ss
A → A is a flat family of reduced, nodal curves,

(b) τ : S ss
A → S stab

A is the relative canonical model (11.26), and
(c) πstab

A : S stab
A → A is a flat family of stable curves.

A detailed proof is given in (2.51): for now we build on this to state the main
theses of Kollár and Shepherd-Barron (1988) about moduli problems.

Principle 1.15.2 We should follow the proof of the Stable extension theorem
(1.15.1). The resulting fibers give the right class of stable varieties.

Principle 1.15.3 As in (1.12), a connected k-scheme X is stable iff it satisfies
two conditions, whose precise definitions are not important for now:
(Local property) Semi-log-canonical singularities, see (1.41).
(Global property) The canonical class KX is ample, see (1.23).

1.15.4 (Warning about positive characteristic) The examples of Kollár (2022)
suggest that, in positive characteristic, (1.15.2) gives the right families, but not
quite the right objects in dimensions ≥ 3; see Section 8.8 for details.

Step 1.16 (Higher dimensional analogs of families of stable curves I) The def-
inition (1.7) is very natural within our usual framework of algebraic geometry,
but it hides a very strong supposition:

1.16.1 (Unwarranted assumption) If V is a “reasonable” class of varieties, then
any flat family whose fibers are in V is a “reasonable” family.

In Grothendieck’s foundations of algebraic geometry, flatness is one of the
cornerstones, and there are many “reasonable” classes for which flat fami-
lies are indeed the “reasonable” families. Nonetheless, even when the base
of the family is a smooth curve, (1.16.1) needs arguing, but the assumption
is especially surprising when applied to families over nonreduced schemes
T . Consider, for instance, the case when T is the spectrum of an Artinian k-
algebra. Then T has only one closed point t ∈ T . A flat family p : X → T
has only one fiber Xt, and our only restriction is that Xt be in our class V.
Thus (1.16.1) declares that we care only about Xt. Once Xt is in V, every flat
deformation of Xt over T is automatically “reasonable.”

A crucial conceptual point in the moduli theory of higher dimensional vari-
eties is the realization that, starting with families of surfaces, flatness of the
map X → T is not enough: allowing all flat families whose fibers are stable
varieties leads to the wrong moduli problem.

The simple fact is that basic numerical invariants, like the self intersection of
the canonical class, or even the Kodaira dimension, fail to be locally constant in
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1.2 Moduli for Varieties of General Type 13

flat families of stable varieties, even when the singularities are quite mild and
the base is a smooth curve. We give a series of such examples in (1.42–1.47).

The difficulty of working out the correct concept has been one of the main
stumbling blocks of the general theory.

Principle 1.16.2 Flat families of stable varieties X → T are not the correct
higher dimensional analogs of flat families of stable curves (1.12).

For families over smooth curves, the Stable extension theorem (1.15.1) is
again our guide to the correct definition.

1.16.3 (Stable morphisms) Let p : Y → B be a proper morphism from a normal
variety to a smooth curve. Then p is stable iff, for every b ∈ B,

(a) Yb has semi-log-canonical singularities,
(b) KYb = KY |Yb is ample, and
(c) mKY is Cartier for some m > 0, that is, KY is Q-Cartier ( p.xv).

This is a direct generalization of the notion of stable family of curves (1.12),
except that here we have to add condition (c) for KY . If the KYb are Cartier,
then so is KY (2.6), this is why (c) was not necessary for curves. See (2.3) for
other versions and (2.4) for comments on the positive characteristic cases.

Note that the KYb areQ-Cartier by (1.15.3), but this does not imply that KY is
Q-Cartier; this is a quite subtle issue with restrictions of non-Cartier divisors.
We discuss this in detail in Section 2.4.

Step 1.17 (Higher dimensional analogs of families of stable curves II) Extend-
ing the definition (1.16.3) to general base schemes turned out to be very
difficult. There were two main proposals in Kollár and Shepherd-Barron (1988)
and Viehweg (1995). They are equivalent over reduced base schemes; we
explain this in Section 3.4. However, the two versions differ for families of sur-
faces with quotient singularities over SpecC[ε] by Altmann and Kollár (2019).
We treat these topics in Sections 6.2–6.3 and 6.6.

The problem becomes even harder when we treat not just stable varieties, but
stable pairs. Finding the correct definition turned out to be the longest-standing
open question of the theory. An answer was developed in Kollár (2019) and we
devote Chapter 7 to explaining it.

Step 1.18 (Representability of moduli functors) The question is the following.
Let p : X → S be an arbitrary projective morphism. Can we understand all
morphisms q : T → S such that X ×S T → T is a family in our moduli theory?

A moduli theory M is representable if, for every projective morphism
p : X → S , there is a morphism j : S M → S with the following property:
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14 History of Moduli Problems

Given any q : T → S , the pulled-back family X ×S T → T is in M iff q
factors uniquely as q : T → S M → S .

That is, X ×S S M → S M is in M and S M is universal with this property.
Representability is rarely mentioned for the moduli of curves, since it eas-

ily follows from general principles. The Flattening decomposition theorem
(3.19) says that flatness is representable, and for proper, flat morphisms, being
a family of stable curves is represented by an open subscheme.

Both of these become quite complicated in higher dimensions. Since flat-
ness is only part of our assumptions, we need a different way of pulling back
families. The theory of hulls and husks in Kollár (2008a) was developed for
this reason, leading to the notion of generically Cartier pull-back, defined in
Section 4.1. With these, representability is proved in Sections 3.5, 4.6, and 7.6
in increasing generality.

Representability also implies that being a stable family can be tested on
0-dimensional subschemes of T , that is, on spectra of Artinian rings. This is
the reason why formal deformation theory is such a powerful tool: see Illusie
(1971); Artin (1976); Sernesi (2006).

The previous steps form the basis of a good moduli theory. Once we have
them, it is quite straightforward to construct the corresponding moduli space.

Step 1.19 (Two moduli spaces) Let C be a stable curve of genus g ≥ 2.
Then rKC is very ample for r ≥ 3, and any basis of its global sections gives
an embedding C ↪→ Pr(2g−2)−g. Thus all stable curves of genus g appear in
the Chow variety or Hilbert scheme of Pr(2g−2)−g. Representability (1.18) then
implies that we get a moduli space of all r-canonically embedded stable curves

EmbStabg ⊂ Hilb(Pr(2g−2)−g). (1.19.1)

For a fixed C, the embedding C ↪→Pr(2g−2)−g gives an orbit of Aut(Pr(2g−2)−g),
thus we should get the moduli space as

Mg = EmbStabg /Aut(Pr(2g−2)−g). (1.19.2)

Starting with Mumford (1965) and Matsusaka (1964), much effort was devoted
to understanding quotients like (1.19.2). Already for curves the method of
Mumford (1965) is quite subtle; generalizations to surfaces in Gieseker (1977)
and to higher dimensions in Viehweg (1995) are quite hard. For surfaces and
in higher dimensions, these approaches handle only the interior of the mod-
uli space (where we have only canonical singularities). When GIT works, it
automatically gives a quasi-projective moduli space, but Wang and Xu (2014)
suggest that GIT methods do not work for the whole moduli space.
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1.2 Moduli for Varieties of General Type 15

It turns out to be much easier to obtain quotients that are algebraic spaces.
The general quotient theorems of Kollár (1997) and Keel and Mori (1997) take
care of this question completely; see Section 8.6 for details.

The same approach works in all dimensions. We fix r > 0 such that rKX is
very ample, and the rest of the proof works without changes.

For curves any r ≥ 3 works, but, starting with surfaces, a uniform choice of
r is no longer possible. The strongest results say that if we fix the dimension
n and the volume v (10.31), then there is an r = r(n, v) such that rKX is very
ample. We discuss this in (1.21).

Once we have our moduli spaces, we start to investigate their properties. We
should not expect to get moduli spaces that are as nice as those for curves.
For instance, even for smooth surfaces with ample canonical class, the mod-
uli spaces can have arbitrarily complicated singularities and scheme structures
(Vakil, 2006). Nonetheless, we have two types of basic positive results.

Step 1.20 (Separatedness and properness) The valuative criteria of separated-
ness and properness translate to functors as follows.

We start with a smooth curve B, an open subset B◦ ⊂ B, and a stable family
π◦ : X◦ → B◦.

1.20.1 (Separatedness) There is at most one stable extension to

X◦

π◦

��

� � // X

π

��
B◦ �
� // B.

We obtain a similar translation of properness, but here we have to pay
attention to the difference between coarse and fine moduli spaces.

1.20.2 (Valuative-properness) There is a finite surjection p : A → B such that
there is a unique stable extension

X◦ ×B A

π◦A
��

� � // XA

πA

��
B◦ ×B A �

� // A.

Thus the valuative criterion of properness is exactly the general version of the
Stable extension theorem (1.15.1).

Step 1.21 (Discrete invariants, boundedness, and projectivity) The most
important discrete invariant of a smooth projective curve C is its genus. The
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16 History of Moduli Problems

genus is unchanged under smooth deformations, and all smooth curves with the
same genus form a single family Mg. Thus, in effect, the genus is the only dis-
crete invariant of a smooth projective curve; it completely determines the other
ones, like the Euler characteristic χ(C,OC) = 1 − g, or the Hilbert polynomial
χ
(
C,OC(mKC)

)
= (2g − 2)m + (1 − g).

In a similar manner, we would like to find discrete invariants of (locally)
stable varieties that are unchanged by (locally) stable deformations.

The basic such invariant is the Hilbert “polynomial” of KX . We have to keep
in mind that KX need not be Cartier. Therefore, m 7→ χ

(
X,OX(mKX)

)
is not a

polynomial, rather a polynomial with periodic coefficients.
For stable varieties the most important invariant is vol(X) := (Kn

X) (where
n = dim X), called the volume (10.31) of X. This is also the leading coefficient
of the Hilbert polynomial (times n!). The volume is positive, but it is frequently
a rational number since KX is onlyQ-Cartier; it can be quite small: see Alexeev
and Liu (2019a); Esser et al. (2021).

For m = 0 we get the Euler characteristic χ(X,OX), but it turns out that
the individual groups hi(X,OX) are also deformation invariants by Kollár and
Kovács (2010); see Section 2.5.

Next we would like to show that all stable varieties with fixed volume can
be “parametrized” by a scheme of finite type; this is called boundedness. To
state it, let SVset(n, v) denote the set of all stable varieties of dimension n and
volume v. There are three, roughly equivalent versions.
• There is an m = m(n, v) such that mKX is very ample for X ∈ SVset(n, v).
• There is a D = D(n, v) such that every X ∈ SVset(n, v) is isomorphic to a

subvariety of PD of degree ≤ D.
• There is a morphism π : U → S of schemes of finite type such that every

X ∈ SVset(n, v) is isomorphic to a fiber of π.
Proving these three turned out to be extremely difficult. For smooth varieties
this was solved by Matsusaka (1972), for stable surfaces by Alexeev (1993),
and the general stable case is settled in Hacon et al. (2018).

Our moduli spaces satisfy the valuative criterion of properness. Together
with boundedness this implies that our moduli spaces are proper.

Once we have a proper moduli space, one would like to prove that it is
projective. For surfaces this was done in Kollár (1990), and extended to higher
dimensions in Fujino (2018) and Kovács and Patakfalvi (2017).

These last two topics each deserve a detailed treatment of their own; we
make only a few more comments in (6.5).

1.22 (Moduli for varieties of nongeneral type) The moduli theory of varieties
of nongeneral type is quite complicated.
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1.2 Moduli for Varieties of General Type 17

A general problem, illustrated by abelian, elliptic, and K3 surfaces, is that
a typical deformation of such an algebraic surface over C is a nonalgebraic
complex analytic surface. Thus any algebraic theory captures only a small part
of the full analytic deformation theory.

The moduli question for analytic surfaces has been studied, especially for
complex tori and K3 surfaces. In both cases it seems that one needs to add
some extra structure ( for instance, fixing a basis in some topological homology
group) in order to get a sensible moduli space. (As an example of what could
happen, note that the three-dimensional space of Kummer surfaces is dense in
the 20-dimensional space of all K3 surfaces.)

Even if one restricts to the algebraic case, compactifying the moduli space
seems rather difficult. Detailed studies of abelian varieties and K3 surfaces
show that there are many different compactifications depending on additional
choices: see Kempf et al. (1973) and Ash et al. (1975).

It is only with the works of Alexeev (2002) that a geometrically meaning-
ful compactification of the moduli of principally polarized abelian varieties
became available. This relies on the observation that a pair (A,Θ) consisting of
a principally polarized abelian variety A and its theta divisor Θ behaves as if it
were a variety of general type.

A moduli theory for K-stable Fano varieties was developed quite recently;
see Xu (2020) for an overview.

Definition 1.23 (Canonical class, bundle, and sheaf I) Let X be a smooth vari-
ety over a field k. As in Shafarevich (1974, III.6.3) or Hartshorne (1977, p.180),
the canonical line bundle of X is ωX := ∧dim XΩX/k. Any divisor D such that
OX(D) ' ωX is called a canonical divisor. Their linear equivalence class is
called the canonical class, denoted by KX . (Both books tacitly assume that k is
algebraically closed. The definition, however, works over any field k, as long
as X is smooth over k.)

Let X be a normal variety over a perfect field k. Let j : Xsm ↪→ X be the
inclusion of the locus of smooth points. Then X \ Xsm has codimension ≥ 2,
therefore, restriction from X to Xsm is a bijection on Weil divisors and on
linear equivalence classes of Weil divisors. Thus there is a unique linear equiv-
alence class KX of Weil divisors on X such that KX |Xsm = KXsm . It is called the
canonical class of X. The divisors in KX need not be Cartier.

The push-forward ωX := j∗ωXsm is a rank 1 coherent sheaf on X, called
the canonical sheaf of X. The canonical sheaf ωX agrees with the dualizing
sheaf ω◦X as defined in Hartshorne (1977, p.241). (Note that Hartshorne (1977)
defines the dualizing sheaf only if X is proper. In general, take a normal com-
pactification X̄ ⊃ X and useω◦

X̄
|X instead. For more details, see Kollár and Mori
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18 History of Moduli Problems

(1998, sec.5.5), Hartshorne (1966), or Conrad (2000).) Note that ωX satisfies
Serre’s condition S 2 (10.3.2), but frequently it is not locally free.

More generally, as long as X itself is normal or S 2, and ωX is locally free
outside a codimension ≥ 2 subset of X, we can work with ωX and KX as in the
normal case. Then

OX(mKX) ' ω[m]
X := (ω⊗m

X )∗∗. (1.23.1)

We use this mostly when X has at worst nodes at codimension 1 points (11.35).

1.3 From Smooth Curves to Canonical Models

Here we discuss the considerations that led to Principle 1.14.1.
In the theory of curves, the basic objects are smooth projective curves. We

frequently study any other curve by relating it to smooth projective curves. As
a close analog, in higher dimensions, the moduli functor of smooth varieties
is

Smooth(S ) :=
{

Smooth, proper families X → S ,
modulo isomorphisms over S .

}
This, however, gives a rather badly behaved and mostly useless moduli

functor already for surfaces. First of all, it is very nonseparated.

1.24 (Nonseparatedness of the moduli of smooth surfaces of general type) We
construct two smooth families of projective surfaces fi : Xi → B over a pointed
smooth curve b ∈ B such that
(1.24.1) all the fibers are smooth, projective surfaces of general type,
(1.24.2) X1 → B and X2 → B are isomorphic over B \ {b},
(1.24.3) the fibers X1

b and X2
b are not isomorphic.

As the construction shows, this type of behavior happens every time we look
at deformations of a surface that contains at least three (−1)-curves.

Let f : X → B be a smooth family of projective surfaces over a smooth
(affine) pointed curve b ∈ B. Let C1,C2,C3 ⊂ X be three sections of f , all pass-
ing through a point xb ∈ Xb with independent tangent directions and disjoint
elsewhere.

Set X1 := BC1 BC2 BC3 X, where we first blow up C3 ⊂ X, then the birational
transform of C2 in BC3 X, and finally the birational transform of C1 in BC2 BC3 X.
Similarly, set X2 := BC1 BC3 BC2 X. Since the Ci are sections, all these blow-ups
give smooth families of projective surfaces over B.

Over B \ {b} the curves Ci are disjoint, thus X1 and X2 are both isomorphic
to BC1+C2+C3 X, the blow-up of C1 + C2 + C3 ⊂ X.
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1.3 From Smooth Curves to Canonical Models 19

We claim that, by contrast, the fibers of X1
b and X2

b are not isomorphic to
each other for a general choice of the Ci.

To see this, choose local analytic coordinates t at b ∈ B and (x, y, t) at xb ∈ X.
The curves Ci are defined by equation

Ci =
(
x − ait − (higher terms) = y − bit − (higher terms) = 0

)
.

The blow-up BCi X is given by

BCi X =
(
ui(x− ait − (higher terms)) = vi( y− bit − (higher terms))

)
⊂ X × P1

uivi
.

On the fiber over b, these give the same blow-up

Bxb

(
Xb

)
= (ux = vy) ⊂ Xb × P

1
uv.

Thus we see that the birational transform of C j intersects the central fiber(
BCi X

)
b = Bxb

(
Xb

)
at the point

v
u

=
a j − ai

b j − bi
∈ {xb} × P

1
uv.

The fibers
(
BC2 BC3 X

)
b and

(
BC3 BC2 X

)
b are isomorphic to each other since they

are obtained from Bxb

(
Xb

)
by blowing up the same point

v
u

=
a2 − a3

b2 − b3
resp.

v
u

=
a3 − a2

b3 − b2
.

When we next blow up the birational transform of C1 on
(
BC2 BC3 X

)
b (resp. on(

BC3 BC2 X
)
b), this gives the blow-up of the point

a1 − a3

b1 − b3
resp.

a1 − a2

b1 − b2
, (1.24.4)

and these are different, unless C1 + C2 + C3 is locally planar at xb.
So far we have seen that the identity Xb = Xb does not extend to an isomor-

phism between the fibers X1
b and X2

b . If Xb is of general type, then Aut Xb is
finite, hence, to ensure that X1

b and X2
b are not isomorphic, we need to avoid

finitely many other possible coincidences in (1.24.4).
The main reason, however, why we do not study the moduli functor of

smooth varieties up to isomorphism is that, in dimension two, smooth projec-
tive surfaces do not form the smallest basic class. Given any smooth projective
surface S , one can blow up any set of points Z ⊂ S to get another smooth pro-
jective surface BZS , which is very similar to S . Therefore, the basic object is
not a single smooth, projective surface, but a whole birational equivalence
class of smooth, projective surfaces. Thus it would be better to work with
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20 History of Moduli Problems

smooth, proper families X → S modulo birational equivalence over S . That
is, with the moduli functor

GenTypebir(S ) :=


Smooth, proper families X → S ,

every fiber is of general type,
modulo birational equivalences over S .

 (1.24.5)

In essence this is what we end up doing – see (1.36) – but it is very cumbersome
to deal with birational equivalence over a base scheme. Nonetheless, working
with birational equivalence classes leads to a separated moduli functor.

Proposition 1.25 Let fi : Xi → B be two smooth families of projective vari-
eties over a smooth curve B. Assume that the generic fibers X1

k(B) and X2
k(B)

are birational, and the pluricanonical system |mKX1
k(B)
| is nonempty for some

m > 0. Then, for every b ∈ B, the fibers X1
b and X2

b are birational.

Proof Pick a birational map φ : X1
k(B) d X2

k(B), and let Γ ⊂ X1 ×B X2 be the
closure of the graph of φ. Let Y → Γ be the normalization with projections
pi : Y → Xi. Note that both of the pi are open embeddings on Y \

(
Ex( p1) ∪

Ex( p2)
)
. Thus if we prove that neither p1

(
Ex( p1) ∪ Ex( p2)

)
nor p2

(
Ex( p1) ∪

Ex( p2)
)

contains a fiber of f1 or f2, then p2 ◦ p−1
1 : X1 d X2 restricts to a

birational map X1
b d X2

b for every b ∈ B. (Thus the fiber Yb contains an
irreducible component that is the graph of the birational map X1

b d X2
b , but

it may have other components too; see (1.27.1) for such an example.)
We use the canonical class to compare Ex( p1) and Ex( p2). Since the Xi are

smooth,

KY ∼ p∗i KXi + Ei, where Ei ≥ 0 and Supp Ei = Ex( pi). (1.25.1)

We may assume that B is affine and let Bs |mKXi | denote the set-theoretic base
locus. By assumption, |mKXi | is not empty. Since B is affine, Bs |mKXi | does not
contain any of the fibers of fi.

Every section of OY (mKY ) pulls back from Xi, thus

Bs |mKY | = p−1
i

(
Bs |mKXi |

)
+ Supp Ei.

Comparing these for i = 1, 2, we conclude that

p−1
1

(
Bs |mKX1 |

)
+ Supp E1 = p−1

2

(
Bs |mKX2 |

)
+ Supp E2.

Therefore, p1
(
Supp E2

)
⊂ p1

(
Supp E1

)
+ Bs |mKX1 |.

Since E1 is p1-exceptional, p1
(
E1

)
has codimension ≥ 2 in X1, hence it does

not contain any of the fibers of f1. We saw that Bs |mKX1 | does not contain
any of the fibers either. Thus p1

(
Ex( p1) ∪ Ex( p2)

)
does not contain any of the

fibers, and similarly for p2
(
Ex( p1) ∪ Ex( p2)

)
. �
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1.3 From Smooth Curves to Canonical Models 21

Remark 1.26 By Matsusaka and Mumford (1964) and Kontsevich and
Tschinkel (2019), the conclusion holds even if the pluricanonical systems are
empty.

The proof focuses on the role of the canonical class. It is worthwhile to go
back and check that the proof works if the Xi are normal, as long as (1.25.1)
holds; the latter is essentially the definition of terminal singularities. It is pre-
cisely the property (1.25.1) and its closely related variants that lead us to the
correct class of singular varieties for moduli purposes.

Since it is much harder to work with a whole equivalence class, it would
be desirable to find a particularly nice surface in every birational equivalence
class. This is achieved by the theory of minimal models of algebraic surfaces.
By a result of Enriques (Barth et al., 1984, III.4.5), every birational equiva-
lence class of surfaces S contains a unique smooth projective surface whose
canonical class is nef, except when S contains a ruled surface C × P1 for some
curve C. This unique surface is called the minimal model of S.

It would seem at first sight that (1.25) implies that the moduli functor of
minimal models is separated. There are, however, quite subtle problems.

1.27 (Families of minimal models) Let Y be a projective 3-fold whose only
singularities are ordinary nodes. Take a general pencil and blow up its base
locus to get f : X → P1. The general fiber is a smooth surface. At the nodes, in
local coordinates we can write it as(

xy + z2 − t2 = (higher terms)
) � � //

f ��

A4
xyzt

��
A1

t A1
t .

By the Morse lemma, with a suitable analytic coordinate change we can elim-
inate the higher terms (10.43). Then we can blow up either of the the 2-planes
(x = z ± t = 0) to get π± : X± → X.

By explicit computation as in (10.45), we get smooth morphisms f ± : X± →
A1, and the fiber over the origin X±0 is the blow-up of X0 at the origin. How-
ever, the composite map X+ → X d X− is not an isomorphism. Also, the
exceptional set of π± is a smooth rational curve C± ⊂ X±.

To get a concrete example, start with a general sextic hypersurface Y ⊂ P4

that contains a 2-plane P. Let P+ Q be a general hyperplane section containing
P. Blow up the birational transforms of P and Q in X to get X± → X.

1.27.1 (Nonseparatedness in the moduli of minimal models) We get two
projective morphisms f ± : X± → P1 and a finite set B ⊂ P1 such that
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(a) general fibers are smooth, canonical models,
(b) the X± are isomorphic over P1 \ B,
(c) the fibers X+

b and X−b are isomorphic minimal models for b ∈ B, but
(d) X+ → P1 and X− → P1 are not isomorphic to each other. �

Starting with a general sextic hypersurface Y ⊂ CP4 that has a single node,
and using that every divisor on Y is Cartier by Cheltsov (2010), gives the next
example.

1.27.2 (Nonprojective families of projective surfaces) We get two smooth,
compact, complex manifolds X± and morphisms f ± : X± → P1 such that every
fiber is a projective minimal model, yet the X± are not projective.

Proof If X± is projective, let S ± be an ample divisor. We claim that S :=
f ±(S ±) is not Cartier at the node. Indeed, since f ± has no exceptional divisors,
we must have S ± = ( f ±)∗(S ). This is impossible since (S ± · C±) > 0, but(
S ± · ( f ±)∗(S )

)
= 0. Thus, if every divisor on Y is Cartier, then the X± cannot

be projective. �

All such problems go away when the canonical class is ample.

Proposition 1.28 Let fi : Xi → B be two smooth families of projective vari-
eties over a smooth curve B. Assume that the canonical classes KXi are
fi-ample. Let φ : X1

k(B) ' X2
k(B) be an isomorphism of the generic fibers.

Then φ extends to an isomorphism Φ : X1 ' X2.

Proof Let Γ ⊂ X1 ×B X2 be the closure of the graph of φ. Let Y → Γ be the
normalization, with projections pi : Y → Xi and f : Y → B. As in (1.25), we
use the canonical class to compare the Xi. Since the Xi are smooth,

KY ∼ p∗i KXi + Ei where Ei is effective and pi-exceptional. (1.28.1)

Since ( pi)∗OY (mEi) = OXi for every m ≥ 0, we get that

( fi)∗OXi
(
mKXi

)
= ( fi)∗( pi)∗OY

(
mp∗i KXi

)
= ( fi)∗( pi)∗OY

(
mp∗i KXi + mEi

)
= ( fi)∗( pi)∗OY

(
mKY

)
= f∗OY

(
mKY

)
.

Since the KXi are fi-ample, Xi = ProjB⊕m≥0( fi)∗OXi
(
mKXi

)
. Putting these

together, we get the isomorphism

Φ : X1 ' ProjB⊕m≥0( f1)∗OX1
(
mKX1

)
' ProjB⊕m≥0 f∗OY

(
mKY

)
' ProjB⊕m≥0( f2)∗OX2

(
mKX2

)
' X2. �
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Remark 1.29 As in (1.26), it is again worthwhile to investigate the precise
assumptions behind the proof. The smoothness of the Xi is used only through
the pull-back formula (1.28.1), which is weaker than (1.25.1).

If (1.28.1) holds, then, even if the KXi are not fi-ample, we obtain an
isomorphism

ProjB⊕m≥0( f1)∗OX1
(
mKX1

)
' ProjB⊕m≥0( f2)∗OX2

(
mKX2

)
. (1.29.1)

Thus it is of interest to study objects as in (1.29.1) in general.
Let us start with the absolute case, when X is a smooth projective variety

over a field k. Its canonical ring is the graded ring

R(X,KX) := ⊕m≥0H0(X,OX(mKX)
)
. (1.29.2)

In some cases the canonical ring tells us very little about X. For instance, if X
is rational or Fano then R(X,KX) is the base field k; if X is Calabi–Yau then
R(X,KX) is isomorphic to the polynomial ring k[t]. One should thus focus on
the cases when the canonical ring is large. The following notion is due to Iitaka
(1971). See (Lazarsfeld, 2004, sec.2.1.C) for a detailed treatment.

Definition 1.30 Let X be a smooth proper variety. Its Kodaira dimension,
denoted by κ(X), is the dimension of the image of |mKX | : X d Pdim |mKX | for m
sufficiently large and divisible. One can also define κ(X) by the property: the
limsup of h0(X,OX(mKX)

)
/mκ(X) is positive and finite. We set κ(X) = −∞ if

|mKX | is empty for all m > 0.
If κ(X) = dim X, we say that X is of general type. In this case |mKX | defines

a birational map for all m � 1, and the limit of h0(X,OX(mKX)
)
/mdim(X) is

positive and finite. See (3.34) for more on h0(X,OX(mKX)
)
.

Definition 1.31 (Canonical models) Let X be a smooth projective variety of
general type over a field k such that its canonical ring R(X,KX) (1.29.2) is
finitely generated. We define its canonical model as

Xc := Projk R(X,KX).

If Y is a smooth projective variety birational to X, then Yc is isomorphic to Xc.
Thus Xc is also the canonical model of the whole birational equivalence class
containing X. (Taking Proj of a nonfinitely generated ring may result in a quite
complicated scheme. It does not seem profitable to contemplate what would
happen in our case.)

The canonical ring R(X,KX) is always finitely generated in characteristic 0
(11.28), thus Xc is an irreducible, projective variety. On the other hand, Xc can
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be singular. Originally this was viewed as a major obstacle, but now it seems
only a technical problem.

We can now give an abstract characterization of canonical models.

Theorem 1.32 A normal proper variety Y is a canonical model iff
(1.32.1) KY is Q-Cartier ( p.xv) and ample, and
(1.32.2) there is a resolution f : X → Y ( p.xv) and an effective, f -exceptional
Q-divisor E such that KX ∼Q f ∗KY + E.

Proof For now we prove only the “if” part. For the converse, see Reid (1980)
or (Kollár, 2013b, 1.15) or (11.62.2).

Choose m0 such that m0KX is Cartier, then so is m0E. Note that for any r > 0,
f∗OX(rm0E) = OY since E is effective and f -exceptional. Thus

H0(X,OX(rm0KX)
)

= H0(Y, f∗OX(rm0KX)
)

= H0(Y,OY (rm0KY ) ⊗ f∗OX(rm0E)
)

= H0(Y,OY (rm0KY )
)
.

Therefore,

Proj⊕mH0(X,OX(mKX)
)

= Proj⊕rH0(X,OX(rm0KX)
)

= Proj⊕rH0(Y,OY (rm0KY )
)

= Y. �

This makes it possible to give a local definition of the singularities that occur
on canonical models, using Q-linear equivalence ∼Q as in ( p.xv).

Definition 1.33 A normal variety Y has canonical singularities if
(1.33.1) KY is Q-Cartier, and
(1.33.2) there is a resolution f : X → Y and an effective, f -exceptional Q-

divisor E such that KX ∼Q f ∗KY + E.
It is easy to show that this is independent of the resolution f : X → Y;
see (Kollár, 2013b, sec.2.12). (One can define canonical singularities without
resolutions, see (Kollár, 2013b, sec.2.1) or Luo (1987).)

Equivalently, Y has canonical singularities iff every point y ∈ Y has an étale
neighborhood which is an open subset on some canonical model.

A complete list of canonical singularities is known in dimension 2 and
almost known in dimension 3; see Reid (1980). The following examples are
useful to keep in mind:
(1.33.3)

(
x1x2 + f (x3, . . . , xn) = 0

)
is canonical iff f is not identically 0.

(1.33.4) The quotient singularity An/ 1
m (1,m − 1, a3, . . . , an) (1.40.2) is

canonical for n ≥ 3 if gcd(m, a3, . . . , an) = 1. Its canonical class is Cartier
iff m | a3 + · · · + an.
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(1.33.5) The cone Cd(Pn) over the d-uple Veronese embedding has a canonical
singularity iff d ≤ n+1. Its canonical class is Cartier iff d|n+1. (See (2.35)
or (Kollár, 2013b, 3.1) for the case of general cones.)

Warning 1.34 (Q-Cartier condition) While (1.33.1) may seem like a small
technical condition, in many cases it turns out to be extremely important.

First of all, one cannot pull back arbitrary divisors, so (1.33.2) does not even
make sense if KY is not Q-Cartier. This is a substantial problem starting with
dimension 3; cf. (11.57) and (11.58).

The issue becomes more serious for families of varieties. Unexpected jumps
of the Kodaira dimension happen precisely when the canonical class of the
total space is not Q-Cartier; see (1.43–1.46).

The most difficult aspects appear for nonnormal varieties. The gluing the-
ory of (Kollár, 2013b, chap.5) is almost entirely devoted to proving that
in some cases the canonical divisor is Q-Cartier; see (11.38) for a key
consequence.

Definition 1.35 The moduli functor of canonical models is

CanMod(S ) :=


Flat, proper families X → S ,

every fiber is a canonical model,
modulo isomorphisms over S .

 (1.35.1)

This is an improved version of GenTypebir defined in (1.24.5).
Warning. In retrospect, it seems only by luck that this definition gives the

correct functor. See (1.16.2), the examples in (1.42–1.47), and (2.8).

1.36 (From GenType to CanMod) Let p : Y → S be a smooth, projective mor-
phism of varieties over a field of characteristic 0. Assume that S is reduced and
the fibers Ys are of general type. By (1.37), we get the flat family of canonical
models pc : Yc → S . This gives a natural transformation TCanMod which, for
any reduced scheme S gives a map of sets

TCanMod(S ) : GenTypebir(S )→ CanMod(S ). (1.36.1)

By definition, if Xi → S are two smooth, proper families of varieties of general
type such that TCanMod(S )(X1) = TCanMod(S )(X2), then X1 and X2 are birational,
thus TCanMod(S ) is injective. It is not surjective, but we have the following
partial surjectivity statement.

Claim 1.36.2 Let Y → S be a flat family of canonical models. Then there is a
dense open subset S ◦ ⊂ S and a smooth, proper family of varieties of general
type Y◦ → S ◦ such that TCanMod(S ◦)(Y◦) =

[
Y |S ◦

]
. �
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Theorem 1.37 Let p : Y → S be a flat, projective morphism, whose fibers are
of general type and have canonical singularities. Assume that S is reduced.
Then the canonical models of the fibers form a flat, projective morphism pstab :
Ystab → S , and the natural map Y d Ystab is fiber-wise birational.

For surfaces, this goes back to Kodaira and Spencer (1958); the 3-fold case
is proved in Kollár and Mori (1992, 12.5.1). See (2.48) for a proof using MMP.
The complex analytic case is in Kollár (2021a).

The theorem implies the deformation invariance of plurigenera as in (5.1.3).
Conversely, the deformation invariance of plurigenera, due to Siu (1998) and
(Nakayama, 2004, chap.VI), shows that, if the Ys have canonical models, then
they form a flat family pstab : Ystab → S .

The case when S is nonreduced is open.

1.4 From Stable Curves to Stable Varieties

Next we discuss the reasoning behind Step 1.15.
Let C be a nodal curve with normalized irreducible components Ci. We

frequently view C as an object assembled from the pieces Ci. Note that the pull-
back of KC to Ci is not KCi , rather KCi + Pi, where Pi ⊂ Ci are the preimages
of the nodes of C.

Similarly, if X is a scheme with simple normal crossing singularities ( p.xvi)
and normalized irreducible components Xi, then the pull-back of KX to Xi is
not KXi , rather KXi + Di, where Di ⊂ Xi is the divisorial part of the preimage of
Sing X on Xi.

This suggests that we should develop a theory of “canonical models” where
the role of the canonical class is played by a divisor of the form KX + D, where
D is a simple normal crossing divisor ( p.xvi).

Definition 1.38 (Canonical models of pairs) Let (X,D) be a projective snc pair
( p.xvi). We define the canonical ring1 of the pair (X,D) as

R(X,KX + D) := ⊕m≥0H0(X,OX(mKX + mD)
)
.

It is conjectured (but known only for dim X ≤ 4 in characteristic 0) that
the canonical ring of a pair (X,D) is finitely generated. If this holds, then
Xc := Projk R(X,KX + D) is a normal projective variety. We say that (X,D)
is of general type if the natural map π : X d Xc is birational, and then(
Xc,Dc := π∗D

)
is called the canonical model of (X,D).

The proof of the “if” part of the following goes exactly as in (1.32).

1 Log canonical ring and log general type is also frequently used; see (1.39.3).
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Theorem 1.39 A pair (Y, B), consisting of a proper normal variety Y and an
effective, reduced, Weil divisor B, is the canonical model of a simple normal
crossing pair iff
(1.39.1) KY + B is Q-Cartier, ample, and
(1.39.2) there is a resolution f : X → Y, an effective, reduced, simple normal

crossing divisor D ⊂ X such that f (D) = B, and an effective, f -exceptional
Q-divisor E such that KX + D ∼Q f ∗(KY + B) + E.

Warning 1.39.3 If B = 0, it can happen that (X, 0) is the canonical model of
a pair, but X is not a canonical model (1.32). To see this, choose a resolution
f : X → Y and let Ei ⊂ X be the f -exceptional divisors. Although B = 0, in
(1.39.2) we can still take D =

∑
Ei. Thus (1.39.2) can be rewritten as

KX ∼ f ∗KY + E −
∑

Ei.

This looks like (1.32.2), but E −
∑

Ei need not be effective; it can contain
divisors with coefficients ≥ −1.

This is the source of some terminological problems. Originally R(X,KX +D)
was called the “log canonical ring” and Projk R(X,KX + D) the “log canonical
model.” Since the canonical ring is just the D = 0 special case of the “log
canonical ring,” it seems more convenient to drop the prefix “log.” However,
log canonical singularities are quite different from canonical singularities, so
“log” cannot be omitted there. (See also p.xvi for other inconsistencies in the
usage of “canonical model.”)

As in (1.33), this can be reformulated as a definition. (For now we assume
that every irreducible component of B appears in B with coefficient 1; later we
also consider cases when the coefficients are rational or real.)

Definition 1.40 Let (Y, B) be a pair consisting of a normal variety Y and a
reduced Weil divisor B. Then (Y, B) is log canonical, or has log canonical
singularities, iff the conditions (1.39.1–2) are satisfied. We say that Y is log
canonical if (Y, ∅) is.

If (Y, B) is log canonical and B is Q-Cartier then Y is also log canonical
(11.5.1). However, if B is not Q-Cartier, then KY is also not Q-Cartier, so Y is
not log canonical.

A complete list of log canonical singularities is known in dimension 2,
see Section 2.2 or Kollár (2013b, sec.2.2). The following examples of log
canonical singularities are useful to keep in mind:
1.40.1 (Simple normal crossing)

(
An, (x1 · · · xr = 0)

)
for any r ≤ n.

1.40.2 (Quotient singularities) An/ 1
m (a1, . . . , an) denotes the quotient of An

x by
the action xi 7→ εai xi where ε is a primitive mth root of unity. The canonical
class is Cartier iff m |

∑
ai. These are even log terminal.
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1.40.3 (Cones) A cone C(X) over a Calabi–Yau variety; see (2.35).

We are now ready to define the higher dimensional analogs of stable curves.

Definition 1.41 (Stable varieties) Let k be a field and Y a reduced, proper,
pure dimensional scheme over k. Let Yi → Y be the irreducible components of
the normalization of Y , and Di ⊂ Yi the divisorial part of the preimage of the
nonnormal locus of Y . Then Y is semi-log-canonical – usually abbreviated as
slc – or locally stable iff
(1.41.1) at codimension 1 points, Y is either smooth or has a node (11.35),
(1.41.2) each (Yi,Di) is log canonical, and
(1.41.3) KY is Q-Cartier.
Y is a stable variety iff, in addition,
(1.41.4) Y is projective and KY is ample.
As we noted in (1.34), the Q-Cartier condition for KY is quite hard to interpret
in terms of the (Yi,Di). See (11.38) or the more detailed Kollár (2013b, chap.5).
For now we only deal with examples where KY is obviously Cartier or Q-
Cartier.

1.41.5 (Note on terminology) This usage of “stable” has very little to do with
the GIT notion of “stable” in Mumford (1965). They agree for curves, and
originally there was hope of a close relationship in all dimensions. The two
versions aimed to answer the same question, but from different viewpoints.
They ended up quite different.

Jump of K2 and of the Kodaira Dimension

We give examples of flat families of projective surfaces {S t : t ∈ C} such that S 0

has quotient singularities and the S t are smooth for general t , 0, but the self
intersection of the canonical class

(
K2

S t

)
jumps at t = 0. We also give examples

where KS t is ample for t = 0, but not even big for t , 0. Among log canonical
singularities, quotient singularities (1.40.2) are the mildest.

As we already noted in (1.34), such jumps happen when the canonical class
of the total space is not Q-Cartier.

Example 1.42 (Degree 4 surfaces in P5) There are two families of nondegen-
erate degree 4 smooth surfaces in P5. These were classified by Del Pezzo; see
Eisenbud and Harris (1987) for a modern treatment.

One family consists of Veronese surfaces P2 ⊂ P5 embedded by O(2). The
general member of the other family is P1 × P1 ⊂ P5 embedded by O(2, 1),
special members are embeddings of the ruled surface F2. The two families are
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distinct since
(
K2
P2

)
= 9 and

(
K2
P1×P1

)
= 8. For both of these surfaces, a smooth

hyperplane section is a degree 4 rational normal curve in P4.
Let T0 ⊂ P

5 denote the cone over the degree 4 rational normal curve in P4.
The minimal resolution of T0 is the ruled surface p : F4 → T0. Let E, F ⊂ F4

be the exceptional curve and the fiber of the ruling. Then KF4 = −2E − 6F and
p∗(2KT0 ) = −3E − 12F. Thus 2

(
KF4 + E

)
= p∗(2KT0 ) + E shows that T0 has

log canonical singularities. We also get that
(
K2

T0

)
= 9.

A key feature is that one can write T0 as a limit of smooth surfaces in two
distinct ways, corresponding to the two ways of writing the degree 4 rational
normal curve in P4 as a hyperplane section of a surface; see (2.36).

From the first family, we get T0 as the special fiber of a flat family whose
general fiber is P2. This family is denoted by {Tt : t ∈ C}. From the second
family, we get T0 as the special fiber of a flat family whose general fiber is
P1 ×P1. This family is denoted by {T ′t : t ∈ C}. Note that (K2) is constant in the
family {Tt : t ∈ C}, but jumps at t = 0 in the family {T ′t : t ∈ C}. (In general, one
needs to worry about the possibility of getting embedded points at the vertex.
However, by (2.36), in both cases the special fiber is indeed T0.)

Alternatively, the degree 4 rational normal curve (s:t) 7→ (s4:s3t:s2t2:st3:t4)
can be given by determinantal equations in 2 ways, giving the families

T ′t =

(
rank

(
x0 x1 x2 x3

x1 x2 + tx5 x3 x4

)
≤ 1

)
, and

Tt =

rank


x0 x1 x2

x1 x2 + tx5 x3

x2 x3 x4

 ≤ 1

 .
These are, however, families of rational surfaces with negative canonical

class, but we are interested in stable varieties.
Next we take a suitable cyclic cover (11.24) of the two families to get similar

examples with ample canonical class.

Example 1.43 (Jump of Kodaira dimension I) We give two flat families of
projective surfaces S t and S ′t such that
(1.43.1) S 0 ' S ′0 has log canonical singularities and ample canonical class,
(1.43.2) S t is a smooth surface with ample canonical class for t , 0, and
(1.43.3) S ′t is a smooth, elliptic surface with

(
K2

S ′t

)
= 0 for t , 0.

With T0 as in (1.42), let π0 : S 0 → T0 be a double cover, ramified along the
intersection of T0 with a general quartic hypersurface. Note that KT0 ∼Q −

3
2 H,

where H is the hyperplane class. Thus, by the Hurwitz formula,

KS 0 ∼Q π
∗
0
(
KT0 + 2H

)
∼Q

1
2π
∗
0H.
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So S 0 has ample canonical class and
(
K2

S 0

)
= 2. Since π0 is étale over the vertex

of T0, S 0 has two singular points, locally (in the analytic or étale topology)
isomorphic to the singularity on T0. Thus S 0 is a stable surface.

Both of the smoothings in (1.42) lift to smoothings of S 0.
From Tt we get a smoothing S t where πt : S t → P

2 is a double cover, ram-
ified along a smooth octic. Thus S t is smooth, KS t ∼Q π

∗
t OP2 (1) is ample and(

K2
S t

)
= 2.

From T ′t we get a smoothing S ′t where π′t : S ′t → P
1 × P1 is a double cover,

ramified along a smooth curve of bidegree (8, 4). One of the families of lines
on P1 × P1 pulls back to an elliptic pencil on S ′t and

(
K2

S ′t

)
= 0. Thus S ′t is not

of general type for t , 0.

Example 1.44 (Jump of Kodaira dimension II) A similar pair of examples
is obtained by working with triple covers ramified along a cubic hypersur-
face section of the surface families in (1.42). The family over Tt has ample
canonical class and (K2) = 3. As before, the family over T ′t is elliptic and has
(K2) = 0.

Example 1.45 (Jump of Kodaira dimension III) We construct a flat family of
surfaces whose central fiber is the quotient of the square of the Fermat cubic
curve by Z/3:

S ∗F '
(
u3

1 = v3
1 + w3

1
)
×

(
u3

2 = v3
2 + w3

2
)
/ 1

3 (1, 0, 0; 1, 0, 0), (1.45.1)

thus it has Kodaira dimension 0. The general fiber is P2 blown up at 12 points.
In P3, consider two lines L1 = (x0 = x1 = 0) and L2 = (x2 = x3 = 0). The

linear system |OP2 (2)(−L1 − L2)| is spanned by the four reducible quadrics xix j

for i ∈ {0, 1} and j ∈ {2, 3}. They satisfy a relation (x0x2)(x1x3) = (x0x3)(x1x2).
Thus we get a morphism π : BL1+L2P

3 → P1 × P1, which is a P1-bundle whose
fibers are the birational transforms of lines that intersect both of the Li.

Let S ⊂ P3 be a cubic surface such that p := S ∩ (L1 + L2) is six distinct
points. Then we get πS : BpS → P1 × P1.

In general, none of the lines connecting two points of p is contained in S ; in
this case πS is a finite triple cover.

At the other extreme, we have the Fermat-type surface

S F :=
(
x3

0 + x3
1 = x3

2 + x3
3
)
⊂ P3.

We can factor both sides and write its equation as m1m2m3 = n1n2n3. The nine
lines Li j := (mi = n j = 0) are all contained in S F . Let L′i j ⊂ BpS F denote their
birational transforms. Then the self-intersections

(
L′i j · L

′
i j
)

equal −3 and πS F

contracts these nine curves L′i j. Thus the Stein factorization of πS F gives a triple
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cover S ∗F → P
1 × P1. Here S ∗F has nine singular points of type A2/ 1

3 (1, 1). We
see furthermore that −3KS F ∼

∑
i jLi j and −3KBPS F ∼

∑
i jL′i j. Thus −3KS ∗F ∼ 0.

To see that the two surfaces denoted by S ∗F are isomorphic, use the map of
the surface (1.45.1) to P1 × P1 given by

(u1:v1:w1) × (u2:v2:w2) 7→ (v1:w1) × (v2:w2),

and the rational map to the cubic surface is given by

(u1:v1:w1) × (u2:v2:w2) 7→
(
u1v2:u1w2:v1u2:w1u2

)
.

Example 1.46 (Jump of Kodaira dimension IV) The previous examples are
quite typical in some sense. If S 0 is any projective rational surface with quo-
tient singularities, then there is a flat family of surfaces {S t} such that S t is a
smooth rational surface for t , 0.

To see this, take a minimal resolution S ′0 → S 0. Since S ′0 is a smooth rational
surface, it can be obtained from a minimal smooth rational surface by blowing
up points. We can deform S ′0 by moving these points into general position
(and also deforming the minimal smooth rational surface if necessary). Thus
we see that if S 0 is singular, then a general deformation S ′t of S ′0 is obtained
by blowing up points in P2 or P1 × P1 in general position. In the second case,
if we blow up at least one point, it is also a blow-up of P2. There are no curves
with negative self-intersection on P1 × P1, and on a blow-up of P2 at general
points, every smooth rational curve with negative self-intersection is a (−1)-
curve by (de Fernex, 2005, 2.4). In particular, none of the exceptional curves
of S ′0 → S 0 lift to S ′t .

Let H′0 be the pull-back of a very ample Cartier divisor from S 0 whose
higher cohomologies vanish. Since S ′0 is a smooth rational surface, Pic(S ′0) =

H2(S ′0,Z), so H′0 lifts to a family of semiample Cartier divisors H′t . As we dis-
cussed, none of the exceptional curves of S ′0 → S 0 lift to S ′t for general t, so
H′t is ample for general t. As before, we get a flat deformation {S t} such that
S t ' S ′t for t , 0.

Many recent constructions of surfaces of general type start with a particu-
lar rational surface S 0 with quotient singularities, and show that it has a flat
deformation to a smooth surface with ample canonical class; see Lee and Park
(2007); Park et al. (2009a,b). Thus such an S 0 has flat deformations of general
type and also flat deformations that are rational.

Even more surprisingly, a surface with ample canonical class can have
nonalgebraic deformations.

Example 1.47 (Nonalgebraic deformations) (Kollár, 2021a) We construct a
projective surface X0 with a quotient singularity, ample canonical class and two
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deformations. An algebraic one galg : Xalg → D, where galg is flat, projective,
and a complex analytic one gan : Xan → D over the unit disc D ⊂ C, where gan

is flat, proper such that
(1.47.3) Xalg

s is a smooth, algebraic, K3 surface blown up at three points for
s , 0,

(1.47.4) Xan
s is a smooth, nonalgebraic, K3 surface blown up at three points

for very general s ∈ D.
Let us start with a K3 surface Y ⊂ P3 with a hyperplane section C ⊂ Y and
three points pi ∈ C. Blow up these points to get π : Z → Y with exceptional
curves E = E1 + E2 + E3. Let CZ ⊂ Z be the birational transform of C and
H = π∗C − 2

3 E.
If the pi are smooth points on C, then π∗C = CZ + E, hence H = CZ + 1

3 E.
Since (H ·CZ) = 2, (H · Ei) = 2

3 and Z \ (CZ + E) ' Y \C is affine, we see that
H is ample by the Nakai–Moishezon criterion.

If the pi are double points on C, then π∗C = CZ + 2E, hence H = CZ + 4
3 E.

Then (CZ · Ei) = 2, (H · CZ) = 0 and (H · Ei) = 2
3 . So 3H is semiample

and it contracts CZ . Let the resulting surface be X0 and Fi ⊂ X0 the images
of the Ei.

Note that in this case CZ is a smooth, rational curve and (C2
Z) = −8. Thus X0

has a single quotient singularity of type C2/ 1
8 (1, 1). We also get that (F2

i ) = − 1
2

and (Fi · F j) = 1
2 for i , j. Furthermore, KX0 ∼ F1 + F2 + F3 is ample.

In order to construct the algebraic family, start with C ⊂ Y where C is a
rational curve with three nodes. The deformation is obtained by moving the
points into general position. Blowing up the points we get H that is ample
on the general fibers and contracts the birational transform of C in the special
fiber. Thus we get galg : Xalg → D.

For the analytic case, we choose a deformation Y → D of Y0 whose very
general fibers are nonalgebraic K3 surfaces. Take three sections Bi ⊂ Y that
pass through the three nodes of C. Blow them up and then contract the bira-
tional transform of C. The contraction extends to the total space by Kollár and
Mori (1992, 11.4). We get gan : Xan → D whose central fiber is X0. The other
fibers are nonalgebraic, K3 surfaces blown up at three points.

Example 1.48 (More rational surfaces with ample canonical class) (Kollár,
2008b, sec.5) Given natural numbers a1, a2, a3, a4, consider the surface

S = S (a1, a2, a3, a4) := (xa1
1 x2 + xa2

2 x3 + xa3
3 x4 + xa4

4 x1 = 0) ⊂ P(w1,w2,w3,w4),

where w′i = ai+1ai+2ai+3 − ai+2ai+3 + ai+3 − 1 (with indices modulo 4) and wi =

w′i/ gcd(w′1,w
′
2,w

′
3,w

′
4). It is easy to see that S has only quotient singularities

(at the four coordinate vertices). It is proved in (Kollár, 2008b, thm.39) that S

https://doi.org/10.1017/9781009346115.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.003


1.5 From Nodal Curves to Stable Curves and Surfaces 33

is rational if gcd(w′1,w
′
2,w

′
3,w

′
4) = 1. (By Kollár, 2008b, 38, this happens with

probability ≥ 0.75.)
P(w1,w2,w3,w4) has isolated singularities iff the {wi} are pairwise relatively

prime. (It is easy to see that for 1 ≤ ai ≤ N, this happens for at least c ·
N4−ε of the 4-tuples.) In this case KS = OP

(∏
ai − 1 −

∑
wi

)
|S . From this it

is easy to see that if a1, a2, a3, a4 ≥ 4 then KS is ample and (K2
S ) converges

to 1 as a1, a2, a3, a4 → ∞. See Urzúa and Yáñez (2018) for more on these
surfaces.

1.5 From Nodal Curves to Stable Curves and Surfaces

We discussed stable extension for families of curves C → B over a smooth
curve B in (1.15.1). Similarly, working over a higher dimensional reduced base
C → S involves two main steps.

• First, we transform a given proper family of curves C → S into a proper, flat
family C1 → S 1, whose fibers are reduced, nodal curves. This needs a base
change S 1 → S that involves choices, and then a sequence of blow-ups that
again involves choices. We can choose S 1 to be smooth.

• Once we have a proper, flat family C1 → S 1 whose fibers are reduced, nodal
curves, and whose base is smooth, we take the relative canonical model
(11.28) to get the stable family Cstab

1 → S 1. For MMP to work, we need
S 1 to have at worst log canonical singularities.

Nonetheless, we show that one can go from flat families of nodal curves to
flat families of stable curves in a functorial way over an arbitrary base.

Theorem 1.49 For every g ≥ 2 there is a natural transformation C 7→ Cstab

{
proper, flat families of

reduced, nodal, genus g curves

}
−→

{
stable families of
genus g curves

}
,

such that that if C is a smooth, projective curve, then Cstab = C. (We assume
that the curves are geometrically connected. By the genus of a proper nodal
curve C we mean h1(C,OC).)

Proof We outline the main steps, leaving some details to the reader. We use
C′ to denote any irreducible component of the curve that we work with.

First, let C be a proper, reduced, nodal curve over an algebraically closed
field. We start with two recipes to construct Cstab. With both approaches, we
first obtain the largest semistable subcurve Css ⊂ C.
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Step 1.a (Using MMP) Find C′ ⊂C on which KC has negative degree.
Equivalently, C′ ' P1 and it meets the rest of C in one point only. Contract
(or discard) this component. Repeat if possible.
Step 1.b (Using KC) Css is the support of the global sections of OC(KC).

Once we have Css, we continue to get Cstab as follows.
Step 2.a Find C′ ⊂ Css on which KCss has degree 0. Equivalently, C′ ' P1

and it meets the rest of Css in two points only; call them p, q. Contract this
component. Equivalently, discard C′ and identify the points p, q. Repeat if
possible.
Step 2.b (Using the canonical ring) Cstab = Proj⊕mH0(Css,OCss (mKCss )

)
.

Once we know Cstab, we can also recover it in one step as follows.
Step 3 Let {Ci ⊂ C : i ∈ I} be the irreducible components that are kept in
the above process; call them stable. Pick nonnodal points pi ∈ Ci and set
L := OC(

∑
pi). Then, for m � 1, H1(C, Lm) = 0, Lm is globally generated and

maps C onto Cstab.
Step 4 Over an arbitrary field k with algebraic closure k̄, we show that if C is
defined over k, then (Ck̄)stab is also defined over k, giving us Cstab.

Now to the general case. Let g : CS → S be a proper, flat family of
reduced, nodal curves over an arbitrary base. We construct the stable family
étale-locally; uniqueness then implies that we get a family over S .

Pick a point s ∈ S . By the arguments here, we have the stable irreducible
components Ci

s ⊂ Cs. Pick nonnodal points pi ∈ Ci
s and let Di ⊂ CS be

sections that meet Cs only at pi. (Usually this needs an étale base change.) Set
LS := OCS (

∑
Di). Then Step 3 shows that, for m � 1,

Step 5 R1g∗Lm = 0, g∗Lm is locally free, and maps CS onto Cstab
S . �

Warning Note that Step 2.b works only for semistable curves. As an example,
let C = C1 ∪ C2 be a curve with a single node p with g(C1) ≥ 2 and C2 ' P

1.
Then we have a non-finitely generated ring

⊕m≥0H0(C,OC(mKC)
)

= ⊕m≥0H0(C1,OC1 (mKC1 + (m − 1)[p])
)
.

Definition 1.50 (Stabilization functor) Trying to generalize (1.49) to higher
dimensions, the best would be to have a functor from proper, flat locally stable
families to stable families, that agrees with X → Xc on smooth varieties of
general type. One can further restrict the singularities of the fibers and talk
about stabilization functors for families of smooth varieties, simple normal
crossing varieties ( p.xvi), and so on.

We see here that such a stabilization functor does exist for smooth families,
but not for more complicated singularities. We discuss this phenomenon in
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detail in Section 5.2; see especially (5.11). This is another reason why the
moduli theory of higher dimensional varieties is much more complicated.

Theorem 1.51 (Stabilization functor for surfaces)
(1.51.1) For smooth, projective surfaces of general type, S 7→ S c is a

stabilization functor.
(1.51.2) For projective surfaces of general type with quotient singularities,

S 7→ S c is not a stabilization functor.
(1.51.3) For projective surfaces with normal crossing singularities, S 7→ S c

is not a stabilization functor.
(1.51.4) For irreducible projective surfaces with normal crossing singulari-

ties, S c does not even make sense in general.

Proof For the first part, see (1.36) and (2.48). As in (1.49), more work is
needed for nonreduced bases.

For (2) and (3), we run into problems even for families over smooth curves.
Consider the simplest case when we have a flat, projective morphism p :

X → A1 to a smooth curve such that KX isQ-Cartier, and the fibers are surfaces
with quotient singularities only. Then we get the stable model pstab : Xstab →

A1 as the relative canonical model (11.28).
We claim that as soon as the process involves a flip, we have an example for

(2): the canonical ring of X0 is strictly larger than the canonical ring of (Xc)0.
The flip is a diagram

(C ⊂ X)
φ //_______

π ''PP
PPP

PP
(C+ ⊂ X+)

π+vvmmm
mmm

m

Z

(1.51.5)

where −KX is π-ample and KX+ is π+-ample.
Restricting it to the fiber over 0 ∈ A1 we get a similar looking diagram of

surfaces with quotient singularities

(C ⊂ X0)
φ0 //_______

π0 ''PP
PPP

PP
(C+ ⊂ X+

0 )

π+
0vvnnnn

nnn

Z0

(1.51.6)

where KX0 is π0-ample and KX+
0

is π+
0 -ample. The difference is that now the

exceptional curves C,C+ of (1.51.5) are exceptional divisors.
Using (1.51.8) we get the following.

Problem 1.51.7 X0 7→ X+
0 is not a step of the MMP for X0. In fact, the canonical

ring of X+
0 is strictly smaller than the canonical ring of X0.
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Taking a suitable resolution shows that similar examples happen for families
with simple normal crossing fibers.

Claim (1.51.4) is not a precise assertion, but we expect that, even over alge-
braically closed fields, there is no “sensible” way to associate a stable surface
to every projective, normal crossing surface. For example, Kollár (2011c) con-
structs irreducible, projective surfaces S with normal crossing singularities for
which the canonical ring ⊕m≥0H0(S ,OS (mKS )

)
is not finitely generated. We

present a similar example in (1.53). �

Claim 1.51.8 Let p : Y → T be a proper, birational morphism of normal sur-
faces and E := Ex( p). Let D be a Cartier divisor on Y and set DT := p(D).
The following are easy to see.

(a) If −D|E is ample then p∗OY (mD) = OT (mDT ) for m ≥ 1.
(b) If D|E is ample then p∗OY (mD) ( OT (mDT ) for m � 1.
(c) If D is ample then H0(Y,OY (mD)) ( H0(T,OT (mDT )) for m > 1. �

We saw that if p : X → A1 is a flat, projective family of surfaces with
quotient singularities, then the relative canonical model (11.28) gives a sta-
ble family, although this is not a fiber-wise construction. The next example
shows that, for families over nodal curves, there may not be any stable family.

Example 1.52 Consider any family X → A1
u as in (1.51.7), and glue it to the

trivial family q : Y := X0 × A
1
v → A

1
v along the central fibers to get a locally

stable family r : X qX0 Y → (uv = 0). Then
(1.52.1) pstab : Xstab → A1

u and qstab : Ystab → A1
v both exists, yet

(1.52.2) their central fibers (Xc)0 and (Yc)0 are not isomorphic, so
(1.52.3) r : X qX0 Y → (uv = 0) does not have a stable model.

Example 1.53 Following Kollár (2011c), we give an example of a projective,
normal crossing surface whose canonical ring is not finitely generated. The key
point is the following observation.

Let T be a projective surface, C1,C2 ⊂ T disjoint smooth curves, and τ :
C1 → C2 an isomorphism. Assume that T \ C1 is smooth, T has a single node
at a point p1 ∈ C1, and KT + C1 + C2 is ample. Let T/(τ) be obtained from T
by identifying C1 with C2 using τ.

Claim 1.53.1 The canonical class of T/(τ) is not Q-Cartier. Thus its canonical
ring is not finitely generated.

Proof T is smooth along C2, hence the usual adjunction gives that

(KT + C1 + C1)|C1 = KC1 .
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T has a node along C1. This modifies the adjunction formula to

(KT + C1 + C2)|C1 = KC1 + 1
2 [ p1];

see Kollár (2013b, 4.3) for this computation. This means that we cannot match
up local generating sections of the sheaf OT (mKT +mC1 +mC2) at the points p1

and τ( p1); see Kollár (2013b, 5.12) for the precise statement and proof. This
easily implies that finite generation fails; see Kollár (2010, exc.97). �

This is almost what we want, except that T is not a normal crossing surface
at the image of p1. So next we construct a normal crossing surface and check
that trying to construct its minimal model leads to a surface as needed.

We start with a smooth plane curve C ⊂ P2 of degree d and a line L inter-
secting C transversally. Let c ∈ C ∩ L be one of the intersection points. Fix
distinct points p, q ∈ P1. In P2

p := {p} × P2 we get Cp, Lp, and similarly for
Cq, Lq ⊂ P

2
q. We have the “identity” τ : Cp ' Cq.

Let S̄ ⊂ P1×P2 be a surface of bidegree (e, d +1) such that S̄ ∩P2
p = Cp∪Lp

and S̄ ∩ P2
q = Cq ∪ Lq. We can further arrange that S̄ is smooth, except for an

ordinary node at cp ∈ Cp ∩ Lp.
Let S̄ ′ → S̄ be obtained by blowing up cp and cq. We get exceptional curves

E′p, E
′
q and birational transforms C′p and C′q. Note that S̄ ′ is smooth and E′p +

E′q + C′p + C′q is an snc divisor. We can now glue C′p to C′q using the “identity”
τ′ : C′p ' C′q to obtain the nonnormal surface S ′ := S̄ ′/(τ′). It has normal
crossing self-intersection along a curve C ' C′p ' C′q. Note that KS ′ + Ep + Eq

is a Cartier divisor.

Claim 1.53.2 The projective, normal crossing pair (S ′, Ep + Eq) does not have
a canonical model.

Proof The normalization of (S ′, Ep + Eq) is (S̄ ′, E′p + E′q + C′p + C′q), thus the
only “sensible” thing to do is to construct its canonical model, and then glue
the images of C′p and C′q together. We compute that

(KS̄ ′ + E′p + E′q +C′p +C′q) ·E′p = −1 and (KS̄ ′ + E′p + E′q +C′p +C′q) ·E′q = −1.

Thus we need to contract E′p and E′q to get (S̄ ,Cp + Cq). Note that

OS̄ (KS̄ ) ' OP1×P2 (e − 2, d + 1 − 3)|S̄ ,

which is ample for e ≥ 3, d ≥ 3. This shows that if d ≥ 4, then KS̄ + Cp +

Cq is ample. Therefore, the only possible choice for the canonical model of
(S ′, E′p +E′q) is S̄ /(τ). Now (1.53.1) shows that the canonical ring is not finitely
generated. �
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1.6 Examples of Bad Moduli Problems

Now we turn to a more general overview of moduli problems. The aim of this
section is to present examples of moduli problems that seem quite reasonable
at first sight, but turn out to have rather bad properties. We start with the moduli
of hypersurfaces.

The Chow and Hilbert varieties describe families of hypersurfaces in a fixed
projective space Pn. For many purposes, it is more natural to consider the mod-
uli functor of hypersurfaces modulo isomorphisms. We consider what kind of
“moduli spaces” one can obtain in various cases.

Definition 1.54 (Hypersurfaces modulo linear isomorphisms) Over an alge-
braically closed field k, we consider hypersurfaces X ⊂ Pn

k where X1, X2 ⊂ P
n
k

are considered isomorphic if there is an automorphism φ ∈ Aut(Pn
k) such that

φ(X1) = X2.
Over an arbitrary base scheme S , we consider pairs (X ⊂ P) where P/S is

a Pn-bundle for some n and X ⊂ P is a closed subscheme, flat over S such
that every fiber is a hypersurface. There are two natural invariants: the rela-
tive dimension of P and the degree of X. Thus for any given n, d we get a
functor

HypSurn,d(S ) :=


Flat families X ⊂ P

such that dimS P = n, deg X = d,
modulo isomorphisms over S .


One can also consider subfunctors, where we allow only reduced, normal,

canonical, log canonical, or smooth hypersurfaces; these are indicated by the
superscripts red, norm, c, lc, or sm.

Our aim is to investigate what the “coarse moduli spaces” of these functors
look like. Our conclusion is that in many cases there cannot be any scheme
or algebraic space that is a coarse moduli space: any “coarse moduli space”
would have to have very strange topology.

Let HypSur∗n,d be any subfunctor of HypSurn,d, and assume that it has a
coarse moduli space HypSur∗n,d. By definition, the set of k-points of HypSur∗n,d
isHypSur∗n,d(Spec k). We can also get some idea about the Zariski topology of
HypSur∗n,d using various families of hypersurfaces.

For instance, we can study the closure Ū of a subset U ⊂ HypSur∗n,d(Spec k)
using the following observation:
• Assume that there is a flat family of hypersurfaces π : X → S and a dense

open subset S ◦ ⊂ S such that [Xs] ∈ U for every s ∈ S ◦(k). Then [Xs] ∈ Ū
for every s ∈ S (k).
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Next we write down flat families of hypersurfaces π : X → A1 inHypSur∗n,d
such that for t , 0 the fibers Xt are isomorphic to each other, but X0 is
not isomorphic to them. Such a family corresponds to a morphism τ : A1 →

HypSur∗n,d such that τ
(
A1 \ {0}

)
= [X1], but τ

(
{0}

)
= [X0]. This implies that the

point [X1] is not closed, and its closure contains [X0].
This is not very surprising in a scheme, but note that X1 itself is defined over

our base field k, so [X1] is supposed to be a k-point. On a k-scheme, k-points
are closed. Thus we conclude that if there is any family as listed, the moduli
space HypSur∗n,d cannot be a k-scheme, not even a quasi-separated algebraic
space (Stacks, 2022, tag 08AL).

The simplest way to get such families is by the following construction.

Example 1.55 (Deformation to cones I) Let f (x0, . . . , xn) be a homogeneous
polynomial of degree d and X := ( f = 0) the corresponding hypersurface. For
some 0 ≤ i < n consider the family of hypersurfaces

X := ( f (x0, . . . , xi, txi+1, . . . txn) = 0) ⊂ Pn × A1
t (1.55.1)

with projection π : X→ A1
t . If t , 0 then the substitution

x j 7→ x j for j ≤ i, and x j 7→ t−1x j for j > i

shows that the fiber Xt is isomorphic to X. If t = 0 then we get the cone over
X ∩ (xi+1 = · · · = xn = 0):

X0 = ( f (x0, . . . , xi, 0, . . . , 0) = 0) ⊂ Pn.

This is a hypersurface iff f (x0, . . . , xi, 0, . . . , 0) is not identically 0.
More generally, any algebraic variety has a similar deformation to a cone

over its hyperplane section, see (2.36).

Already these simple deformations show that various moduli spaces of
hypersurfaces have very few closed points.

Corollary 1.56 The sole closed point of HypSurd,n is [(xd
0 = 0)].

Proof Take any X = ( f = 0) ⊂ Pn. After a general change of coordinates, we
can assume that xd

0 appears in f with nonzero coefficient. For i = 0 consider
the family (1.55.1).

Then X0 = (xd
0 = 0), hence [X] cannot be a closed point unless X ' X0.

It is quite easy to see that if X → S is a flat family of hypersurfaces whose
generic fiber is a d-fold plane, then every fiber is a d-fold plane. This shows
that [(xd

0 = 0)] is a closed point. �
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Corollary 1.57 The only closed points of HypSurred
d,n are [( f (x0, x1) = 0)]

where f has no multiple roots.

Proof If X is a reduced hypersurface of degree d, there is a line that intersects
it in d distinct points. We can assume that this is the line (x2 = · · · = xn = 0).
For i = 1, consider the family (1.55.1).

Then X0 = ( f (x0, x1, 0, . . . , 0) = 0) where f (x0, x1) has d distinct roots.
Since X0 is reduced, we see that none of the other hypersurfaces correspond to
closed points.

It is not obvious that the points corresponding to ( f (x0, x1, 0, . . . , 0) = 0)
are closed, but this can be established by studying the moduli of d points in P1;
see (Mumford, 1965, chap.3) or (Dolgachev, 2003, sec.10.2). �

A similar argument establishes the normal case:

Corollary 1.58 The only closed points of HypSurnorm
d,n are [( f (x0, x1, x2) = 0)]

where ( f (x0, x1, x2) = 0) ⊂ P2 is a nonsingular curve. �

In these examples the trouble comes from cones. Cones can be normal, but
they are very singular by other measures; they have a singular point whose
multiplicity equals the degree of the variety. So one could hope that high mul-
tiplicity points cause the problems. This is true to some extent as the next
theorems and examples show. For proofs, see Mumford (1965, sec.4.2) and
Dolgachev (2003, sec.10.1).

Theorem 1.59 Each of the following functors has a coarse moduli space
which is a quasi-projective variety.
(1.59.1) The functor of smooth hypersurfacesHypSursm

n,d.
(1.59.2) For d ≥ n + 1, the functorHypSurc

n,d of hypersurfaces with canonical
singularities.

(1.59.3) For d > n + 1, the functor HypSurlc
n,d of hypersurfaces with log

canonical singularities.
(1.59.4) For d > n + 1, the functorHypSurlow−mult

n,d of those hypersurfaces that
have only points of multiplicity < d

n+1 .

Example 1.60 Consider the family of even degree d hypersurfaces(
(xd/2

0 + td xd/2
1 )xd/2

1 + xd
2 + · · · + xd

n = 0
)
⊂ Pn × A1

t .

For t, 0 the substitution (x0:x1:x2: · · · :xn) 7→ (tx0:t−1x1:x2: · · · :xn) transforms
the equation of Xt to
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X :=
(
(xd/2

0 + xd/2
1 )xd/2

1 + xd
2 + · · · + xd

n = 0
)
⊂ Pn.

X has a single singular point which is at (1:0: · · · :0) and has multiplicity d/2.
For t = 0 we obtain the hypersurface

X0 :=
(
xd/2

0 xd/2
1 + xd

2 + · · · + xd
n = 0

)
.

X0 has two singular points of multiplicity d/2, hence it is not isomorphic to X.
Thus we conclude that [X] is not a closed point of the “moduli space” of

those hypersurfaces of degree d that have only points of multiplicity ≤ d/2.
This is especially interesting when d ≤ n since in this case X0 has canonical

singularities (1.33).
Thus we see that for d ≤ n, the functor HypSurc

n,d parametrizing hyper-
surfaces with canonical singularities does not have a coarse moduli space.
By contrast, for d > n the coarse moduli scheme HypSurc

n,d exists and is
quasi-projective by (1.59).

Example 1.61 One could also consider hypersurfaces modulo isomorphisms
which do not necessarily extend to an isomorphism of the ambient projective
space. It is easy to see that smooth hypersurfaces can have such nonlinear iso-
morphisms only for (d, n) ∈ {(3, 2), (4, 3)}. A smooth cubic curve in P2 has
an infinite automorphism group, but only finitely many extend to an automor-
phism of P2. Similarly, a smooth quartic surface in P3 can have an infinite
automorphism group as in (1.66), but only finitely many extend to an auto-
morphism of P3. See (1.66) or Shimada and Shioda (2017); Oguiso (2017) for
examples of isomorphisms of smooth quartic surfaces in P3.

The nonseparated examples produced so far all involved ruled or uniruled
varieties. Next we consider some examples where the varieties are not uniruled.
The bad behavior is due to the singularities, not to the global structure.

Example 1.62 (Double covers of P1) Let f (x, y) and g(x, y) be two cubic forms
without multiple roots, neither divisible by x or y. Set

S 1 :=
(

f (x1, y1)g(t2x1, y1) = z2
1
)
⊂ P(1, 1, 3) × A1, and

S 2 :=
(

f (x2, t2y2)g(x2, y2) = z2
2
)
⊂ P(1, 1, 3) × A1.

Note that KS i/A1 is relatively ample and the general fiber of π1 : S i → A
1 is a

smooth curve of genus 2.
The central fibers are

(
f (x1, y1)g(0, y1) = z2

1
)

resp.
(

f (x2, 0)g(x2, y2) = z2
2
)
.

By assumption, g(0, y1) = a1y3
1 and f (x2, 0) = a2x3

2 where the ai , 0. Setting
z1 = a1/2

1 w1y1 and z2 = a1/2
2 w2x2 gives the normalizations. Hence the central
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fibers are elliptic curves with a cusp. Their normalization is isomorphic to(
f (x1, y1)y1 = w2

1
)

resp.
(
x2g(x2, y2) = w2

2
)
. These are, in general, not

isomorphic to each other.
This also shows that along the central fibers, the only singularities are at

(1:0:0; 0) and at (0:1:0; 0), with local equations g(t2, y1) = z2
1 and f (x2, t2) = z2

2.
(These are simple elliptic. The minimal resolution contains a single smooth
elliptic curve of self intersection −1.) Hence the S i are normal surfaces, each
having one simple elliptic singular point.

Finally, the substitution (x1 : y1 : z1; t) = (x2 : t2y2 : t3z2; t) transforms
f (x1, y1)g(t2x1, y1) − z2

1 into

f (x2, t2y2)g(t2x2, t2y2) − t6z2
2 = t6( f (x2, t2y2)g(x2, y2) − z2

2
)
,

thus the two families are isomorphic over A1 \ {0}.

Let us end our study of hypersurfaces with a different type of example. This
shows that the moduli problem for hypersurfaces usually includes smooth lim-
its that are not hypersurfaces. These pose no problem for the general theory, but
they show that it is not always easy to see what schemes one needs to include
in a moduli space.

Example 1.63 (Smooth limits of hypersurfaces) (Mori, 1975) Fix integers
a, b > 1 and n ≥ 2. We construct a family of smooth n-folds Xt such that
Xt is a smooth hypersurface of degree ab for t , 0 and X0 is not isomorphic to
a smooth hypersurface.

It is not known if similar examples exist for n ≥ 3 and deg X a prime number;
see Ottem and Schreieder (2020) for the cases deg X ≤ 7.

Start with the weighted projective space P(1n+1, a)x,z. Let fa, gab be general
homogeneous forms of degree a (resp. ab) in x0, . . . , xn. Consider the family
of complete intersections

Xt :=
(
tz − fa(x0, . . . , xn) = zb − gab(x0, . . . , xn) = 0

)
⊂ P(1n+1, a).

For t , 0, we can eliminate z to obtain a degree ab smooth hypersurface

Xt '
(

f b
a (x0, . . . , xn) = tbgab(x0, . . . , xn)

)
⊂ Pn+1.

For t = 0, we see that OX0 (1) is not very ample, but realizes X0 as a b-fold
cyclic cover (11.24) of the degree a smooth hypersurface

(
fa(x0, . . . , xn) = 0

)
.

In particular, X0 is not isomorphic to a smooth hypersurface.

The next example shows that seemingly equivalent moduli problems may
lead to different moduli spaces.
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Example 1.64 We start with the moduli space Pn+1 of n + 1 points in C up to
translations. We can view such a point set as the zeros of a unique polynomial
of degree n + 1 whose leading term is xn+1. We can use a translation to kill the
coefficient of xn, and the universal polynomial is then given by

xn+1 + a2xn−1 + · · · + an+1.

Thus Pn+1 ' C
n with coordinates a2, . . . , an+1.

Let us now look at those point sets where n of the points coincide. There are
two ways to formulate this as a moduli problem:
(1.64.1) unordered point sets p0, . . . , pn ∈ C where at least n of the points

coincide, up to translations, or
(1.64.2) unordered point sets p0, . . . , pn ∈ C plus a point q ∈ C such that

pi = q at least n-times, up to translations.
If n ≥ 2 then q is uniquely determined by the points p0, . . . , pn, so it would
seem that the two formulations are equivalent. We claim, however, that the two
versions have nonisomorphic moduli spaces.

If the n-fold point is at t then the corresponding polynomial is (x− t)n(x+nt).
By expanding it we get that

ai = ti
[
(−1)i

(
n
i

)
+ (−1)i−1n

(
n

i−1

)]
for i = 2, . . . , n + 1.

This shows that the space Rn+1 ⊂ Pn+1 of polynomials with an n-fold root is a
cuspidal rational curve given as the image of the map

t 7→
(
ai = ti

[
(−1)i

(
n
i

)
+ (−1)i−1n

(
n

i−1

)]
: i = 2, . . . , n + 1

)
.

So the moduli space Rn+1 of the first variant (1) is a cuspidal rational curve.
By contrast, the space R̄n+1 of the second variant (2) is a smooth rational

curve, the isomorphism given by

(p0, . . . , pn; q) 7→
∑

i( pi − q) ∈ C.

Not surprisingly, the map that forgets the n-fold root gives π : R̄n+1 → Rn+1

which is the normalization map.

Next we have two examples of moduli functors that are not representable
(1.18). They suggest that varieties whose canonical class is not ample present
special challenges.

Example 1.65 Let S ⊂ P3 be a smooth surface of degree 4 over C, with an
infinite discrete automorphism group, for example as in (1.66).

Let S → W be the universal family of smooth degree 4 surfaces in P3. The
isomorphisms classes of the pairs

(
S ,OS (1)

)
correspond to the Aut(P3)-orbits
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in W. We see that the fibers isomorphic to S form countably many Aut(P3)-
orbits.

For any g ∈ Aut(S ), g∗OS (1) gives another embedding of S into P3. Two
such embeddings are projectively equivalent iff g∗OS (1) ' OS (1), that is, when
g ∈ Aut

(
S ,OS (1)

)
. The latter can be viewed as the group of automorphisms of

P3 that map S to itself. Thus Aut
(
S ,OS (1)

)
is a closed subvariety of Aut(P3) '

PGL4. Since Aut(S ) is discrete, this implies that Aut
(
S ,OS (1)

)
is finite. Hence

the fibers of S→ W that are isomorphic to S lie over countably many Aut(P3)-
orbits, corresponding to Aut(S )/Aut

(
S ,OS (1)

)
.

Example 1.66 (Surfaces with infinite discrete automorphism group) Let us
start with a smooth genus 1 curve E defined over a field K. Any point q ∈
E(K) defines an involution τq where τq( p) is the unique point such that p +

τq( p) ∼ 2q. (Equivalently, we can set q as the origin, then τq( p) = −p.) The
first formulation shows that if L/K is a quadratic extension, then any Q ∈
E(L) also defines an involution τQ where τQ( p) is the unique point such that
p + τQ( p) ∼ Q.

Given points q1, q2 ∈ E(K), we see that p 7→ τq2 ◦ τq1 ( p) is translation by
2q1 − 2q2. Similarly, given Qi ∈ E(Li), p 7→ τQ2 ◦ τQ1 ( p) is translation by
Q1 − Q2. Usually these translations have infinite order.

Let g : S → C be a smooth, minimal, elliptic surface. Then, any section
or double section of g gives an involution of S , and two involutions usually
generate an infinite group of automorphisms of S .

As a concrete example, let S ⊂ P3 be a smooth quartic that contains three
lines Li. The pencil of planes through L1 gives an elliptic fibration with L2, L3

as sections. Thus these K3 surfaces usually have an infinite automorphism
group.

1.7 Compactifications of Mg

Here we consider what happens if we try to define other compactifications of
Mg. First, we give a complete study of a compactified moduli functor of genus
2 curves that uses only irreducible curves.

Definition 1.67 Working over C, letMirr
2 be the moduli functor of flat families

of irreducible curves of arithmetic genus 2 that are either
(1.67.1) smooth,
(1.67.2) nodal,
(1.67.3) rational with two cusps, or
(1.67.4) rational with a triple point whose complete local ring is isomorphic

to C[[x, y, z]]/(xy, yz, zx).
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The aim of this subsection is to prove the following; see Mumford (1965,
chap.3) or Dolgachev (2003, sec.10.2) for the relevant background on GIT
quotients.

Proposition 1.68 LetMirr
2 be the moduli functor defined at (1.67). Then

(1.68.1) the coarse moduli space Mirr
2 exists and equals the geometric invar-

iant theory quotient (8.59) of the symmetric power Sym6 P1//Aut(P1),
but

(1.68.2) Mirr
2 is a very bad moduli functor.

Proof A smooth curve of genus 2 can be uniquely written as a double cover
τ : C → P1, ramified at six distinct points p1, . . . , p6 ∈ P

1, up to automor-
phisms of P1. Thus, M2 is isomorphic to the space of six distinct points in
P1, modulo the action of Aut(P1). If some of the six points coincide, we get
singular curves as double covers.

It is easy to see the following; see Mumford (1965, chap.3), Dolgachev
(2003, sec.10.2).
(1.68.3) A point set is semistable iff it does not contain any point with mul-

tiplicity ≥ 4. Equivalently, if the genus 2 cover has only nodes and
cusps.

(1.68.4) The properly semistable point sets are of the form 3p1 + p2 + p3 + p4

where the p2, p3, p4 are different from p1, but may coincide with each
other. Equivalently, the corresponding genus 2 cover has at least one cusp.

(1.68.5) Point sets 2p1+2p2+2p3, where the p1, p2, p3 are different from each
other. The double cover is reducible, with two smooth rational components
meeting each other at three points.

In the properly semistable case, generically the double cover is an elliptic
curve with a cusp over p1. As a special case, we can have 3p1 + 3p2, giving
as double cover a rational curve with two cusps. Note that the curves of this
type have a one-dimensional moduli (the cross ratio of the points p1, p2, p3, p4

or the j-invariant of the elliptic curve), but they all correspond to the same
point in Sym6 P1//Aut(P1). (See (1.62) for an explicit construction.) Our def-
inition (1.67) aims to remedy this nonuniqueness by always taking the most
degenerate case; a rational curve with two cusps (1.67.3).

In case (5), write the reducible double cover as C = C1 + C2. The only
obvious candidate to get an irreducible curve is to contract one of the two
components Ci. We get an irreducible rational curve; denote it by C′j where
j = 3 − i. Note that C′j has one singular point which is analytically isomorphic
to the three coordinate axes in A3. The resulting singular rational curves C′j are
isomorphic to each other. These are listed in (1.67.4).
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Let p : X → S be any flat family of irreducible, reduced curves of arithmetic
genus 2. The trace map (Barth et al., 1984, III.12.2) shows that R1 p∗ωX/S '

OS . Thus, by cohomology and base change, p∗ωX/S is locally free of rank 2.
Set P := PS

(
p∗ωX/S

)
. Then P is a P1-bundle over S , and we have a rational

map π : X → P. If Xs has only nodes and cusps, then ωXs is locally free and
generated by global sections, thus π is a morphism along Xs.

If Xs is as in (1.67.4), then ωXs is not locally free, and π is not defined at
the singular point. π|Xs is birational and the three local branches of Xs at the
singular point correspond to three points on P

(
H0(Xs, ωXs )

)
.

The branch divisor of π is a degree 6 multisection of P → S , all of whose
fibers are stable point sets. Thus we have a natural transformation

Mirr
2 (∗)→ Mor

(
∗,Sym6 P1//Aut(P1)

)
.

We have already seen that we get a bijection

Mirr
2 (C) '

(
Sym6 P1//Aut(P1)

)
(C).

Since Sym6 P1//Aut(P1) is normal, we conclude that it is the coarse moduli
space. This completes the proof of (1.68.1).

The assertion (1.68.2) is more a personal opinion. There are three main
things “wrong” with the functorMirr

2 (∗). Let us consider them one at a time.

1.68.6 (Stable extension questions)
At the set-theoretic level, we have Mirr

2 = Sym6 P1//Aut(P1), but what about
at the level of families?

The first indications are good. Let πB : S B → B be a stable family of genus 2
curves. Assume that no fiber is of type (1.68.5). Let bi ∈ B be the points corre-
sponding to fibers with two components of arithmetic genus 1. Let p : A → B
be a double cover ramified at the points bi. Consider the pull-back family
πA : S A → A. Set ai = p−1(bi) and let si ∈ π−1

A (ai) be the point where the
two components meet. Since we took a ramified double cover, each si ∈ S A is
a double point. Thus if we blow up every si, the exceptional curves appear in
the fiber with multiplicity 1. We can now contract the birational transforms of
the elliptic curves to get a family where all these reducible fibers are replaced
by a rational curve with two cusps. We have proved the following analog of
(1.15.1):

Claim 1.68.6.a Let π : S → B be a stable family of genus 2 curves such that
no fiber has two smooth rational components. Then, after a suitable double
cover A → B, the pull-back S ×B A is birational to another family where each
reducible fiber is replaced by a rational curve with two cusps. �
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This solved our problem for one-parameter families, but, as it turns out, not
over higher dimensional bases. In particular, there is no universal family over
any base scheme Y that finitely dominates Sym6 P1//Aut(P1), not even locally
in any neighborhood of the properly semistable point. Indeed, this would give
a proper, flat family of curves of arithmetic genus 2 over a three-dimensional
base π : X → Y where only finitely many of the fibers (the ones over the unique
properly semistable point) have cusps. However, there is no such family.

To see this we use that, by (2.27), every flat deformation of a cusp is induced
by pull-back from the two-parameter family

( y2 = x3 + ux + v)
p
��

� � // A2
xy × A

2
uv

��
A2

uv A2
uv.

(1.68.6.b)

Thus our family π gives an analytic morphism τ : Y → A2
uv (defined in some

neighborhood of 0 ∈ Y), and C = τ−1(0, 0) ⊂ Y is a curve along which the fiber
has a cusp.

1.68.7 (Failure of representability)
Following (1.68.6.b), consider the universal deformation of the rational curve
with two cusps. This is given as(

z2 = (x3 + uxy2 + vy3)( y3 + syx2 + tx3)
)

p ��

� � // P2(1, 1, 3) × A4
uvst

��
A4

uvst A4
uvst.

Let us work in a neighborhood of (0, 0, 0, 0) ∈ A4, where the two factors
x3 + uxy2 + vy3 and y3 + syx2 + tx3 have no common roots. There are three
types of fibers: p−1(0, 0, 0, 0) is a rational curve with two cusps, p−1(a, b, 0, 0)
and p−1(0, 0, a, b) are irreducible with exactly one cusp if (a, b) , (0, 0), and
p−1(a, b, c, d) is irreducible with at worst nodes otherwise.

Thus the curves that we allow in our moduli functor Mirr
2 do not form a

representable family. Even worse, the subfamily(
z2 = (x3 + uxy2 + vy3)y3)→ Spec k[[u, v]]

is not allowed in our moduli functorMirr
2 , but the family(

z2 = (x3 + uxy2 + vy3)( y3 + unyx2 + vnx3)
)
→ Spec k[[u, v]]

is allowed. Over Spec k[u, v]/(un, vn) the two families are isomorphic. Since
deformation theory is essentially a study of families over Artinian rings, this
means that the usual methods cannot be applied to understand the functorMirr

2 .
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1.68.8 (Unusual nonseparatedness) A quite different type of problem arises at
the curve corresponding to 2p1 + 2p2 + 2p3.

Write the double cover as C = C1 + C2. As before, if we contract one of the
two components Ci, we get an irreducible rational curve C′j, where j = 3− i as
in (1.67.4).

Since the curves C′1 and C′2 are isomorphic, from the set-theoretic point of
view this is a good solution. However, as in (1.27), something strange happens
with families. Let p : S → A1 be a family of stable curves whose central fiber
S 0 := p−1(0) is isomorphic to C = C1 + C2. We have two ways to construct a
family with an irreducible central fiber: contract either of the two irreducible
components Ci. Thus we get two families

S
πi
−→ S i

pi
−→ A1 with p−1

i (0) ' C′3−i.

Over A1 \ {0} the two families are naturally isomorphic to S → A1, hence to
each other, yet this isomorphism does not extend to an isomorphism of S 1 and
S 2. Indeed, the closure of the graph of the resulting birational map is given by
the image (π1, π2) : S → S 1 ×A1 S 2. Thus the corresponding moduli functor is
not separated.

We claimed in (1.68.1) that, by contrast, the coarse moduli space is M2,
hence separated. A closer study reveals the source of this discrepancy: we have
been thinking of schemes instead of algebraic spaces. The occurrence of such
problems in moduli theory was first observed by Artin (1974). The aim of the
next paragraph is to show how such examples arise.

1.68.9 (Bug-eyed covers) (Artin, 1974); (Kollár, 1992a) A non-separated
scheme always has “extra” points. The typical example is when we take two
copies of a scheme X × {i} for i = 0, 1, an open dense subscheme U ( X, and
glue U×{0} to U×{1} to get XqU X. The non-separatedness arises from having
two points in X qU X for each point in X \ U.

By contrast, an algebraic space can be nonseparated by having no extra
points, only extra tangent directions. The simplest example is the following.

On A1
t consider two equivalence relations. The first is R1 ⇒ A

1 given by

(t1 = t2) ∪ (t1 = −t2) ⊂ A1
t1 × A

1
t2 .

Then A1
t /R1 ' A

1
u where u = t2.

The second is the étale equivalence relation R2 ⇒ A
1 given by

A1 (1,1)
−→ A1 × A1 and A1 \ {0}

(1,−1)
−→ A1 × A1.

(Note that we take the disconnected union of the two components, instead of
their union as two lines in A1 × A1 intersecting at the origin.)
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One can also obtain A1
t /R2 by taking the quotient of the nonseparated

scheme A1 qA1\{0} A
1 by the ( fixed point free) involution that interchanges

(t, 0) and (−t, 1).
The morphism A1

t → A
1
t /R2 is étale, thus A1

t /R2 , A
1
t /R1. Nonetheless,

there is a natural morphism A1
t /R2 → A

1
t /R1 which is one-to-one and onto on

closed points. The difference between the two spaces is seen by the tangent
spaces. The tangent space of A1

t /R2 at the origin is spanned by ∂/∂t while the
tangent space of A1

t /R1 at the origin is spanned by ∂/∂u = (2t)−1∂/∂t.

1.69 Our attempt to replace the moduli functor of stable curves of genus 2
with another one that parametrizes only irreducible curves was not successful,
but some of the problems seemed to have arisen from the symmetry that forced
us to make artificial choices. We can avoid such choices for other values of the
genus using the following observation.

Let π : S → B be a flat family of curves with smooth general fiber and
reduced special fibers. If Cb := π−1(b) is a singular fiber and Cbi are the
irreducible components of its normalization, then∑

ih1(Cbi,OCbi

)
≤ h1(Cb,OCb

)
= h1(Cgen,OCgen

)
,

where Cgen is the general smooth fiber. In particular, there can be at most one
irreducible component with geometric genus > 1

2 g(Cgen).
From this it is easy to prove the following:

Claim 1.69.1 Let B be a smooth curve and S ◦ → B◦ a smooth family of genus
g curves over an open subset of B. Then there is at most one normal surface
S → B extending S ◦ such that every fiber of S → B is irreducible and of
geometric genus > 1

2 g(Cgen).
Moreover, if S stab → B is a stable family extending S ◦ and every fiber of

S stab → B contains an irreducible curve of geometric genus > 1
2 g(Cgen), then

we obtain S from S stab by contracting all connected components of curves of
geometric genus < 1

2 g(Cgen) that are contained in the fibers. (It is not hard to
show that S → B exists, at least as an algebraic space.)

In fact, this way we obtain a partial compactification Mg ⊂ M′g such that
• M′g parametrizes smoothable irreducible curves of arithmetic genus g and

geometric genus > 1
2 g.

• Let Mg ⊂ M′′g ⊂ Mg be the largest open subset parametrizing curves that
contain an irreducible component of geometric genus > 1

2 g. Then there is a
natural morphism M′′g → M′g.
So far so good, but, as we see next, we cannot extend M′g to a compactifi-

cation in a geometrically meaningful way. This happens for every g ≥ 3; the
following example with g = 13 is given by simple equations.
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This illustrates a general pattern: one can easily propose partial compactifi-
cations that work well for some families, but lead to contradictions for some
others. (See Schubert, 1991; Hassett and Hyeon, 2013; Smyth, 2013 for a
search for geometrically meaningful compactifications of Mg.)

Example 1.70 Consider the surface F :=
(
x8 + y8 + z8 = t2) ⊂ P3(1, 1, 1, 4)

and on it the curve C := F ∩ (xyz = 0). C has three irreducible components
Cx = (x = 0),Cy = ( y = 0),Cz = (z = 0), which are smooth curves of genus 3.
C itself has arithmetic genus 13.

We work with a three-parameter family of deformations

T :=
(
xyz − ux3 − vy3 − wz3 = 0

)
⊂ F × A3

uvw. (1.70.1)

For general uvw , 0 the fiber of the projection π : T → A3 is a smooth curve
of genus 13. If one of the u, v,w is zero, then generically we get a curve with
two nodes, hence with geometric genus 11.

If two of the coordinates are zero, say v = w = 0, then we have a family

Tx :=
(
x( yz − ux2) = 0

)
⊂ F × A1

u.

For u , 0, the fiber C(u,0,0) has two irreducible components. One is Cx = (x =

0), the other is ( yz − ux2 = 0) which is a smooth genus 7 curve.
Thus the proposed rule says that we should contract Cx ⊂ C(u,0,0).
Similarly, by working over the v and the w-axes, the rule tells us to contract

Cy ⊂ C(0,v,0) for v , 0 and Cz ⊂ C(0,0,w) for w , 0.
It is easy to see that over A3 \ {(0, 0, 0)} these contractions can be performed

(at least among algebraic spaces). Thus we obtain

T \ {π−1(0, 0, 0)}

��

p◦ // S ◦

τ◦

��
A3 \ {(0, 0, 0)} A3 \ {(0, 0, 0)}

(1.70.2)

where τ◦ is flat with irreducible fibers.

Claim 1.70.3 There is no proper family of curves τ : S → A3 that extends τ◦.
(We do not require τ to be flat.)

Proof Assume to the contrary that τ : S → A3 exists, and let Γ ⊂ T ×A3 S be
the closure of the graph of p◦. Since p◦ is a morphism on T \ {π−1(0, 0, 0)},
we see that the first projection π1 : Γ → T is an isomorphism away from
π−1(0, 0, 0). Since T ×A3 S → A3 has two-dimensional fibers, we conclude that

https://doi.org/10.1017/9781009346115.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.003
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dim π−1
1

(
π−1(0, 0, 0)

)
≤ 2. T is, however, a smooth 4-fold, hence the excep-

tional set of any birational map to T has pure dimension 3. Thus Γ ' T and so
p◦ extends to a morphism p : T → S .

Now the rule lands us in a contradiction over the origin (0, 0, 0). Here all
three components Cx,Cy,Cz ⊂ C(0,0,0) = C should be contracted. This is
impossible to do since this would give that the central fiber of S → A3 is a
point. �

1.8 Coarse and Fine Moduli Spaces

As in (1.7), let V be a “reasonable” class of projective varieties andVarietiesV

the corresponding functor. The aim of this section is to study the difference
between coarse and fine moduli spaces, mostly through a few examples. We
are guided by the following:

Principle 1.71 Let V be a “reasonable” class as above, and assume that it
has a coarse moduli space ModuliV. Then ModuliV is a fine moduli space iff
Aut(V), the group of automorphisms of V (8.63), is trivial for every V ∈ V.

From the point of view of algebraic stacks, a precise version is given in
Laumon and Moret-Bailly (2000, 8.1.1). In positive characteristic, one should
pay attention to the scheme structure of Aut(V). Our construction of the moduli
spaces shows that this principle is true for polarized varieties, see Section 8.7,
but a precise version needs careful attention to the difference between schemes
and algebraic spaces.

Let L be a field and XL ∈ V an L-variety. Let [X] ∈ ModuliV be the cor-
responding point with residue field K := k

(
[X]

)
. If ModuliV is fine, then the

resulting map Spec K → ModuliV corresponds to a K-variety XK such that
XL ' XK × Spec L. Moreover, XK is the unique K-variety with this property.

If ModuliV is not a fine moduli space, then it is not clear how to define this
field K. XK may not be unique and may not exist. We study these questions,
mostly through examples.

1.72 (Field of moduli) Let X ⊂ Pn be a projective variety defined over an alge-
braically closed field K. Any set of defining equations involves only finitely
many elements of K, thus X can be defined over a finitely generated subfield
of K. It is a natural question to ask: Is there a smallest subfield F ⊂ K such that
X can be defined by equations over F? There are two variants of this question.
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1.72.1 (Embedded version) Fix coordinates on Pn
K and view X as a specific

subvariety. In this case a smallest subfield F exists; see Weil (1946, sec.I.7)
or Kollár et al. (2004, sec.3.4). This is a special case of the existence of
Hilbert schemes (1.5). More generally, the same holds if Pn is replaced by
any Z-scheme. We can also think of this as a Galois invariance property. If
σ ∈ Aut(K) then σ(X) = X iff σ is the identity on F. If char K = 0, this
property characterizes F, but otherwise only its purely inseparable closure F ins.
1.72.2 (Absolute version) No embedding of X is fixed. Thus we are looking for
a field F ⊂ K and an F-variety XF such that X ' (XF)K . It turns out that there
is no smallest field in general. As a first approximation, we call the intersection
of all such fields F the field of moduli of X. As the examples (1.76) show, this
naive version can be unexpectedly small.

The situation is better if KX is ample, but in (1.75) we construct a hyperel-
liptic curve whose field of moduli is Q, yet it cannot be defined over R. The
first such examples are in Earle (1971); Shimura (1972).

To get the right notion, we instead look for isotrivial families with fiber X,
defined over some subfield F ⊂ K. That is, flat, projective morphisms u :
UZ → Z (defined over F), whose every geometric fiber is isomorphic to X.

We say that u : UZ → Z is universal if every isotrivial family v : US → S
with fiber X is locally the pull-back of u : UZ → Z. That is, there is an open
cover S = ∪iS i and morphisms σi : S i → Z such that the restriction vi : US i →

S i is isomorphic to the pull-back U ×u,σi S i → S i.
We see in (1.73) that universal isotrivial families exist and they are defined

over the same subfield FX ⊂ K, giving the right notion of field of moduli. How
is this connected with moduli theory?

Let V be a class of varieties with a coarse moduli space ModuliV. Let
u : UZ → Z be an isotrivial family with fiber X defined over F ⊂ K. By the
definition of a coarse moduli space, there is a morphism Z → ModuliV, whose
image must be the point [X] ∈ ModuliV corresponding to X. In particular, we
get an injection of the residue field k([X]) into F.

If ModuliV is a fine moduli space, then X can be defined over k([X]), and
(1.73.2) shows that k([X]) = FX .

The construction of the moduli spaces of stable varieties shows that the
extension FX/k([X]) is purely inseparable, hence trivial in characteristic 0.

Proposition 1.73 Let K be an algebraically closed field of characteristic 0 and
X a projective K-variety with ample canonical class. Then there is a unique
smallest field FX ⊂ K – called the field of moduli of X – such that there is a
geometrically irreducible, universal, isotrivial family u : U → Z with fiber X,
defined over FX . Moreover, X ' Xσ for every σ ∈ Gal(K/FX).
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Proof Fix m such that |mKX | is very ample, giving an embedding X ↪→ PN .
The image depends on a choice of a basis in H0(X,OX(mKX)

)
, so instead of

getting a point in Chow(PN) or Hilb(PN), we get a whole Aut(PN)-orbit. Denote
it by Z (it depends on X and m). Over it we have a universal family u : UZ → Z,
which is isotrivial with fiber X.

The closure of Z is now a closed subvariety of the Z-schemes Chow(PN)
or Hilb(PN), thus it has a smallest field of definition by (1.72.1). This is our
FX .

To see that u : UZ → Z is universal, let v : VS → S be an isotrivial family
with fiber X. Then v∗OVS (mKVS /S ) is locally free. Choose an open trivializing
cover S = ∪iS i. These define embeddings VS i ↪→ P

N × S i, hence morphisms
σi : S i → Z.

For a subvariety X ⊂ Pn
K , let [X] ∈ Hilb(PN) denote the corresponding

point. Then [Xσ] = σ[X], hence the last claim is a reformulation of the Galois
invariance property noted in (1.72.1). �

1.74 (Field of moduli for hyperelliptic curves) Let A be a smooth hyperelliptic
curve of genus ≥ 2. Over an algebraically closed field, A has a unique degree 2
map to P1. Let B ⊂ P1 be the branch locus, that is, a collection of 2g + 2 points
in P1. If the base field k is not closed, then A has a unique degree 2 map to a
smooth genus 0 curve Q. (One can always think of Q as a conic in P2.) Thus A
is defined over a field k iff the pair (B ⊂ P1) can be defined over k.

The latter problem is especially transparent if A is defined over C, and we
want to know if it is defined over R or if its field of moduli is contained in R.

Up to isomorphism, there are two real forms of P1. One is P1, correspond-
ing to the antiholomorphic involution (x:y) 7→ (x̄:ȳ), which, after a coordinate
change, can also be written as σ1 : (x:y) 7→ (ȳ:x̄). (In the latter, the real
points are the unit circle.) The other is the “empty” conic, corresponding to
the antiholomorphic involution σ2 : (x:y) 7→ (−ȳ:x̄).

Thus let A→ CP1 be a smooth hyperelliptic curve of genus ≥ 2 over C with
branch locus B ⊂ CP1. Then (1.72.5) gives that
(1.74.1) A can be defined over R iff there is a g ∈ Aut(CP1) such that gB is

invariant under σ1 or σ2, and
(1.74.2) the field of moduli of A is contained in R iff there is an h ∈ Aut(CP1)

such that hB equals Bσ1 or Bσ2 .

Note that if (gB)σ = gB then Bσ =
(
gσ

)−1gB shows that (1) ⇒ (2).
Conversely, if Bσ = hB and we can write h =

(
gσ

)−1g then (gB)σ = gB.

Example 1.75 Here is an example of a hyperelliptic curve C whose field of
moduli is Q, but C cannot be defined over R.
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Pick α = a + ib where a, b are rational. Consider the hyperelliptic curve

C(α) :=
(
z2 −

(
x8 − y8)(x2 − αy2)(ᾱx2 + y2) = 0

)
⊂ P2(1, 1, 6).

Its complex conjugate is

C(ᾱ) :=
(
z2 −

(
x8 − y8)(x2 − ᾱy2)(αx2 + y2) = 0

)
⊂ P2(1, 1, 6).

C(α) and C(ᾱ) are isomorphic, as shown by the substitution (x, y, z) 7→
(iy, x, z). So, over SpecQ Q[t]/(t2 + 1) we have a curve

C(a, b) :=
(
z2 −

(
x8 − y8)(x2 − (a + tb)y2)((a − tb)x2 + y2) = 0

)
⊂ P2(1, 1, 6)

whose geometric fibers are isomorphic to C(α). Thus the field of moduli of
C(α) is Q by (1.72.5).

We claim that, for sufficiently general a, b, the curve C(α) cannot be defined
over Q, not even over R. By (1.74) we need to show that there is no anti-
holomorphic involution that maps the branch locus to itself. In the affine chart
y , 0, the ramification points of C(α)→ P1 are:
(1.75.1) the 8th roots of unity corresponding to x8 − y8, and
(1.75.2) the four points ±β,±i/β̄ where β2 = α.

The anti-holomorphic automorphisms of the Riemann sphere map circles to
circles. Out of our 12 points, the 8th roots of unity lie on the circle |z| = 1, but
no other 8 can lie on a circle. Thus any antiholomorphic automorphism that
maps our configuration to itself, must fix the unit circle |z| = 1 and map the 8th
roots of unity to each other.

The only such antiholomorphic involutions are
(1.75.3) reflection on the line R · ε, where ε is a 16th root of unity, and
(1.75.4) z 7→ 1/z̄ or z 7→ −1/z̄.
A short analysis shows that C(α) is not isomorphic (over C) to a real curve, as
long as β16 is not a positive real number.

Example 1.76 We give an example of a smooth projective surface S such
that if S is defined over a field extension K/C then trdegC K = 2, but the
intersection of all such fields of definition is C.

Let X be a projective surface such that Aut(X) is discrete and contains finite
subgroups G1,G2 such that 〈G1,G2〉 has a Zariski dense orbit on X.

One such example is B0(E × E), the blow-up of the square of an elliptic
curve at a point, as shown by the subgroups generated by the matrices(

0 −1
1 1

)
and

(
0 −1
1 0

)
.
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There are also K3 surfaces with infinite automorphism group generated by two
involutions (1.66).

Let ∆ ⊂ X×X be the diagonal and, using one of the projections, consider the
family of smooth varieties f : Y := B∆(X × X)→ X. Our example is K = C(X)
and YK the generic fiber of Y → X.

Note that Y → X is the universal family of the varieties of the form BxX for
x ∈ X. This shows that YK cannot be obtained by base change from a variety
over a field of smaller transcendence degree over C.

Let G ⊂ Aut(X) be a finite subgroup. There is an open subset UG ⊂ X
such that G operates on UG without fixed points. Thus f /G : Y/G → X/G is a
family of smooth varieties over UG/G and Y |UG ' Y/G ×X/G UG. Thus YK can
be defined over C(X/G) = KG for every finite subgroup G ⊂ Aut(X).

On the other hand, the intersection KG1 ∩ KG2 is C. Indeed, any function in
KG1 ∩ KG2 is constant on every G1-orbit and also on every G2-orbit, hence on
a dense set by our assumptions.

This phenomenon is also connected with the behavior of ample line bundles
on πi : X → X/Gi. Although both of the X/Gi are projective, there are no ample
line bundles Li on X/Gi such that π∗1L1 ' π

∗
2L2.

1.77 (Openness of the fine locus) Let V be a “reasonable” class of varieties
with a coarse moduli space ModuliV.

If Aut(X) = {1} is an open condition in flat families with fibers in V, then
there is an open subscheme Modulirigid

V ⊂ ModuliV that is a coarse mod-
uli space for varieties in V without automorphisms. By (1.71), Modulirigid

V
should be a fine moduli space. In many cases, Modulirigid

V is dense in ModuliV,
thus one can understand much about the whole ModuliV by studying the fine
moduli space Modulirigid

V .
Let X → S be a flat family with fibers in V and π : AutS (X)→ S the scheme

representing automorphisms of the fibers (8.63). If V satisfies the valuative
criterion of separatedness (1.20), and all automorphism groups are finite, then
π is proper. More careful attention to the scheme structure of the automorphism
groups shows that in fact Aut(X) = {1} is an open condition.

However, automorphism groups of smooth, projective surfaces can jump
unexpectedly. For example, the automorphism group of a general Enriques sur-
face is infinite, but there are special Enriques surfaces with finite automorphism
group. A more elementary example is the following:

Example 1.77.1 Let ζ be a primitive mth root of unity. Then τ(x:y:z) = (ζx:y:z)
defines a Z/m-action on P2. For t , 0, let S t be the surface obtained by blowing
up the m points (ζ it:t:1).
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What should limt→0 S t be? A natural candidate is to blow up first (0:0:1) and
then the m intersection points pi of the exceptional curve E with the birational
transforms of the lines Li := (x = ζ iy). The resulting S 0 has a Z/m-action, but
we blew up m + 1-times, so there is no family of smooth surfaces with fibers
{S t : t ∈ C}.

As in (1.24), for any j ∈ Z/m we can get a smooth family of surfaces with
central fiber S j

0, obtained by blowing up first (0:0:1) and then all the pi for
i , j. These give m distinct families, and we do not have a Z/m-action on any
of these S j

0.
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