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Abstract

We use the "Brownian Bridge" of Schrodinger to model a statistical search problem
in which the initial and final distributions of a random motion are given. We raise
the question of how to use this information to optimally reconstruct a likely past
event.

1. Introduction

Any non-negative solution of the diffusion equation

U[ = DV2u (1.1)

with D > 0 being the diffusion constant, determines a time-dependent prob-
ability density for the position of a single diffusing particle, given an initial
probability density. Thus, in one-dimensional diffusion, a particle starting
from x = 0 at t — 0 has the probability udx of position in the interval
(x, x + dx) at any later time t > 0 given by the fundamental solution of
(1.1)

u(x, t) = g{x,t) = (4nDt)-l/2e-x2/4Dt (1.2)

In contrast, when initial and final probability densities are given at time
t0, tx, the probability density for locating the particle at an intermediate time
t (t0 < t < tt) is not a solution of (1.1), but is deduced from it as a nonlinear
combination of solutions. The deduction hinges on the rule of multiplying
probabilities of independent events occurring in conjunction, as follows.
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258 A. M. Fink and L. Bass [2]

A particle starts one-dimensional diffusion at position y at time tQ and
is found again at position z and time t{. What is the probability density
p(x, t\y, t0; z, tx) of it having been at x at time tl Using (1.2) with
shifted origins of position and time, we see that the probability of diffusing
from y at t0 to z at tl via x at t:

g(x-y,t- t0)dxg{z-x,tx- t)dz

= g{z-y, tx -to)dzp(x, t\y, t0; z, tx)dx,

and hence

p(x t\y f z 1)- S{x-y,t-to)g{z-x,tx-t)p(x,t\y,to,z,tl)- g{z_y>ti_to) • V-*)

A different (frequentist) derivation is given by Schrodinger [1].
The final event (z , t{) may be a very unlikely outcome of diffusion from

position y at t0 (as assessed by g(z -y,tl-tQ) from (1.2)), but this out-
come is a given fact to be included in the evaluation of p(x, t\y, t0; z, tx).
In the relation between events (j;, tQ) and (z, t{) the validity of (1.1) is thus
suspended, while in the calculation of p it is restored. Such liberties are per-
missible only because of the probabilistic interpretation of the solutions of
(1.1). In contrast, heat conduction obeys (1.1) and (1.2) but provides no
formal counterpart to (1.3). Whereas the Schrodinger equation differs from
(1.1), the analogous construction of location probabilities which are bilinear
in the solutions of the equation had motivated Schrodinger [1] to revive and
develop Smoluchowski's consideration relating to (1.3). (See [1] for refer-
ences.) Schrodinger's quantum considerations [1] related at first only to the
reconstruction of past events, not to prediction of future events. For a recent
review of this and subsequent quantum aspects, which do not concern us here,
see [2, Ch. 7, pp. 258-260]. In the present paper we start from Schrodinger's
mathematical formulations [1], but we keep to an interpretation in terms of
classical probabilities for a macroscopic body in random walk, which leaves
traces that are subject to searches calling for optimal strategies.

We shall be especially interested in optimal search strategies commencing
after the completion of the diffusion process (after time t{). The simplest
case is illustrated by supposing that the event (y, t0) was a bank robbery by
Jesse James (J.J.), the event (z, tt) was the capture of J.J. carrying no gold,
and {x, t) was the (hypothetical) event of J.J. burying the gold. If the value
of the gold warrants only a finite area to be searched, how is that area to be
selected?

In this problem and its generalisations, we assume that the probability
density of the gold having been buried at x at any time between t0 and t{

https://doi.org/10.1017/S0334270000008882 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008882


[3] Optimal search strategies 259

is the marginal probability density

q(x\y,to;z,tl) = - - / p(x, t\y, / „ ; z , tx)dt, (1.4)
h ~ h Jt0

proportional to the time-average of the location probability (1.3) at each
JC . The assumption that the robbers evaded pursuit by random walks is
surprisingly well attested [3]:

"The James-Younger gang meandered the woodlands of Rice, Waseca, and
Blue Earth counties for a week, sometimes recrossing the same ravine four
times in their windings, or clocking a village so that stores and hovels shied
from at noon were confronted a second time at two. With Bill Chadwell
gone, they were gloomily lost in green woods or limited by foreign creeks and
rivers that were too deep to ford. Even as late as four nights after they'd run
out of Northfield, the bedraggled gang was spied by boys who lived no more
than fifteen miles away. At a small hotel near Shieldsville a posse of ten from
Faribault was eating supper when the gang rode up to water their horses and
became perplexed by the great variety of shotguns and rifles angled against
the hotel's porch railing. Jesse crept up to the porch and pressed against
the screen, peering in. The posse men stopped talking or chewing or lifting
their spoons and looked at Jesse with apprehension or stupidity, perceiving
at once who he was; and they sheepishly permitted him to jump down and
sprint away with his gang before they got up from their suppers."

It will be apparent that the Jesse James metaphor stands for a number
of important diffusion processes such as the spread of an epidemic by a
randomly moving infectious agent.

Once movement by diffusion is postulated, the question arises as to the
magnitude of the diffusion constant. One possibility is to assume that it
is known, another is to estimate it as (y - z)2/(tl - t0). That estimate is,
however, in conflict with the suspension of the validity of (1.1) in relating the
events (y, t0) and (z, tx) (see above). This criticism is emphasised in our
generalisation of the search problem arising from an intermediate sighting of
J.J. at some (third) place and time. The resulting estimates of D may be
so different from each other that the best strategy may be that which is least
dependent on the value of D.

The problem of good estimates for D is an important one in the statistical
literature and will not be discussed here. Strategies which may be insensitive
to D are developed below.

A further generalisation of the simplest problem is the case of the final
event (z, tx) being replaced by a probability density at tx . Should the search
then be guided by an optimal strategy based on this information or would
a better strategy expend some effort to first narrow the probability density
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distribution at tx ? When (y, t0) is also replaced by a probability distribution
(at t0), the determining equations found in Schrodinger [1] are complicated
(see Appendix 3).

The main results are arranged in the body of the paper and its appendices
as follows: in Section 2, we discuss the one-dimensional problem with simple
sightings. The details of the calculations are given in Appendix 1. In Section
3, we do the extended problem with a final probability measure. In addition,
Appendices 2, 3, and 4 give details in the two dimensional case and the centre
of mass argument.

2. One-dimensional problem

We have formulated a search problem in which we have a continuous
function ^(JC) defined on R" such that 0 < q(x). It is

max / q(x)dx (I)

where V is the volume function and R is a measurable set with a a given
fixed number.

We let Rd = {x\q(x) > d) and v{d) = V(Rd). Then v(0) = +oo, v
is non-increasing, v(d) —> 0 for d —> oo. It is continuous from the left
but may have jump discontinuities due to flat spots on the graph of q . The
primitive search theorem is easy to prove.

THEOREM 1. Let d0 = sup{d\v(Rd) > a}. Then any subset R c Krf such
that R D {x | q(x) > d0} solves the maximisation problem (I).

PROOF. Let R be a given measurable set whose volume is a. Define R, =
R n R d and R2 = R n R ^ . Then K(R2) = a- K(R,) and by the choice of
d0, V(Rd \R,) > a - F(R,) = F(R2). Consequently, there is a measurable
subset R3 c Rd \R, such that F(R3) = V(R2). If x e R2 and y e R3 then
q{x) <do< q{y) and

q{x)dx < d0V(R2) = d0V{R3) < I q{y)dy.

Hence /R u R q{x)dx > JKq(x)dx and F(R, U R3) = a. We have shown
that for every set R with F(R) = a, there is a subset of RH that majorises

"0

Lq(x)dx. If W(RJ ) = a we are done. In the contrary case, v{R.) > a
while lim^^^+f(Rd) < a. This means that V{x\q(x) = dQ) > 0, and
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'o
v { x | q{x) > d 0 } < a . T h e n a n y s e t R s u c h t h a t { x \ q(x) > d 0 } C R C Rd<

with V(R) = a solves the problem.
For the one-dimensional problem, we show in Appendix 1 that

q(x |y , t0; z, t{) is symmetric about x — (y + z)/2, constant on the interval
between y and z and decreasing to zero on the suburbs of the interval with
end points y and z. It follows from Theorem 1, that for every a we may
take an interval centered at z + y/2. We state this formally.

COROLLARY 1. For one-dimensional search the optimal strategy for problem
I is to take an interval [*±§= ,̂ *±|±2].

It is interesting to note that the parameter D does not enter into this
result. It is also interesting to see what the flat-topped behavior adds to the
discussion of the problem. From (4.12) in Appendix 1, we see that (y < z)

4{xIy, t0; z,tl) = T^-~-< J e s ds o n L v . z ] ,

where X = (y — z) /4D(tx — t0). We are interested in the portion of q that
is in the tails outside [y, z ] . Since J^ q{x)dx = 1, we get some idea of
the tails by computing / y

z q ( x \ y , t o ; z , t l ) d x = k(X). We see that

k{X) = 2Vlel I e~*2 ds. (2.1)

h
An alternate formula is given in Lemma (2) of Appendix 1,

;. (2.2)
l+v

In (2.2) we change variables to get

k{X) =
1+ u2/X

From this latter formula, we see that k'{X) > 0, k"(X) < 0 and it(oo) = 1.
From (2.1) we see that k(0) = 0 and k'(0) = \imx^Q+k(X)/X = +oo. Also
we see the influence of the diffusion coefficient D. For y and z fixed,
XD = (y - z)2/4(tl - t0) so that D large corresponds to k being small, and
D small to k almost 1.

The tail of

e
VX\2x-y-z\/\y-z\

t f , 2sflex f°
,to;z,tl) = r-—- e ds,

\y - z\ JVX
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so that for a fixed A this drops off to zero rapidly as |x| increases. In fact

e ds
2v '

(2.3)

More precise bounds for Mill's ratio may be found in Mitrinovic [4, page
179].

We now turn to a different scenario. Suppose that there was an interme-
diate sighting, that is we know the location at {y, t0), (z, t{) and (w , t2)
with t0 < tx < t2. Then we want to write q(x | y, t0; z, t,; w , t2). We
use the principle of independent increments so that on the interval (t0, tx)
the knowledge (w, t2) adds no information and on the interval (?,, t2) the
knowledge of (y, tQ) is superfluous. It follows that

, ,, , . , x \ p{x,t\y,tQ;z,tx), t£(to,tp(x,t\y,to;z,tl;w,t2) = \ u

[ p { x , t \ z , t 1 ; w , t 2 ) , t e { t x , t
T h u s

1 /"'•
q(x\y,to;z,tl;w,tl)= / p(x, t\y, tQ; z, tx)dt

2 0 " t

1
r

h ~ lo Jt.
p(x,t\y,tl;z,t2)dt

= t-L-I^q(x\y,t0;z,tl)

7—^ , t2).

(2.4)

(2.5)

-2

Figure 1.

https://doi.org/10.1017/S0334270000008882 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008882


[V] Optimal search strategies 263

i(x\y,to;z,tl;w,t2)

- 2

Figure 2.

If the arrangement of spatial points is y < w < z then Figure 1 applies, so
that our primitive search theorem gives an obvious optimal search strategy if
a < \z - w\.

On the other hand, if the arrangement is y < z < w then Figure 2 applies.
In this case more detailed information is necessary for any optimal search.
In particular, we need to have an estimate for the diffusion constant D. In
fact we have two obvious estimates for D, E(z - y)2 = 2D(tl - t0) and
E(w - z)2 = 2D(t2 - t{) which may vary widely.

3. Extended problem

We now extend our discussion to a situation where the sighting at tx is
not certain, that is, the observation at tx is distributed with a distribution
function (o(z).

Suppose, by way of argument, that N particles were sent from y at time
t0 and were observed at /, according to the density co(z). Consider an
elementary "patch" A( with /A dco(z) small, and z(. e A(.. Then the number
of particles seen at zi at time tx is approximately N /A d(o(z). Hence the
total number at {x, t) is given by the sum over disjoint patches and is

N f p{x,t\y,tQ\z,tx)da){z).
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Consequently, if p(x, t \ y, t0; co, tx) is the probability density of the dif-
fusion beginning at (y, t0) and observed at tx with distribution co, then

p(x,t\y, t0;co, tx) = f p{x,t\y, t0; z , tx)dco(z), (3.1)
JR

and by Fubini's theorem, the average time spent at x is

g(x\y,to;ta,tl)= f q{x \y, t0; z , tx)dco{z). (3.2)
JR

It seems intuitively clear that q{x\y, t0; co, tx) becomes more peaked
when dco is more concentrated. In view of this guess, we formulate a new
search problem in the face of the uncertain facts dco. Loosely speaking, we
choose to spend some energy in searching in the support of dco in order to
make it more concentrated, but then we can search for the gold only in a
smaller region. The two desires have opposing effects and so we have a true
optimisation problem.

To be more precise, suppose (y, t0) and {co, tx) are given along with a
number a as the volume of search we may conduct. We may take a number b
with 0 < b < a and search an area B in support of dco. If we find J.J. in B
then instead of using q(x | y, t0; w, tx) we use instead q(x \y, tQ; coB, / , ) ,
where dcoB — da>xB/ JB dco with xB the indicator function of B .

We would then use set M.d of volume a - b to search for the gold. We are
now maximising the expected value. Suppose for example, that we search B
and find z e B . We use

q{x\y, tQ;coB, t{) = I q{x\y, tQ; z, tx)dcoB{z)
JR

= I q(x\y,to;z, tx)dco(z)/ f dco{z)
JB JB

with probability JB dco(z). Hence, the expected value qx of finding the gold
is the integral with respect to x of q(x | y, t0; coB, t,) over an upper set of
volume a - b times the probability JB dco(z) of this procedure. We get

qx(B)= f ( / q(x\y,t0;z,tx)dco(z))dx (3.3)
jRdo \JB /

w i t h Rd a n u p p e r s e t o f JB q{x \ y , t0; z , tx) d c o ( z ) , v ( R d ) = a- b .

If we do not find z e B, then this is tantamount to finding z e Bc so
that we get an expected value q2

w i t h E.'d a n u p p e r s e t o f JBcq(x\y, t0; z , tx)dco{z), v(B.'d ) = a-b.
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[9] Optimal search strategies 265

Our new problem is
max [gi(B) + g2(B)]. (II)

v{B)=b
0<b<a

There actually are two versions of this problem. We may assume that the
diffusion parameter D is fixed, or we can agree to estimate it. In the latter
case, presumably we would have different values of D in the computations
of ql and q2, while in the former case we would use the same.

As a way of understanding this problem we offer two examples.

EXAMPLE 1. Let dco(z) = \d_x{z) + \8x{z) with {y, t0) = (0,0) where
Sx(z) is a point mass at x . Let a < 1. If one devotes e to search at - 1 ,
then with probability 1/2, one integrates q(x | 0, 0; — 1, t{) over an interval
of length a-e where this q is a constant. If one does not find J.J. at - 1 then
one integrates q(x\0,0; 1, tx) over an interval where this is a constant. But
these two are the same so the expected value is (a - e)q*, q* the constant
value of q(x 10, 0; 1, f,) on [0, 1]. On the other hand, if no search at ±1
is conducted, then one integrates jq(x\0, 0; - 1 , <,) + jq(x\0, 0; I, t{) =
q{x) over an interval [-a, a]. But q < q* except at zero where the two
are equal. For small e, the search procedure is optimal. Note that for all
three cases, searching at - 1 and finding, searching at 1 and finding, and not
searching, the expected value of E{z — y) = 1 so that one could logically
pick 2Dtl = 1 so that the second version of our problem is not different
from the first.

As a preliminary to doing a version of the second problem we note that
the formula for q may be written in a form to show the explicit dependence
on D. If we let X = {y- z)2/0 and P = 4D(tl -10) then (4.6) of Appendix
1 becomes

j J ^ e d ^ u 2 (3.5)
for x between y and z. If we take y = 0 and dco(z) to be a uniform
distribution on [b, c], b > 0 then for 0 < x < b we have by integration of
(3.5)

^f(^)^. (3.6)

EXAMPLE 2. We take d(o(z) to be the uniform distribution on [1,2] and
a < 1. First we fix D. If one does not search, then one integrates (the
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constant) q(x | 0 , t0; co, tt) over an interval of length a, to arrive at

a f°°. [4 + Pu2\ -u2 , „ _.
q = -= \ In - — ^ e du. (3.7)

On the other hand, if we choose to search an interval [b, b + r], 1 < b <
b + r < z, and we find J.J., then we get with probability r,

ln I -—j-^- j — I e~" du. (3.8)

If we do not find, then with probability (1 — r) we get

(b2 + PU2\ f d-i-Ru2 \ 1 ..2
ln '-^r + ln (b + rY + Pu'J)

(3.9)
The expected value is therefore q = rqx + (1 - r)q2,

—u . (a — r) _ „.
e du=- -q. (3.10)

pi' "

This is clearly maximised by taking r — 0 , that is, do not search for J.J.

This calculation is an instance of a theorem.

a-r f°°. \4 + Pu
= —7=- I l n ^

V" Jo \l + Bu

THEOREM 2. Let D be fixed, y = 0, am/ 0 < a < C. Suppose dco{z) has
support C (C, oo), then the best strategy is not to search for J.J.

PROOF. AS above, for all instances of search, we are integrating q over an
interval c [0, C] over which q is a constant. That is in (3.3) and (3.4)
Rd and R^ may be taken to be the same. It follows that q^B) + q2{B) =

{a — b) /0°°q(x \y, t0; z, f,)da)(z), which is maximised by taking b — 0.
We return to a discussion of Example 2. If we now take a version of the

problem that we estimate D, then suppose we use E(z2) = 2D(tx — t0).
In (3.7) we would take 2D(t{ - t0) - ft z2 dz = \ so that p = & . In
(3.8) we take px = 2 J*+r z2dz = \[{b + r)3 - b3] while in (3.9) we take
P2 = |[ft3 + 7 - (b + r ) 3 ] . The formula for q becomes

l+p2u
2 (b + rf + p2u

2\
(3.11)
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This has to be compared to q with fi — 14 /3 , a rather formidable problem.

Appendix 1

We compute the formulae for q(x\y, t0; z, t{) here starting with (1.4)
which we repeat.

where
j^jx-yf {z-xf (z-y)2

t-t0 tx-t
The change of the variables t = st{ + (I - s)t0 leads to

[x-SZ-y(\-s)?

(4.2)
We simplify this expression by setting

l-t0) = (y-z)2rl (4.3)

and

y-z 2
We obtain

x- z 1 . . . .
= - - M. (4.4)

u-s)2} ds
s(l - s)

(4.5)
Call this expression / («) .

LEMMA 1. The integral in (4.5) is even and decreases for u > 1/2.

PROOF. In / ( -« ) replace the variable s by I -s to see that /(-w) = / (« ) .
If u > 1/2 then l/2 + u-s > 0 for 0 < 5 < 1. Then M, > u2 > 1/2 implies
that (1/2 + M, - s)2 > (1/2 4- u2 - s)2 for 0 < ̂  < 1 (noting that A > 0) so

LEMMA 2. For \u\ < 1/2, I{u) is a constant, in fact

i r°° P~Xv

2|y -z\~X / frf«. (4.6)
Jo l+v
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PROOF. Since I(u) is even we may restrict ourselves to 0 < u < 1/2. We
set s — sin2(6/2), 0 < 6 < n and then <f> = n - 6 to compute

I{u) = ( - J \y-z\ J e 9 Vi d<f>. (4.7)

If g(<j)) = 2M esc 0 - cot<f> then g(0) = -oo , g(n) = +oo and g'(4>) > 0 on
(0, n), so we may change variables by

v = 2ucsc<f>-cot<f>. (4.8)

If we set sina = u / v l + v and cosa = 1/v 1 +v2 for |a| < n/2 we have
from (4.8) that

Since 0 = 0 corresponds to v = -oo and a = -n/2, and <f> = n corre-
sponds to v = +oo and a = n/2 we get

(f> — a + COS~1(2M/Y 1 + i>2) = tan"1 v + COS~'(2M/\/1 + v2). (4.10)

Thus
1 ,-. r e-^1 r .

Since the second term is odd and the first even we get (4.6). In (4.5) it is clear
that I(u) is a continuous function of u so (4.6) holds also at |M| = 1/2.

LEMMA 3. For \u\ > 1/2,

1 2 2
~ 7 r o o —4Au 5

, . - I X - 4 u A / £ , , A , , \\y — z \ e e I 5-05. (4.11)
A) 1 + s

PROOF. We again begin with (4.7) and consider (2M > 1) the change of

variable v = g(<f>). Since g'(<f>) — 0 when cos0 = (2M)"1 we write I(u) —

jcos u/ ^ J^s_i „ . As above, we get 0 = 0, n corresponding to v = +00

and a — | so that 0 = tan~ v — cos" 2M/ v 1 + v2 in the first integral and

0 = tan"1 v + cos"1 2M/Vl + v2 in the second integral. The integrals are
over the same interval and their sum gives

4\u\ve~*v2 dvI(u)=(-Y\ -z\~x !
( 1 + T ; 2 ) \ / 1 + I ; 2 - 4 M 2

where v0 = \ / 4M 2 - 1. We finally make the change of variables 1 + v2 =
4M2(1 + S2) to arrive at (4.11). The integrals in (4.6) and (4.11) are similar
and we can rewrite them in terms of more familiar functions.
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LEMMA 4. For X > 0,

-Xs
f ° ° e , / — i f - s 2 •/ j ds = yjne I e ds.

Jo 1 + 5 Js/x

PROOF. Let h{X) = f ^ ^ d s . Then h(0) = f and h'(A) = h{X) -

/0°° e'^ ds = h(X)-^.We find that

. . . . n x y/n x [k e~'h(X) = -e -^e j o 7 f

xn [, 2
? • = • 1 - - 72 [

PROPOSITION.

{
f°° -s2

e ds x between y and z,
f°° -s2

/ E s ds otherwise,
J2uVX

with X - (y - z)2/4D(tt - tQ) and 4M2 = ^2*~_̂ ~^ • An alternate expression

for the constant is e /\JD{tx - t0).

Appendix 2

(The two-dimensional case). We have

1 /•'•
q{x\y,t0; z,tx)=-—- / p{xv t\yx,t0; zl,tl)p(x2,t\y2,t0; z2,t{)dt

ri~'o '̂o

(5 1)
{t-to){t{-t)

where
D = JD{D2 (5.2)

and
'- -vj)_ + (z -xj _{Zi-y>) _ ( 5 - 3 )

7

t-t0 tx-t t{-t0
With t — st{ + (1 - s)tQ as in Appendix 1, and

x, - Zj _ 1 4 Z ) f f - n - ( - z ) 2 A " '
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we arrive at

.^{ziSl+iiL ds

j
(5-5)

Again we make the change of variable, s = sin2 <p/2, 0 < 4> < n , to obtain

-r / c s c ^ ' * v wrf0 (5.6)
— IQ) JO

with

+4U2X2.

We assume B > 0, with 5 = 0 treated by continuity. We further note
that A - B = Aj(l - 2 M , ) 2 + A2(1 - 2M2)2 > 0 unless M, = u2 = 1/2 which
corresponds to x = z. We exclude this case and proceed to make a change
of variables

v = g((j>) = csc2 <fr(A + B cos $). (5.8)

Then <j) = 0 , n correspond to v = +oo and <t>0 to v0 where g'(<f>0) - 0
determines </>0 and is

2.4 cos 0o + .8 cos2 <£0 + £ = 0. (5.9)

The polynomial 2Ax + Bx2 + B has a single root in [ -1 ,1] which is in
( - 1 , 0 ) so that

Writing (5.8) as

and then as

v sin <f> = A + B cos (j)

u c o s <j) + Bcos(f> + A — v — 0 , (5.11)

we see that v0 sin <j>0 = ,4 + B cos <£0. By (5.9), sin <£0 = 2 + (2A/B) cos <£0 ,
and hence

1 B2

° 2 A - VA2 - B2

Differentiating (5.11) we get

,d<f> 1
CSC</>-r— = — — 7

dv B + 2v cos q>

(5.12)
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and substituting for cos <f> we obtain

^ l (5.13)
y/B2 -4v{A-v)

Now the integral in (5.6) is written as /Q° + / f and in [0, <£0] we choose
the minus sign in (5.13) and in [<£0, n] the plus sign. We obtain

q(x\y,to;z,tl) =

By completing the square in the radical, we get

q(x\y, to-z, *,) = ^ 2 _ g j [ ° ° i / '^ (5-14)

with

\ / ^ 2 - 5 2 . (5.15)

One may readily let 5 = 0 in this formula. This formula is also continuous
in Mj and u2 and one may take ul=u2 = 1/2 to obtain q{z \y, tQ; z, t{)
also. The line through y and z corresponds to w, = u2. This does not
produce any startling result as it did in the one-dimensional case.

Appendix 3

(The full formula.) In Section 3, we derived, by considering patches, the
formula (3.1)

f°°p(x,t\y,t0;co,tl)= p{x,t\y,tQ;z,tl)d(o{z). (6.1)
J—oo

By a similar consideration of patches in the variable y , Schrodinger [1] de-
rives a pair of integral equations whose solvability was left open. Several
proofs of the existence for special cases were given by others. The definitive
existence theorem is given by Beurling [5]. We follow his formulation. Let
k(x,£, t) be the Poisson-Green's function for the problem on Q

ut = Au, u(x, 0) = fQ(x), ^ ( x , / ) = 0 o n d Q ,

where f0 is the observed density at t = 0 . If the density fx (x) is observed
at tx and it is not u(x, t{), then the most probable density is of the form
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w(x, t) — uo(x, t)ux(x, t) (0 < t < t{) where uQ is a non-negative solution
of

u. = A w i n Q , — = 0 o n < 9 Q , t>0,
1 on

and M, is a non-negative solution of the adjoint equation

-u, = AM in Q, — = 0 on d£l, t <t..
an

If go(x) = uo{x,O) > 0 and gx{x) = ul(x,tl)>0 then

uJx,t)= / k(x,i, t)gn(£)d£, t>0,
u Ja

a n d

u x ( x , t) — I k ( £ , x , t x — t ) g x { i ) d ^ , t < t x ,

and so

go(x) [k($,x,tx)gx({)d£, = fo(x),
? (6-2)

1 ia ' ' ' ° '
is the system that needs to be solved for g0 and gx.

A. O. Barut in his review [6] of the collected works of Schrodinger re-
marked that this idea of Schrodinger has only recently again caught the at-
tention of mathematicians. A specific example is the paper by Zambrini [7].
Interested readers can find references in this paper. In the case / , is a point
mass, the formulae here agree with (6.1).

Appendix 4

We consider the center of mass of the probability distributions
p(x, t\a, t0; co, t}). W e first consider p(x, t\y, t0; z , tl) which is

(t - to)(tx - t)

see (4.1) of Appendix 1. If we take t — stx +(1 -s)t0 then as in Appendix 1,

1 ( [x - y + s(y - z)]2\
p(x,t\y,to;z,tx)= , „ _ . „ , „ „ , , e x p - *
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Thus in the integral J = /f^ xp(x, t \ y, t0; z , tl) dx we make the change
of variables v = x - y + s(y - z ) ; we obtain

y+S(Z-, / e fa

y/s(l-s)4nD{tl -<0)y-oo

= - = [ y + j(z - y ) ] / e~w dw - (1 -s)y + sz.
So

3 / ( 0 = / Jf / / p(x, *|CT, «„;<»,
J—oo J—oo J—oo

= r r[(l-s)y + sz]do(y)da)(z)
J—oo J — oo

= ( 1 - 5 ) / yda(y) + s zdco{z).
J — oo J—oo

In terms of £, this is

J-TT
> 1 0 • '—oo

That is, the centre of mass travels at constant speed from the centre of mass
of a to the centre of mass of oi. Schrodinger shows that this follows from
the fact that p(x, t \ y, t0; z , tx) is the product of a solution of ut = Duxx

and of -Duxx — ut.
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