ON THE COMMUTATIVITY OF A RING WITH IDENTITY

BY
JINGCHENG TONG

> AbSTRACT. Let R be a ring with identity. R satisfies one of the following properties for all $x, y \in R$:
> (I) $x y^{n} x^{m} y=x^{m+1} y^{n+1}$ and $m n m!n!x \neq 0$ except $x=0$;
> (II) $x y^{n} x^{m}=x^{m+1} y^{n+1}$ and $m m!n!x \neq 0$ except $x=0$;
> (III) $x^{m} y^{n}=y^{n} x^{m}$ and $m!n!x \neq 0$ except $x=0$;
> (IV) $\left(x^{p} y^{q}\right)^{n}=x^{p n} y^{q n}$ for $n=k, k+1$ and $N(p, q, k) x \neq 0$ except $x=0$, where $N(p, a, k)$ is a definite positive integer.
> Then R is commutative.

1. Let x, y be elements of a ring R. If the following equality

$$
\begin{equation*}
(x y)^{n}=x^{n} y^{n} \tag{1}
\end{equation*}
$$

holds for a certain positive integer n, then R need not be a commutative ring. Quite a few papers [1-9] gave additional conditions to make R commutative. [1,4] discussed ($m, 2$)-rings, i.e. rings in which (1) holds for two consecutive positive integers $n=k, k+1$. In this paper, we consider the following equality

$$
\begin{equation*}
\left(x^{p} y^{q}\right)^{n}=x^{p n} y^{q n} \tag{2}
\end{equation*}
$$

where p, q are positive integers. Obviously (2) is a generalization of (1). We obtain a result on the commutativity of a ring with identity, which satisfies (2) for $n=k, k+1$. The method of our proof originates from the following generalization of the commutative law:

$$
\begin{equation*}
x y^{n} x^{m} y=x^{m+1} y^{n+1} \tag{3}
\end{equation*}
$$

2. We need an important lemma.

Lemma 1. Let $I_{0}^{r}(x)=x^{r}$. If $k>1$, let $I_{k}^{r}(x)=I_{k-1}^{r}(1+x)-I_{k-1}^{r}(x)$. Then $I_{r-1}^{r}(x)=\frac{1}{2}(r-1) r!+r!x ; I_{r}^{r}(x)=r!$, and $I_{j}^{r}(x)=0$ for $j>r$.

Proof. We first prove that for $k<r+1$

$$
\begin{equation*}
I_{k}^{r+1}(x)=k I_{k-1}^{r}(1+x)+x I_{k}^{r}(x) . \tag{4}
\end{equation*}
$$

Obviously $I_{0}^{r+1}(x)=x I_{0}^{r}(x)$.

[^0]If $k=1$, then

$$
\begin{aligned}
I_{1}^{r+1}(x) & =I_{0}^{r+1}(1+x)-I_{0}^{r+1}(x) \\
& =(1+x) I_{0}^{r}(1+x)-x I_{0}^{r}(x) \\
& =I_{0}^{r}(1+x)+x\left(I_{0}^{r}(1+x)-I_{0}^{r}(x)\right) \\
& =I_{0}^{r}(1+x)+x I_{1}^{r}(x) .
\end{aligned}
$$

If for $k=m$, we have

$$
I_{m}^{r+1}(x)=m I_{m-1}^{r}(1+x)+x I_{m}^{r}(x)
$$

Then

$$
\begin{aligned}
I_{m+1}^{r+1}(x)= & I_{m}^{r+1}(1+x)-I_{m}^{r+1}(x) \\
= & m I_{m-1}^{r}(1+(1+x))+(1+x) I_{m}^{r}(1+x) \\
& -m I_{m-1}^{r}(1+x)-x I_{m}^{r}(x) \\
= & m\left(I_{m-1}^{r}(1+(1+x))-I_{m-1}^{r}(1+x)\right) \\
& +I_{m}^{r}(1+x)+x\left(I_{m}^{r}(1+x)-I_{m}^{r}(x)\right) \\
= & m I_{m}^{r}(1+x)+I_{m}^{r}(1+x)+x I_{m+1}^{r}(x) \\
= & (m+1) I_{m}^{r}(1+x)+x I_{m+1}^{r}(x) .
\end{aligned}
$$

Hence (4) holds.
Now we prove that

$$
\begin{equation*}
I_{r-1}^{r}(x)=\frac{1}{2}(r-1) r!+r!x ; \quad I_{r}^{r}(x)=r!. \tag{5}
\end{equation*}
$$

Let $r=2$. Then

$$
\begin{aligned}
I_{1}^{2}(x) & =I_{0}^{2}(1+x)-I_{0}^{2}(x) \\
& =(1+x)^{2}-x^{2} \\
& =1+2 x,
\end{aligned}
$$

and

$$
I_{2}^{2}(x)=I_{1}^{2}(1+x)-I_{1}^{2}(x)=2 .
$$

If for $r=m$, we have

$$
I_{m-1}^{m}(x)=\frac{1}{2}(m-1) m!+m!x ; \quad I_{m}^{m}(x)=m!,
$$

Then by (4),

$$
\begin{aligned}
I_{m}^{m+1}(x) & =m I_{m-1}^{m}(1+x)+x I_{m}^{m}(x) \\
& =m\left(\frac{1}{2}(m-1) m!+m!(1+x)\right)+x m! \\
& =\frac{1}{2} m(m+1)!+(m+1)!x
\end{aligned}
$$

and

$$
I_{m+1}^{m+1}(x)=I_{m}^{m+1}(1+x)-I_{m}^{m+1}(x)=(m+1)!.
$$

Hence (5) holds. It is trivial that $I_{j}^{r}(x)=0$ for $j>r$.

Theorem 1. Let R be a ring with identity. If R satisfies (3) and mnm! $n!x \neq 0$ except $x=0$, then R is commutative.

Proof. Let $[x, y]=x y-y x$ and $I_{j}(x)=I_{j}^{m}(x)$ for $j=0,1,2, \ldots$.
Since $x y^{n} x^{m} y=x^{m+1} y^{n+1}$, we have

$$
\begin{gathered}
x\left[y^{n}, x^{m}\right] y=0, \\
x\left[y^{n}, I_{0}(x)\right] y=0 .
\end{gathered}
$$

Let $x=1+x$ in the above expression. Then we have

$$
\begin{aligned}
& {\left[y^{n}, I_{1}(x)+I_{0}(x)\right] y+x\left[y^{n}, I_{1}(x)+I_{0}(x)\right] y=0,} \\
& {\left[y^{n}, I_{1}(x)\right] y+\left[y^{n}, I_{0}(x)\right] y+x\left[y^{n}, I_{1}(x)\right] y=0 .}
\end{aligned}
$$

Let $x=1+x$ in the above expression. Then we have

$$
2\left[y^{n}, I_{2}(x)\right] y+2\left[y^{n}, I_{1}(x)\right] y+x\left[y^{n}, I_{2}(x)\right] y=0 .
$$

Let $x=1+x$ in the above expression. Then we have

$$
3\left[y^{n}, I_{3}(x)\right] y+3\left[y^{n}, I_{2}(x)\right] y+x\left[y^{n}, I_{3}(x)\right] y=0 .
$$

Thus letting $x=1+x$ and iterating $m-1$ times we have

$$
\begin{gathered}
m\left[y^{n}, I_{m-1}(x)\right] y=m\left[y^{n}, \frac{1}{2}(m-1) m!+m!x\right] y=0, \\
m m!\left[y^{n}, x\right] y=0 .
\end{gathered}
$$

Now let $y=1+y$, iterate the above equality $n-1$ times, we have

$$
m n m!n![y, x]=0
$$

By the assumption of the theorem, $[y, x]=0, R$ is commutative.
Theorem 2. Let R be a ring with identity. If R satisfies the following equality

$$
\begin{equation*}
x y^{n} x^{m}=x^{m+1} y^{n} \tag{6}
\end{equation*}
$$

and $m m!n!x \neq 0$ except $x=0$, then R is commutative.
Proof. Since

$$
x y^{n} x^{m}=x^{m+1} y^{n}
$$

we have

$$
x\left[y^{n}, x^{m}\right]=0 .
$$

Letting $x=1+x$ and iterating $m-1$ times we have

$$
m m!\left[y^{n}, x\right]=0
$$

Let $y=1+y$ in the above expression. Then we have

$$
\begin{gathered}
m m!\left[I_{1}(y)+I_{0}(y), x\right]=0 \\
m m!\left[I_{1}(y), x\right]=0 .
\end{gathered}
$$

Letting $y=1+y$, iterate $n-1$ times, we have

$$
m m!n![y, x]=0 .
$$

By the assumption of the theorem, $[y, x]=0, R$ is commutative.
Theorem 3. Let R be a ring with identity. If R satisfies the following equality

$$
\begin{equation*}
x^{m} y^{n}=y^{n} x^{m} \tag{7}
\end{equation*}
$$

and $m!n!x \neq 0$ except $x=0$, then R is commutative.

Proof. Trivial.

3. Consider the following equality

$$
\begin{equation*}
\sum_{i \in I} x^{s_{i}^{s}}\left[x^{m_{i}}, y^{n_{i}}\right] y^{t_{i}}=0 \tag{8}
\end{equation*}
$$

where $s_{i}, m_{i}, n_{i}, t_{i}$ are positive integers for each i in a finite set I.
Theorem 4. Let R be a ring with identity. If R satisfies (8), and $N\left(s_{i}, m_{i}, n_{i}\right.$, $\left.t_{i} ; I\right) x \neq 0$ except $x=0$ for a definite positive integer $N\left(s_{i}, m_{i}, n_{i}, t_{i} ; I\right)$, then R is commutative.

Proof. By Lemma 1, $I_{s}^{s_{s}}(x)=0 \quad\left(s>s_{i}\right) ; \quad I_{m}^{m_{i}}(x)=0 \quad\left(m>m_{i}\right) ; \quad I_{n}^{n_{i}}(y)=0$ $\left(n>n_{i}\right) ; I_{i}^{t}(y)=0\left(t>t_{i}\right)$. It is easily seen that $[x, 1+y]=[1+x, y]=[x, y]$. Therefore, letting $x=1+x$ in (8) and iterating sufficiently large number of times, we have

$$
\sum_{i \in I} M_{i}\left(s_{i}, m_{i}\right)\left[x, y^{n_{i}}\right] y^{t_{i}}=0 .
$$

Let $y=1+y$, iterate sufficiently large number of times, we have

$$
\sum_{i \in I} M_{i}\left(s_{i}, m_{i}\right) L_{i}\left(n_{i}, t_{i}\right)[x, y]=0 .
$$

Let $N\left(s_{i}, m_{i}, n_{i} ; I\right)=\sum_{i \in I} M_{i}\left(s_{i}, m_{i}\right) L\left(n_{i}, t_{i}\right)$. Then we finish the proof.
Theorem 4 can be generalized.
Theorem 5. Let R be a ring with identity, $u_{i}, v_{i}(i \in I)$ be reduced words in x, y with positive exponents. If R satisfies the following equality

$$
\begin{equation*}
\sum_{i \in I} u_{i}\left[x^{m_{i}}, y^{n_{i}}\right] v_{i}=0 \tag{9}
\end{equation*}
$$

for a finite set I, and $N\left(u_{i}, m_{i}, n_{i}, v_{i} ; I\right) x \neq 0$ except $x=0$ for a definite positive integer $N\left(u_{i}, m_{i}, n_{i}, v_{i} ; I\right)$, then R is commutative.

Corollary 1. Let R be a ring with identity. If R satisfies the following equality

$$
\begin{equation*}
x^{s} y^{n} x^{m} y^{t}=x^{s+m} y^{n+t} \tag{10}
\end{equation*}
$$

and $N(s, m, n, t) x \neq 0$ except $x=0$ for a definite positive integer $N(s, m, n, t)$, then R is commutative.

Proof. (10) is equivalent to $x^{s}\left[y^{n}, x^{m}\right] y^{t}=0$.
Corollary 2. Let R be a ring with identity. If R satisfies (2) for $n=k, k+1$, and $N(p, q, k) x \neq 0$ except $x=0$ for a definite positive integer $N(p, q, k)$, then R is commutative.

Proof. Since

$$
x^{p(k+1)} y^{q(k+1)}=\left(x^{p} y^{q}\right)\left(x^{p} y^{q}\right)^{k}=x^{p} y^{q} x^{p k} y^{q k},
$$

we have $x^{p}\left[x^{p k}, y^{q}\right] y^{q k}=0$.

Acknowledgement. The author wishes to express his thankfulness to the referees for their valuable suggestions.

References

1. H. E. Bell, On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404.
2. H. E. Bell, On rings with commuting powers, Math. Japon. 24 (1979/1980), 473-478.
3. L. P. Belluce, I. N. Herstein and S. K. Jain, Generalized commutative rings, Nagoya Math. J. 27 (1966), 1-5.
4. A. Harmanci, Two elementary commutativity theorems for rings, Acta Math. Acad. Sci. Hungar. 29 (1977), 23-29.
5. S. Ligh and A. Richoux, A commutativity theorem for rings, Bull. Austral. Math. Soc. 16 (1977), 75-77.
6. J. Luh, A commutativity theorem for primary rings, Acta Math. Acad. Sci. Hungar. 22 (1971), 211-213.
7. W. K. Nicholson and A. Yaqub, A commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419-423.
8. W. K. Nicholson and A. Yaqub, A commutativity theorem, Algebra Universalis 10 (1980), 260-263.
9. A. Richoux, On a commutativity theorem of Luh, Acta Math. Acad. Sci. Hungar. 34 (1979), 23-25.

Department of Mathematics
Wayne State University Detroit, MI 48202 USA

Institute of Mathematics
Academia Sinica
Peking
Chilna

[^0]: Received by the editors September 8, 1983 and, in final revised form, February 8, 1984. 1980 Mathematics Subjects Classification. Primary 16A70.
 (C) Canadian Mathematical Society 1984.

