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The depth-integrated wave–current models developed by Yang & Liu (J. Fluid Mech.,
vol. 883, 2020, A4) are extended to investigate currents with an arbitrary vertical profile
in the water column. In the present models, horizontal velocities are decomposed into
two components. The first part deduces the prescribed current velocity when waves
are absent. The second part is approximated in a polynomial form. The resulting
depth-integrated wave–current models are obtained by applying the weighted residual
method. In the absence of currents, the present models are identical to those in Yang & Liu
(J. Fluid Mech., vol. 883, 2020, A4) and are validated with several three-dimensional
(3D) benchmark laboratory experiments. A theoretical analysis is conducted to study the
frequency dispersion relation of linear waves on currents with an exponential vertical
profile and the results are compared with numerical solutions of the Rayleigh equation.
Using the new models, validations and investigations are then conducted for periodic
waves and solitary waves on currents with an arbitrary profile in one-dimensional
horizontal (1DH) space. Furthermore, the new models are applied to wave–current
interactions in two-dimensional horizontal (2DH) space. Two scenarios are considered:
(1) wave propagation over a vortex-ring-like current and (2) obliquely incident wave
propagation over a 3D sheared current on a varying bathymetry. The vertical and
horizontal shear of the current have significant effects on modifying various wave
properties, which are well captured by the present models. However, the time-averaged
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velocity under wave–current interaction shows small differences with the prescribed
current velocity, except in the region between the wave trough and crest.

Key words: coastal engineering, surface gravity waves, solitary waves

1. Introduction

Wave–current interaction is a classic oceanic phenomenon that has been studied for several
decades. Most previous studies assumed irrotational flows and adopted the fully nonlinear
potential flow theory (Dommermuth & Yue 1988; Wang, Ma & Yan 2018). However,
currents in the natural environment may contain a certain degree of shear in both vertical
and horizontal directions, and the effects of vorticity on ocean surface waves cannot always
be ignored. For example, wind-generated currents may exhibit a strong shear near the
free surface (Swan, Cummins & James 2001; Kharif et al. 2008), and benthic turbulent
currents show a strong shear close to the sea bottom (Kemp & Simons 1982). Peregrine
(1976) and Jonsson (1990) provided comprehensive reviews on various theoretical studies
of wave–current interactions.

In most previous studies, only two-dimensional (2D) currents (on the vertical plane) with
a linear profile in the water column (i.e. a constant shear and constant horizontal vorticity)
have been considered. Stokes wave-type perturbation expansion method has often been used
for studying weakly nonlinear waves interacting with such a current (Tsao 1959; Brevik 1979;
Kishida & Sobey 1989; Pak & Chow 2009). On the other hand, Dalrymple (1974) obtained
finite-amplitude wave solutions numerically using a Fourier series expansion method based
on the stream function formulation. The boundary integral equation method has also been
widely employed for studying finite-amplitude waves on currents with a constant shear.
For example, Simmen & Saffman (1985) and Teles Da Silva & Peregrine (1988) obtained
periodic wave solutions in deep and finite water depths, whereas Vanden-Broeck (1994)
presented steep solitary wave solutions in finite water depth. More recently, Moreira &
Chacaltana (2015) studied wave blocking and breaking in deep water, induced by currents of
constant horizontal vorticity, through a fully nonlinear boundary integral method. Ellingsen
(2016) found analytical solutions for oblique incident linear waves on vertically linearly
sheared currents and concluded that waves are rotational and the vortex lines are gently shift
and twist as the wave passes. Francius & Kharif (2017) studied numerically the stability
of finite-amplitude waves in finite water depth on vertically sheared currents of constant
horizontal vorticity. In the shallow-water regime, based on a strongly nonlinear and weakly
dispersive depth-integrated equation, Choi (2003) found solutions for solitary waves riding
on currents with a linear profile in the water column. Duan et al. (2018) also obtained
similar results using the Green–Naghdi equations.

Several studies have been performed to examine the effects of currents with different
profiles in the water column on wave propagation. Using a weakly nonlinear stream
function theory, Benjamin (1962) studied solitary waves on currents with arbitrary vorticity
distribution. On the other hand, Dalrymple (1977) used the Dubreil–Jacotin transformation
technique to investigate finite-amplitude waves on currents with a 1/7 power law profile in
the water column. Swan & James (2000) derived analytical solution for second-order Stokes
waves on depth-varying currents, whose strength was weak relative to wave celerity. The
vertical profile of the current field was assumed to be a third-degree polynomial and, thus,
the vorticity profile was a second-degree polynomial. Nwogu (2009) proposed a boundary
integral method to study finite-amplitude waves on current with an exponential profile in
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Depth-integrated wave–current models 2

deep water, in which the current field was assumed to be horizontally uniform and always
in steady state. By dividing the water column into several layers and assuming the current
field to be linearly varying in each vertical layer, a piecewise-linear approximation method
was adopted by Zhang (2005) for solving the Rayleigh equations. The same method was
also used by Smeltzer & Ellingsen (2017) to extend Ellingsen’s (2016) work to obliquely
incident waves interacting with currents with an arbitrary angle. Most recently, Chen & Basu
(2021) proposed a numerical method for computing steady-state large-amplitude waves on
depth-varying currents based on a stream function formulation. The effects of vertically
linearly sheared currents on the highest waves were discussed.

In the large-scale ocean modelling community, the concept of radiation stress
(Longuet-Higgins & Stewart 1960, 1961), which is the excess momentum flux averaged
over a wave period and total water depth, has been used to calculate the wave effects on
currents. The radiation stress concept has been successfully employed to explain various
physical processes such as wave setup/setdown, surf beat, and longshore currents. For
ocean circulation modelling in three dimensions, the depth-dependent radiation stress can
be derived by taking the wave-average of the three-dimensional (3D) flow momentum
equation without depth integration (Mellor 2003, 2008). This formulation has been
implemented in the COAWST model for surf zone and rip-current applications (Kumar
et al. 2012). Alternatively, the vortex force formalism (Leibovich 1980) has been applied
recently to describe wave–current interaction in ocean circulation models. For example,
McWilliams, Restrepo & Lane (2004) derived a multi-scale asymptotic theory for the
evolution and interaction of currents and surface gravity waves in finite depth, and the
current was assumed to be very weak compared with wave celerity. The vortex force
formalism was also adopted in surf zone circulation models in computing the effects
of waves on currents (Uchiyama, McWilliams & Shchepetkin 2010; Kumar et al. 2012).
For the effects of the current on waves, Kirby & Chen (1989) obtained the frequency
dispersion relation of linear waves on weak currents of arbitrary profiles in finite depth,
using a perturbation approach, which was the extension of Skop (1987). Following Kirby
& Chen (1989), Banihashemi, Kirby & Dong (2017) and Banihashemi & Kirby (2019)
derived approximated wave action conservation and wave action flux velocity in strongly
sheared mean flows. Li & Ellingsen (2019) presented a framework for modelling linear
waves on currents of arbitrary vertical profiles where bathymetry and ambient currents
varied slowly in horizontal directions.

For coastal applications, a majority of wave–current models can be classified as
depth-integrated models (e.g. shallow-water equation, Boussinesq-type models, and
non-hydrostatic models), in which the dimension of the problem is reduced by one through
integrating the mass and momentum equations over the water column and reinforcing
the boundary conditions on the sea bottom and the free surface. A literature review
on the development of depth-integrated models can be found in Yang & Liu (2020)
(referred to as YL20 herein). In the Boussinesq-type models, the current is usually
approximated as the depth-averaged velocity (Yoon & Liu 1989; Chen et al. 1998; Zou
et al. 2013). Although several attempts were made to incorporate vorticity effects in
Boussinesq-type models (Shen 2001; Castro & Lannes 2014; Son & Lynett 2014), only
restricted current profiles (or vorticity strengths) can be used. Moreover, these models
can only be applicable in a relatively shallow-water regime. The so-called non-hydrostatic
models assume depth-uniform horizontal velocity in each vertical layer. Thus, a large
number of vertical layers are necessary to describe current with strong local shear, which
may significantly increase the computational cost.

More recently, Touboul et al. (2016) extended the mild-slope equation to study linear
waves on a background current, which was slowly varying in the horizontal direction
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and was linearly sheared in the vertical direction. However, the wave components were
still assumed to be irrotational, which is not true because flows are 3D (Ellingsen
2016). It is essentially a one-way wave–current model, taking only the influences
of background current on linear waves into account. Similar models were derived
by Belibassakis et al. (2017) to study the effects of linearly sheared currents over general
bathymetry. Furthermore, a coupled-mode model was developed by Touboul & Belibassakis
(2019) to study the effects of a vertically sheared steady-state background current field on
the propagation of linear waves, which is a one-way wave–current interaction extension of
the model derived in Belibassakis & Touboul (2019). Similarly, Beyer (2018) extended the
deep-water Green–Naghdi equations to consider vertically sheared currents, in which the
horizontal velocity was approximated by an exponential function for simulating deep-water
waves. However, a decay parameter in the exponential function needs to be predetermined,
which was chosen to be the (peak) wavenumber. The background current field was restricted
to be horizontally slowly varying and cannot be modified by waves.

YL20presentedahierarchyofdepth-integratedwave–currentmodels, inwhichthevertical
profile of the horizontal velocity was approximated as a series of polynomials. As the total
horizontal velocity (the combination of current and wave velocities) was approximated in
YL20, a higher degree polynomial must be used to simulate deeper-water waves and/or
currents with complex profiles in the water column. For example, in a very shallow-water
regime, the wave orbital velocity is almost uniform in the water column, but the current
could have an exponential profile in the water column. Then, in YL20’s approach, models of
higher approximation (higher degree polynomial) must be used to approximate the current
profile properly. To overcome this shortcoming, in this paper a new approach is proposed
so that the vertical profile of the current can be adopted in the model without further
approximation. The new approach decomposes the solutions for the horizontal velocity into
two unknown components: the first component adopts the vertical profile of the prescribed
steady-state current in the σ coordinate, which contains the unknown free surface elevation.
The constraint on the first solution component is that, in the absence of waves, it reduces to
the prescribed steady-state current field. The second component of the horizontal velocity
is approximated in the polynomial form in a similar way as shown in YL20. Euler equations
and boundary conditions are used to constrain the total solutions.

Using different weighting functions in the weighted residual methods, two kinds of
depth-integrated wave–current models were developed in YL20, that is, the Galerkin
model and the subdomain model. It was shown in YL20 that the subdomain model is
superior to the Galerkin model in terms of various wave properties, and the numerical
implementation of the subdomain model with any degree of polynomial approximation is
also more straightforward. Thus, in this paper, only the subdomain model (SK) is discussed
for brevity, in which the vertical structure of the horizontal velocity is the (K − 1) degree
polynomial and K also represents the number of velocity variables.

This paper is organized as follows. The derivation of the mathematical model from
3D Euler equations to the depth-integrated two-dimensional horizontal (2DH) equations
is presented in § 2. As the present model is built upon YL20, only the details of the new
approach on incorporating the prescribed current field in the water column are highlighted.
A theoretical analysis of frequency dispersion properties of linear waves on vertically
sheared currents is conducted in § 3, in which the accuracy of the models is discussed by
considering waves in different relative water depths, current directions, current intensities,
and current vertical profiles. Section 4 introduces the numerical applications of the
mathematical models. The present models are validated with laboratory experiments of
finite-amplitude waves propagating over sheared currents for free surface elevations and
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horizontal velocities in one-dimensional horizontal (1DH) space. Numerical validations
and investigations are then conducted for nonlinear deep-water and intermediate-water
waves on currents of different profiles. In the shallow-water regime, solitary waves
of different nonlinearity on vertically arbitrarily sheared current are also studied. The
resulting wave properties, e.g. free surface elevations, velocity field, and time-averaged
velocity field are discussed accordingly. Two applications of present models on wave
propagation and transformation over sheared currents in 2DH space are also presented
in § 4. Finally, conclusions are drawn in § 5. For completeness, some of the validations of
present models against experimental data for wave transformation in 2DH space without
currents and wave–current interactions in 1DH space are included in the supplementary
materials available at https://doi.org/10.1017/jfm.2022.42.

2. Derivation of mathematical models

In this study, we assume that water is incompressible and inviscid, and the free surface flow
is governed by the Euler equations. When waves are absent, a steady-state current field is
assumed to exist, with a prescribed velocity field and corresponding free surface elevation
distribution. As waves propagate into the current field, the resulting wave–current
interaction problem is the solution of the Euler equations and boundary equations. The
derivation of the 2DH mathematical model is briefly presented in the following section.

2.1. Governing equations
Following YL20, a σ -coordinate transformation is introduced to map the water column
from [−h, η] in the Cartesian coordinate to a fixed range [0, 1] in the σ -coordinate. This
transformation is defined as follows:

t = t∗, xi = x∗
i , σ = z∗ + h

h + η
= z∗ + h

H
, (2.1a–c)

where t∗ is the time, x∗
i (i = 1, 2) are the horizontal coordinates in the Cartesian coordinate

with z∗-axis pointing upwards, and the horizontal plane is located on the still water level. In
the following we omit asterisks for brevity. The independent variables in the σ -coordinate
are (xi, σ, t), where σ is a function of the free surface elevation η(xi, t) and sea bottom
configuration h(xi). The total water depth is denoted by H = h + η.

The governing equations and boundary conditions in the σ -coordinate have been
presented in YL20; they are shown here for completeness and clarity:

∂ui

∂xi
+ ∂ui

∂σ
σxi + ∂w

∂σ
σz = 0, (2.2)

∂ui

∂t
+ ∂ui

∂σ
σt + uj

(
∂ui

∂xj
+ ∂ui

∂σ
σxi

)
+ w

∂ui

∂σ
σz = − 1

ρ

(
∂p
∂xi

+ ∂p
∂σ

σxi

)
, (2.3)

∂w
∂t

+ ∂w
∂σ

σt + uj

(
∂w
∂xj

+ ∂w
∂σ

σxi

)
+ w

∂w
∂σ

σz = − 1
ρ

∂p
∂σ

σz − g. (2.4)

p|s = 0, σ = 1, (2.5)

∂η

∂t
+ ui|s ∂η

∂xi
= w|s, σ = 1, (2.6)

ui|b ∂h
∂xi

+ w|b = 0, σ = 0, (2.7)
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where ui and w are the horizontal and vertical velocity components in the σ coordinate,
respectively, and p is the pressure field. The total fluid domain is bounded by an
impermeable bottom, z = −h(xi) or σ = 0, and the free surface, z = η(xi, t) or σ = 1. The
subscripts s and b appeared in the boundary conditions denote that the physical variables
are evaluated at the free surface and the sea bottom, respectively. Here ρ is the density
of water and g is the gravitational acceleration. Finally, σt, σxi and σz are the partial
derivatives of σ with respect to time, horizontal and vertical coordinates, respectively,
and they can be obtained by chain rule as follows:

σt = −σ
1
H

∂H
∂t

, σxi = 1
H

(
∂h
∂xi

− σ
∂H
∂xi

)
, σz = 1

H
. (2.8a–c)

Following the same approach as in YL20, the depth-integrated continuity equation, the
vertical velocity and pressure field are given directly as follows:

∂H
∂t

+ ∂

∂xi

∫ 1

0

1
σz

ui dσ = 0, (2.9)

w = −ui|b ∂h
∂xi

− 1
σz

[∫ σ

0

(
∂ui

∂xi
+ ∂ui

∂σ
σxi

)
dσ

]
, (2.10)

p = 1
σz

[
ρg(1 − σ) + ρ

∫ 1

σ

(
∂w
∂t

+ ∂w
∂σ

σt + uj

(
∂w
∂xj

+ ∂w
∂σ

σxi

)
+ w

∂w
∂σ

σz

)
dσ

]
.

(2.11)

By substituting the pressure field (2.11) into (2.3), the horizontal momentum equation
becomes

∂ui

∂t
+ ∂ui

∂σ
σt + uj

(
∂ui

∂xj
+ ∂ui

∂σ
σxi

)
+ w

∂ui

∂σ
σz

= −g
∂(H − h)

∂xi
− ∂

∂xi

∫ 1

σ

1
σz

pnh dσ + σxi

σz
pnh, (2.12)

where

pnh = ∂w
∂t

+ ∂w
∂σ

σt + uj

(
∂w
∂xj

+ ∂w
∂σ

σxi

)
+ w

∂w
∂σ

σz. (2.13)

The above equations are exact.
In YL20, a trial solution, ũ, is introduced as an infinite series of products of prescribed

shape functions, Nj(σ ), and unknown functions ui,j(xi, t), which depend on the horizontal
coordinates and time, i.e. ũi = ∑K

j=1 ui,jNj(σ ). Substituting the trial solution into the
horizontal momentum equation (2.12) and the depth-integrated continuity equation (2.9)
and applying the weighted residual method (Finlayson 2013), a system of approximated
differential equations for ui,j and H are derived.

The complexity and applicability of these models depend on the choice of shape
function, weighting function and the number of truncated terms kept in the horizontal
velocity approximation, namely, K. For example, in the subdomain model discussed in
YL20, Nj(σ ) = σ j−1 is the shape function employed; S2 denotes the subdomain weighted
residual method with K = 2, meaning the trial solution is approximated as a linear
function of σ . Thus, once the value of K or the degree of the polynomial in the trial
solution is decided, the ability of the model in describing the fluid horizontal velocity
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is restricted accordingly. Thus, in YL20 a larger truncation number K (or higher degree
polynomial) is necessary for deeper-water waves and/or currents with a complex profile
in the water column. For instance, in YL20, the S2 model can only accurately describe a
constantly sheared current (i.e. linear velocity profile in the water column).

To improve the wave–current models in YL20, in this paper, the interaction between
waves and a prescribed arbitrarily sheared current field is formulated differently as follows.
The solutions for the total horizontal velocity and total water depth are expressed as

ui(xi, σ, t) = u′
i(xi, σ, t) + u∗

i (xi, σ ), (2.14)

H(xi, t) = η′(xi, t) + ηc(xi) + h(xi), (2.15)

where the total free surface elevation has been decomposed into an unsteady component,
η′, and the prescribed current-induced surface elevation, ηc. On the other hand, the
horizontal velocity, ui, has been decomposed into two components, u′

i and u∗
i . In the

absence of waves (i.e. u′
i = η′ = 0, σ = (z + h)/(h + ηc)), u∗

i becomes the prescribed
steady-state current field, uc

i (xi, z), that is given as

u∗
i (xi, σ ) = uc

i (xi, z = σ(h + ηc) − h), (2.16)

in which (2.1a–c) has been used. Although the vertical profile of u∗
i is specified by that of

uc
i , both u∗

i and u′
i are not known until the instantaneous free surface is solved because σ

always depends on η′. We reiterate here that u∗
i is used to describe the current field in the

absence of waves and u′
i serves as a correction to force the total fluid velocity, ui, and η′ to

satisfy the governing equations and boundary conditions. In the absence of the prescribed
steady-state current (u∗

i = uc
i = ηc = 0), the wave component, u′

i, alone should satisfy the
governing equations and boundary conditions, resulting in the same model equations as
those presented in YL20.

The vertical velocity, w, can be obtained by substituting (2.14) into (2.10) as follows:

w = −(u′
i + u∗

i )|b
∂h
∂xi

− 1
σz

[∫ σ

0

(
∂(u′

i + u∗
i )

∂xi
+ ∂(u′

i + u∗
i )

∂σ
σxi

)
dσ

]
. (2.17)

Similarly, the surface evolution equation is obtained by substituting (2.14) into the
depth-integrated continuity equation (2.9) as

∂H
∂t

+ ∂

∂xi

∫ 1

0

1
σz

(u′
i + u∗

i ) dσ = 0. (2.18)

Finally, the horizontal momentum equation becomes

Hmtm = −g
∂(H − h)

∂xi
− ∂

∂xi

∫ 1

σ

1
σz

Vmtm dσ + σxi

σz
Vmtm, (2.19)

where

Hmtm = ∂u′
i

∂t
+ ∂(u′

i + u∗
i )

∂σ
σt + (u′

j + u∗
j )

(
∂(u′

i + u∗
i )

∂xj
+ ∂(u′

i + u∗
i )

∂σ
σxi

)

+ w
∂(u′

i + u∗
i )

∂σ
σz, (2.20)

Vmtm = ∂w
∂t

+ ∂w
∂σ

σt + (u′
j + u∗

j )

(
∂w
∂xj

+ ∂w
∂σ

σxi

)
+ w

∂w
∂σ

σz. (2.21)

Equations (2.18) and (2.19) form a complete system for solving the total water depth H and
the horizontal velocity component u′

i by forcing the total horizontal velocity to satisfy the
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governing equations and boundary conditions. It should be noted that up to this point no
assumption or approximation has been made. The only requirement is that the flow field is
reduced to the prescribed steady current field in the absence of u′

i and η′.

2.2. Depth-integrated wave–current models
Following YL20, a trial solution, ũi, with a polynomial structure in terms of the vertical
coordinate σ , is proposed to approximate u′

i, i.e.

ũi(xi, σ, t) =
K∑

k=1

Uik(xi, t)σ (k−1), (2.22)

where Uik is the velocity coefficient. It should be stressed that the above expansion is only
for u′; u∗

i is not restricted by the above polynomial expansion approximation.
Substituting the above velocity expression and the prescribed expression for u∗

i into
(2.18), the depth-integrated continuity equation can be readily integrated, resulting in a
governing equation for the total water depth, H, which reads

∂H
∂t

+ ∂

∂xi

[
H

( K∑
k=1

Uik

k
+
∫ 1

0
u∗

i dσ

)]
= 0. (2.23)

We note that the last term in the equation above can be integrated because u∗ is known as
a function of σ .

The vertical dependence in the horizontal momentum equations (2.19) is removed by
adopting the weighted residual method. For a subdomain model, the horizontal momentum
equation is integrated in each subdomain as follows:

∫ cq+1

cq

{
Hmtm + g

∂(H − h)

∂xi
+ ∂

∂xi

∫ 1

σ

HVmtm dσ − Vmtm

(
∂h
∂xi

− σ
∂H
∂xi

)}
dσ = 0,

q = 0, 1, 2, . . . , (K − 1) (2.24)

where cq are the free parameters with c0 = 0 and cK = 1 (see YL20 for the recommended
values). The equations above become the same as those presented in YL20 in the
absence of the prescribed steady-state current, i.e. u∗ = 0. However, in the presence of
the prescribed current field, many additional terms appear in the forms of derivatives and
integrals of u∗. Although these terms can be dealt with on an individual case base, it is
impossible to express the results in general forms. Here, we focus on a subset of current
patterns that allow us to simplify the resulting model formulation to a certain degree.
The category of current fields assumes that the current’s dependencies on the vertical and
horizontal coordinates are separable, i.e.

u∗
i (xi, σ ) = f (xi)gi(σ ). (2.25)

Substituting the above equation into (2.24), the resulting depth-integrated horizontal
momentum equations can be found in Appendix A, which demonstrates that currents with
any arbitrary vertical profile together with any degree of polynomial approximation on u′

i
can be realized in one numerical model.
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3. Theoretical analysis of frequency dispersion properties of the models for linear
waves on vertically sheared currents

In this section, the present models’ frequency dispersion relation for small-amplitude
periodic waves ridding on vertically sheared currents is analyzed. Considering a
small-amplitude periodic wave train propagating on a constant water depth and interacting
with a horizontally uniform but vertically sheared current, the wave–current interaction
process can be described by the Rayleigh equation (Rayleigh 1879; Kirby & Chen 1989),
i.e.

∂2w
∂z2 −

[
k2 + 1

uc − c
∂2uc

∂z2

]
w = 0, (3.1)

with boundary conditions on the bottom (z = −h) and the still water level (z = 0),
respectively:

w = 0, z = −h, (3.2)

(uc − c)2 ∂w
∂z

−
[

g + (uc − c)
∂uc

∂z

]
w = 0, z = 0, (3.3)

where w, k, and c are the vertical fluid particle velocity, wavenumber, and wave celerity
in the presence of the current, uc(z), which has an arbitrary profile in the water column.
The Rayleigh equation becomes singular at a certain elevation in the water column when
the current velocity equals the wave celerity (uc = c), which is also known as the critical
layer. Analytical solutions to the Rayleigh equation exist only for depth-uniform and linear
current profiles. For general current profiles, numerical solutions can be found using
shooting method (Dong & Kirby 2012). The accuracy of the present models’ frequency
dispersion relation is evaluated by comparing with the results from the Rayleigh equation
over a range of kh values under different current configurations, e.g. vertical profile and
current intensity. We seek the solution of the model equations in the following form:

H = h + εη cos θ, (3.4)

Un(x, t) = εu1n cos θ, (3.5)

where Un (n = 1, 2, . . . , K) are the velocity unknowns, ε is a small parameter defined
as ka (k is the wavenumber and a is the wave amplitude) and θ = (kx − ωt) is a phase
function. Substituting the above solution forms into the resulting model equations, which
can be obtained following the derivations in Appendix A, the linearized equation system
can be obtained by collecting leading-order terms in terms of ε. Then the linear frequency
dispersion relation can be obtained by ensuring a nontrivial solution of the resulting linear
equation system. The detailed procedures in obtaining the dispersion relation have been
already presented in YL20 and are not repeated here for brevity.

For linear waves riding on currents with depth-uniform or linear profiles, as expected
the results are practically the same as those shown in YL20 (in § 3.2) and again are not
discussed here. In this section, we focus on the case of exponentially sheared currents to
examine and demonstrate new models’ skill in dealing with more complex vertical current
profiles. For brevity, only the results for the S2 model are discussed here, and models of
higher polynomial approximations produce more accurate results with similar trends.

A horizontally uniform but vertically sheared current with an exponential profile
is investigated. The current profiles can be mathematically expressed as uc/

√
gh =

Fr exp(αz/h), where Fr denotes the normalized surface current strength and α determines
the decay rate of the vertical profile. Here Fr = ±0.1, ±0.2 and ±0.3 are considered where
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Figure 1. Accuracy of wave celerity of linear waves riding on exponentially sheared currents with different
magnitude of shears ((a) α = 2; (b) α = 3; (c) α = 5) and different intensities (red line, |Fr| = 0.1; blue line,
|Fr| = 0.2; green line, |Fr| = 0.3) The upper part and lower part of each panel are the results for opposing
currents and following currents, respectively. Pure wave scenarios are indicated by the dashed lines in each
panel.

the positive (negative) sign indicates whether waves are propagating following (against)
the currents. The maximum ratio of current velocity over wave celerity is less than 0.55,
which is below the threshold for the critical layer. On the other hand, three α values of 2,
3 and 5 are used to represent weak to strong decay rate of the vertical profiles.

In figure 1, the accuracy of wave celerity is shown. The ratios of the present S2 model
results (cm) and the solutions from the Rayleigh equation (ce) are plotted for different
current intensities (Fr) and magnitudes of shear (α). Three panels in the figure correspond
to three α values, and within each panel the upper (lower) half of the plot represents
scenarios of wave propagating against (following) the current. Note that the upper half
of the vertical axis is being reversed for better visualization. The red, blue and green
lines indicate the magnitude of the surface current strength of Fr = ±0.1, ±0.2 and ±0.3,
respectively, and the black dashed lines represent the pure wave without current scenarios.

According to figure 1, the following general observations can be made. First, the present
S2 model is accurate for a wide range of kh values up to kh ≈ π, approaching the
deep water limit, which is characteristically the same as that of the pure wave scenario.
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Second, the accuracy of the wave celerity for vertically sheared currents (coloured lines)
deviates from that of the pure wave scenario (dashed lines) more significantly for stronger
surface currents (i.e. larger |Fr| values) and stronger shears (i.e. larger α values). Third,
although stronger opposing currents reduce the model accuracy (smaller applicable range
of kh) for the case of α = 2 (figure 1a), for the case with α = 5 (figure 1c), the applicable
range of kh is further extended for stronger opposing currents. Vice versa for the following
currents situations. Lastly, the observations for the α = 3 case (figure 1b) show a trend
similar to the α = 5 case.

The above theoretical analysis shows specifically that the present models are able
to produce the correct dispersion relations of small-amplitude waves on exponentially
sheared currents, and have similar accuracy as that of pure wave. However, the model
behaviours are affected by the vertical profile and the intensity of the current. The models
using higher-order polynomial approximations are expected to produce results with similar
trends.

4. Numerical solutions and discussion

The present models are implemented numerically in both 1DH and 2DH space using the
same method as discussed in YL20. In the absence of currents, the models have been
validated with several 3D benchmark laboratory experiments for wave propagation over
uneven bottoms. These problems include (1) wave propagation over an elliptical shoal
on a sloping bottom (Berkhoff, Booy & Radder 1982), (2) wave propagation over a
semi-circular shoal (Whalin 1971), (3) solitary wave runup on a conical island (Liu et al.
1995) and (4) irregular wave propagation over a submerged shoal (Vincent & Briggs 1989).
Comparisons show excellent agreement; they are presented in supplementary materials § A
for brevity.

The present models are also applied to various topics on the wave–current interactions.
In 1DH space, the numerical models are first validated by laboratory experiments of
finite-amplitude waves propagating over uniform or linearly sheared currents (Swan
1990). Good agreements are obtained for free surface profiles and velocity field. The
details of these validations are presented in supplementary materials § B. In § 4.1.1
periodic waves of different relative water depths and nonlinearity on currents of different
profiles are validated and further investigated. In § 4.1.2, solitary waves of different
nonlinearity on currents of a variety of profiles are studied. By checking these 1DH
problems in a constant water depth ensures the capability of present models for studying
complex wave transformation problems considering sheared currents in both horizontal
and vertical directions and varying bathymetry, which is the major advantage of present
models over other numerical/analytical methods. These features are illustrated in 2DH
investigations in § 4.2, which includes two scenarios: (1) wave propagation over a
horizontal sheared vortex-ring current in constant depth (Mapp, Welch & Munday 1985)
and (2) a wave transformation under the combined effects of a 3D sheared current and
varying bathymetry.

4.1. Wave–current interactions in 1DH space

4.1.1. Finite-amplitude periodic waves on arbitrarily sheared currents
Using a 2D stream function formulation, Chen & Basu (2021) obtained numerical
solutions for large-amplitude periodic waves on sheared currents on the vertical plane. The
present model is validated with a case of nonlinear Stokes waves on currents of constant
horizontal vorticity. Following Chen & Basu (2021), the water depth is 200 m and the
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target wave height and wavelength are H = 10.08 m and L = 155.91 m, respectively. The
current has a surface velocity of 1.31 m s−1 and decreases to zero at the bottom. Three
scenarios are considered, namely, (a) pure wave, (b) waves on following linearly sheared
currents and (c) waves on opposing linearly sheared currents. To reach the same target
wavelength under different current configurations, the wave period (T) is specified to be
9.79, 9.10 and 10.60 s, respectively, in Chen & Basu (2021). Finally, the dimensionless
parameters are kh ≈ 8.06 and ka ≈ 0.20, which corresponds to a third-order Stokes wave
in deep water.

A numerical wavemaker algorithm is employed to generate the desired waves. This
algorithm was first proposed by Lee & Suh (1998); Lee, Cho & Yum (2001) and Hsiao
et al. (2005) extended the original algorithm from a line source to a spatially distributed
source. Based on the mild-slope equations, Schäffer & Sørensen (2006) provided the
theoretical derivation of the wavemaker algorithm. A more detailed discussion on the
algorithm can be found in Appendix B. The sponge layer treatment (Larsen & Dancy 1983)
is used at both ends of the numerical flume to absorb outgoing waves. In the numerical
simulations, a horizontally uniform current with a certain vertical profile is specified by
u∗. A transition region is introduced to control the current effects horizontally, changing
from zero in the wave generation region to full strength away from the wave generation
region (Nwogu 2009). To accomplish this, a ramp-up function, changing from 0 to 1,
is multiplied to the terms being associated with the prescribed current (those terms are
shown in Appendix A) so as to allow waves to propagate gradually from calm water into
the current region with full strength.

Because of relatively large kh and ka values, the S4 model is used to carry out all the
simulations with spatial and temporal resolutions of 
x = L/53 and 
t = T/80. The
numerical solutions quickly reach a quasi-steady and uniform state and figure 2 shows
the comparisons of phase-averaged free surface elevations and horizontal velocity profiles
under the wave crest for all three cases between the present numerical results and those of
Chen & Basu (2021). It should be noted that the results for free surface elevation obtained
from both approaches are almost the same for all three cases. Thus, only one set of results
from each model is included in figure 2(a), for comparison. The present S4 model can
well capture the wave free surface elevations with slight discrepancies appearing at the
crest and trough. By using the wave periods specified in Chen & Basu (2021), the resulting
waves in each scenario reach the same target wavelength, verifying the accurate frequency
dispersion relation under the combined effects of third-order amplitude dispersion and
wave–current interactions (Doppler-shift effects) embedded in the present model. On the
other hand, the cubic function employed by the S4 model can also capture reasonably well
the total horizontal velocity profiles in the entire water column as shown in figure 2(b).
However, small undulations appear in the velocity profiles in the water column, and the
surface velocity is underestimated slightly, whereas the bottom velocity is overestimated
slightly.

Swan & James (2000) derived a second-order Stokes wave-type analytical solutions
with the consideration of vertically sheared currents. Here, we check the performance
of present models by comparing our solutions with those of Swan & James (2000) for
a weakly nonlinear wave (T = 10 s, h = 200 m, ka = 0.1) on an exponentially sheared
current of the form U(z) = 2 exp(0.02z). Note that Swan & James (2000) did not provide
the explicit solutions for the free surface elevation. Therefore, in figure 3(a) only the
present model’s results of phase-averaged free surface elevations are shown. However,
the wavelength can be compared directly between the present model results and Swan
& James’s (2000) analytical solutions; the difference is only less than 0.2 %. In Swan
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Figure 2. Comparisons of (a) free surface elevation and (b) horizontal velocity profiles under the wave crest
between present numerical results and those of Chen & Basu (2021).

& James (2000) the wave-induced horizontal velocity was defined as the total velocity
minus the prescribed current velocity. This wave-induced velocity under the wave crest
is plotted in figure 3(b) and is compared with corresponding velocity u′ in the present
model. Strictly speaking these two quantities are different in definition, but they should be
close. The present solutions exhibit undulations because of higher degree of polynomial
approximation employed in the S4 model. However, the overall agreement is quite good,
especially close to the free surface where the actions are.

In the previous example we have shown that the present model can perform well in the
deep-water wave conditions, which is a severe test for any depth-integrated models. In
the next example, the present models will be checked for their capabilities for simulating
nonlinear waves in finite water depths interacting with currents with more complex
profiles in the water column. We consider nonlinear periodic waves with two complex
current profiles: the exponential profile, uc/

√
gh = 0.13 exp[6(z/h)], and the sinusoidal

profile, uc/
√

gh = 0.13 sin[π(z/h + 1)], where uc and
√

gh are the current velocity and
shallow-water wave celerity, respectively. The normalized current velocity profiles in the
water column are shown in figure 4. A distinguishing feature between these two current
profiles is the pattern of their slopes (vertical shears). Although the slope (shear) of the
exponential profile is always positive in the water column with its maximum value at
the still water surface, the slope (shear) of the sinusoidal current profile changes sign
from negative in the upper half of the water column to positive in the lower half water
column. In figure 4, the current profiles are also approximated by quadratic (dashed
lines) and cubic polynomials (dash-dotted lines). Although the quadratic approximation
is reasonable for the sinusoidal profile, very large discrepancies appear throughout the
water column for the exponential profile, suggesting that YL20’s S3 model would not
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Figure 3. (a) Numerical results (S4 model) of free surface elevations. (b) Comparisons of wave-induced
horizontal velocity profiles under the wave crest between numerical results (S4 model) and Swan & James
(2000).

be able to model these current profiles accurately, especially for the exponential current
profile. Overall the cubic approximation models both current profiles more closely, but it
still cannot accurately capture the correct surface, bottom and maximum velocity for these
two profiles. On the other hand, the present S3 model takes the current velocity profile into
consideration without further approximation and, therefore, it is a more accurate approach.
Finally, the incident wave conditions are prescribed as follows: wave amplitude, a = 0.1 m;
wave period, T = 2 s; constant water depth, h = 1 m. The corresponding wavelength
is Lw = 5.306 m, and the dimensionless wave parameters, kh = 1.18 and ka = 0.12 or
H/h = 0.2, are obtained based on the third-order Stokes wave theory.

In total four wave–current interactions cases are considered, i.e. waves on following
(opposing) exponentially (sinusoidally) sheared current, and the numerical setup is the
same as previous cases in this section. The resulting free surface elevations for four
wave–current interaction scenarios and the wave-alone case are shown in figure 5. Overall,
the wavelength is always lengthened when waves are propagating in the same direction as
the current (see figure 5d,e). The opposite is true when waves propagate against the current
(see figure 5a,b). The current with a sinusoidal profile in the water column has stronger
effects on waves than the current with an exponential profile does. Quantitatively speaking,
when waves are propagating against (following) the current with sinusoidal profile and
exponential profile, wavelengths are 12 % and 8.0 %, respectively, shorter (longer) than
that of the pure wave scenario.

The exponentially sheared current has a horizontal vorticity of Ωc = 2.4 s−1 at the still
water level. A snapshot of the calculated velocity and horizontal vorticity field for waves
propagating against the exponentially sheared current (waves are propagating to the left) is
shown in figure 6, where the vorticity field is normalized by Ωc. As the current velocity and
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Figure 4. Normalized current velocity profiles. The black solid line denotes the exponential current profile
uc/

√
gh = 0.13 exp[6(z/h)] and the red solid line represents the sinusoidal current profile uc/

√
gh =

0.13 sin[π(z/h + 1)]. The dashed lines and dash-dotted lines are the quadratic and cubic polynomial fitted
results, respectively.

the wave particle velocity are in the same order of magnitude, the total velocity is almost
zero at the wave crest. Moreover, the negative horizontal velocity under the wave trough is
enhanced by the presence of the current. As for the vorticity field, when the wave is absent,
the vorticity field is uniform in the horizontal direction, but has a maximum value at the
still water surface (z/h = 0) and decays into the water column. With the consideration
of waves, the vertical stratification of the vorticity field is stretched or compressed as the
wave comes by. This feature is further illustrated in figure 7, where the vertical profiles of
the total horizontal velocity and vorticity at five phases, evenly spaced from wave crest to
trough, are shown. The total horizontal velocity is normalized by the maximum horizontal
velocity estimated from Stokes wave theory without current. In the same figure, the profiles
of the horizontal velocity and vorticity for the pure current are also plotted. They match
well with the corresponding profiles of wave–current interaction at the phase of η = 0.

Similar analyses are performed for waves on the sinusoidally sheared current. A
snapshot of velocity and vorticity fields for waves propagating against the current is shown
in figure 8. The horizontal velocity on the wave crest is negative (in the same direction as
that of the wave propagation) and reverses its direction twice at approximately z/h = −0.2
and z/h = −0.8, which is strongly influenced by the sinusoidal current profile. Figure 9
shows the vertical structure of the horizontal velocity and vorticity at different phases from
wave crest to trough. The variation of the vorticity structure again follows the free surface
motions, and the influence of the wave motion on the vorticity field mainly takes effect for
z/h > −0.8. For brevity, the discussions on the results for waves following currents are
presented in supplementary materials.
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Figure 5. Comparisons of free surface elevations for (a) waves against current with sinusoidal profile in water
column, (b) waves against current with exponential profile, (c) wave alone, (d) waves following current with
exponential profile and (e) waves following current with sinusoidal profile. The horizontal axis is horizontal
distance (x) normalized by the wave-alone wavelength Lw.
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Figure 6. The velocity field (arrows) and vorticity field (colour) for waves on opposing current with an
exponential profile. Waves propagate to the left and currents move to the right.
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Figure 7. (a) The vertical profiles of horizontal velocity for waves on opposing current with an exponential
profile. Red lines represent the total horizontal velocity at different phases from wave crest to wave trough
(left to right) with equal increment; black dashed line denotes the pure current profile without waves. (b) The
corresponding vertical profiles of the vorticity field. Black dashed line denotes the vorticity profile for current
without waves.
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Figure 8. The velocity field (arrows) and vorticity field (colour) for waves on opposing current with a
sinusoidal profile. Waves are propagating to the left and currents move to the right.

Finally, the vertical profiles of time-averaged horizontal velocity (averaged over five
wave periods) are shown in figure 10(a,b). For both exponential and sinusoidal current
profiles, comparing with the prescribed current profile below wave trough, the model
result is weaker when waves follow the current and is stronger when waves are against
the current. Furthermore, comparing the current profiles obtained by superimposing
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Figure 9. (a) The vertical profile of horizontal velocity for waves on opposing sinusoidally sheared current.
Red lines represent the total horizontal velocity at five phases from wave crest to trough (left to right) with equal
increment. Black dashed line denotes the velocity profile for current without waves. (b) The corresponding
vertical profiles of vorticity for waves on opposing current with a sinusoidal profile. Black dashed line denotes
the vorticity profile for current without waves.

the time-averaged velocity associated with wave-alone and the prescribed steady-state
currents with the numerical model results, it can be observed that wave–current
interactions (numerical model results) induce stronger (weaker) time-averaged velocities if
∂uc/∂z > 0 (∂uc/∂z < 0), and is independent of the wave propagation direction. Between
the wave trough and wave crest, the time-averaged horizontal velocity profiles are
drastically different from those obtained from the combinations of the prescribed
steady-state current and the time-averaged velocity induced by wave alone. It is not
surprising because the model considers the full interactions between waves and currents.
Lastly, the time-averaged and depth-integrated volume flux in the water column is
calculated, and the difference between numerical results of wave–current interaction and
linear superimposition of those obtained from wave-alone and current-alone simulations
is less than 2 % for all cases considered here.

4.1.2. Solitary waves on arbitrarily sheared currents
In this section, the effects of arbitrarily sheared current on solitary waves are examined. As
indicated in table 1 and figure 11 several current profiles are considered. The exponential
velocity profile mimics the wind-induced current (Swan et al. 2001), whereas the 1/7
power profile represents a high-Reynolds-number open channel flow (Peregrine 1976).
The Froude number (Fr) is defined as the ratio of the current velocity at the still water
level (uc

s) and the linear shallow-water wave celerity (c0 = √
gh). The sign of the Froude

number indicates whether the wave is propagating following (+) or against (−) the current.
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Figure 10. Vertical profiles of the time-averaged horizontal velocity for waves on currents with (a) exponential
profile and (b) sinusoidal profile in the water column, respectively. The black line represents the current-alone
case; the black dashed line denotes the wave-alone case; the blue line shows the results of waves on following
currents (numerical); the red line represents waves on opposing currents (numerical); the blue dash-dotted line
denotes waves on following currents (linear superposition of wave-alone and current-alone); the red dash-dotted
line represents waves on opposing currents (linear superposition of wave-alone and current-alone cases).

Case A/h Current vertical profile Fr C/c0 Converged model

(1) 0.1 No current — 1.0488 S2
(2) 0.1 Linear 0.6 1.3984 S2
(3) 0.1 Linear −0.6 0.7950 S2
(4) 0.1 Square root −0.6 0.6801 S2
(5) 0.1 1/3 power −0.6 0.6178 S2
(6) 0.1 1/7 power −0.6 0.5316 S2
(7) 0.1 Quadratic −0.6 0.8956 S2
(8) 0.1 Cubic −0.6 0.9387 S2
(9) 0.1 Exponential −0.6 1.0009 S2
(10) 0.1 Linear −1.2 0.6274 S2
(11) 0.1 Square root −1.2 0.4167 S5
(12) 0.2 Linear 0.114 1.1542 S2
(13) 0.5 No current — 1.2186 S2
(14) 0.5 Linear −1.0 0.886 S2
(15) 0.5 1/7 power −1.0 0.3654 S2

Table 1. Test cases for solitary waves interacting with vertically sheared currents.

The prescribed steady-state currents are uniform in the direction of solitary wave
propagation and have a maximum velocity at the still water level (z = 0) and decrease
to zero at the bottom (z = −h).

In the numerical simulations, the water depth is set to be h = 1 m. The leading
order Boussinesq solitary wave solutions (Boussinesq 1872) are employed as the
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Figure 11. Sketch of current profiles listed in table 1 with Fr = 1. 1. Exponential: uc/c0 = Fr exp(10z/h).
2. Cubic: uc/c0 = Fr(1 + z/h)3. 3. Quadratic: uc/c0 = Fr(1 + z/h)2. 4. Linear: uc/c0 = Fr(1 + z/h). 5.
Square root: uc/c0 = Fr(1 + z/h)1/2. 6. 1/3 power uc/c0 = Fr(1 + z/h)1/3. 7. 1/7 power uc/c0 = Fr(1 +
z/h)1/7, where c0 = √

gh.

initial conditions. The spatial resolution of 
x = 0.3h, 0.2h, 0.1h is used for solitary
wave of different nonlinearity, i.e. A/h = 0.1, 0.2, 0.5, respectively. The corresponding
temporal resolutions are 0.1, 0.06 and 0.03 s, respectively. As the Boussinesq solitary wave
solutions are not the final solutions of the present wave–current system, small trailing
waves are generated at the beginning of the simulations and are left behind the leading
soliton due to the differences in propagation speeds. Because of these trailing waves, the
amplitude of the initial input soliton form is determined by trial and error until a solitary
wave with the desired amplitude is generated (Gobbi, Kirby & Wei 2000; Lynett & Liu
2004). In this study, for solitary waves of A/h = 0.1 and 0.2, because of the relatively
small amplitude of the solitary waves and the existence of vertically sheared currents, it
takes a relatively long distance of propagation (roughly 800 water depths) for the leading
soliton to be separated from the trailing waves. On the other hand, a distance of only 200
water depth is necessary for the solitary wave of A/h = 0.5.

The present models are first validated using the perturbation solutions of Pak & Chow
(2009). In figure 12(a) the free surface profiles for the solitary wave of A/h = 0.1,
following and opposing a current with linear profile (|Fr| = 0.6), are compared with the
third-order (in terms of ε = A/h) perturbation solutions of Pak & Chow (2009). The free
surface profile becomes narrower when the solitary wave follows the current, whereas the
free surface profile is widened by the opposing current. Overall the agreement between the
numerical results and the perturbation solutions is very good.

It should be noted that the S2 model is used to produce the numerical results shown
in figure 12(a). However, models of higher approximations may be required when the
current has different current profiles and its intensity (Fr) becomes stronger. This feature
is demonstrated in figure 12(b), in which numerical results for a stronger opposing current
with Fr = −1.2 with both linear current profile and square root shear profile (profile
number 5 in figure 11) are plotted. For the linear current profile, the red line in figure 12(b),

936 A31-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.42


Depth-integrated wave–current models 2

10 15

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 50 5 10 15

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

z/h

x/h x/h

(b)(a)

Figure 12. Comparisons of the free surface profiles of solitary waves (A/h = 0.1) on following and opposing
currents between the present numerical results and those of Pak & Chow (2009). (a) Froude number |Fr| = 0.6.
Present model results: blue solid line, no current; red solid line, opposing linear current profile; green solid
line, following linear current profile. Lines in black are the corresponding results from Pak & Chow (2009).
(b) Froude number Fr = −1.2. Present model results: red line, opposing linear current profile (S2 model);
dashed blue line, opposing square root current profile (S3 model); thick blue line, opposing square root current
profile (S5 model). Numerical results from Pak & Chow (2009): dash-dotted black, opposing linear current
profile; dotted black, opposing square root current profile.

which is the converged results from the S2 model, agrees well with Pak & Chow (2009).
For the square root current profile, however, the S5 model is needed to produce the
converged results, which agree well with the solution from Pak & Chow (2009). The higher
approximations make the wave profile narrower and closer to the converged results (e.g.
dashed blue line which is from the S3 model). This suggests that although a model of a
lower approximation can consider the exact current profile, in the case of a strong current
with a complex profile, models of higher approximations may necessary to obtain the
converged solutions by providing more corrections through u′.

The free surface profiles of finite-amplitude solitary wave with A/h = 0.2 and 0.5 on
vertically sheared current are also studied here. Figure 13(a) shows the comparison of free
surface profiles of the solitary wave (A/h = 0.2) on a following current with a linear profile
(Fr = 0.114) between the numerical results and solutions from a weakly dispersive fully
nonlinear model (Choi 2003). The converged results from the S2 model predict a slightly
narrower profile compared with the solutions from Choi (2003). For solitary waves with a
larger amplitude of A/h = 0.5, we first compare free surface profiles of the solitary wave
without current obtained from the S2 model with Fenton’s (1972) ninth-order solution,
which is shown in figure 13(b). The agreement is extremely good. In the presence of an
opposing current, a solitary wave with the same amplitude is wider than that for the no
current situation. The numerical results (S2 model) of the surface profile of solitary wave
(A/h = 0.5) on current with a linear profile and Fr = −1.0 is shown by the red line in
figure 13(b), where the third-order solution from Pak & Chow (2009) is also included
for comparison. The converged results from the present model predict a slightly wider
profile than the weakly nonlinear and weakly dispersive solution. Lastly, to demonstrate
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Figure 13. (a) Comparisons of the free surface profiles of solitary waves (A/h = 0.2) on following current
with Fr = 0.114 between numerical results (red line) and fully nonlinear solution from Choi (2003) (black
dash-dotted line). (b) Comparisons of the free surface profiles of solitary waves (A/h = 0.5). No current:
numerical (blue line), ninth-order solution from Fenton (1972) (black dashed line). Note these two lines are not
distinguishable. Linearly sheared opposing current with Fr = −1: numerical (red line), third-order solution
from Pak & Chow (2009) (black dotted line). 1/7 power sheared opposing current with Fr = −1: numerical
(green line).

the advantage of present models in taking into account arbitrarily sheared current, the
free surface profile of solitary wave (A/h = 0.5) on current with 1/7 power profile (no.7 in
figure 11) is considered, and the converged result from S2 model is shown by the green line
in figure 13(b). Although the surface current velocity remains the same for different current
profiles, the free surface profile of the solitary wave on a current with a 1/7 power profile
is obviously narrower than that on a current with a linear profile, which may attribute to
the weaker vertical shear near the surface for the 1/7 power current profile.

In addition to the linear and square root current profiles discussed above, the other
current profiles sketched in figure 11 are also examined for the solitary wave of A/h = 0.1
on opposing current of Fr = −0.6 using the S2 model. One can anticipate the S2 model
developed in YL20, which assume the horizontal velocity varies linearly in the water
column, is not able to approximate the current profiles studied here, especially for those
current profiles with strong local shear requires (e.g. the fifth-degree polynomial is needed
to approximate profiles of no. 1 and no. 6 in figure 11). By using the linearly sheared
current as the dividing case, figure 14(a) shows the solitary wave free surface profiles for
the group of current profiles whose volume flux is larger than that of the linear profile. It
is observed that the linear current profile produces the widest solitary free surface profile
followed by the square root shear, 1/3 power shear, and the 1/7 power shear, though the
differences among them are not large. The above observations seem to suggest that for this
group of opposing currents changes in the solitary wave profile are more significant for
currents with stronger surface shear.

For the group of current profiles that have less volume flux than the linear profile current,
the behaviour of the solitary wave free surface profiles shows different trends. Figure 14(b)
shows that both the quadratic profile and cubic profile produce very similar results to
those from the linear profile. A closer inspection shows that whereas the quadratic profile
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Figure 14. Solitary wave free surface profiles on opposing currents (Fr = −0.6) with different vertical
profiles.

induces a slightly wider solitary wave profile than the linear profile, the cubic profile
produces a slightly narrower solitary wave surface profile than the linear profile. However,
the modification is much more significant for the exponential profile, which induces a
narrower profile than the other non-uniform shear profiles in the same figure. Finally,
among all the opposing currents of Fr = −0.6 considered here, the solitary wave with
A/h = 0.1 has the widest free surface profile when the underlying current has a quadratic
profile.

Similarly to § 4.1.1, the velocity and vorticity field of the solitary wave (A/h = 0.1) on
opposing current with exponential profile and Fr = −0.6 are shown in figure 15, where the
vorticity has been normalized by the maximum vorticity of pure current (in magnitude).
A vortex is formed under the wave crest at approximately z/h = −0.17. Although the
solitary wave propagates to the right, the velocity near the free surface is negative because
of the presence of the strong opposing current. For the vorticity field, the strong vorticity
at the still water level, associated with an exponential current profile, is lifted up to the free
surface by the presence of the solitary wave.

Finally, figure 16 shows the wave celerity (C) normalized by shallow-water wave
speed (c0) of solitary wave (A/h = 0.1) on currents (Fr = −0.6) with different vertical
profiles, which are also summarized in table 1. It is not surprising that solitary waves
travel at a slower speed on opposing currents compared with the pure wave scenario.
However, because of the vertical shear that decreases the current intensity from the
surface to the bottom, the celerity of solitary wave on opposing current is larger than
the linear superposition of pure wave celerity (C/c0 ≈ 1.05) and current surface velocity
(uc

s/c0 = −0.6). The solitary wave celerity can vary significantly for currents with the
same surface velocity but different vertical profiles. For example, compared with the
wave-alone scenario, whereas the current with an exponential profile reduces the wave
celerity by 4.65 %, the 1/7 power profile causes a dramatic decrease of 49.8 %. For the
group of opposing currents considered here, the wave celerity decreases monotonically
with the increasing volume flux of the opposing current. However, this does not imply
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Figure 15. The velocity field (arrows) and vorticity field (colour) for a solitary wave on opposing current
with an exponential profile. Waves propagate to the right and currents move to the left.
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Figure 16. Wave celerity of solitary wave on currents (Fr = −0.6) with different vertical profiles in the water
column. The horizontal axis is the volume flux of pure current F normalized by the depth-uniform current flux
F0. The symbols from left to right correspond to current profiles 1 to 7 in figure 11.

that the volume flux of the current is the only parameter that determines the wave celerity.
The detailed current vertical profile still matters. Thus, additional analysis is required to
identify the controlling current parameters that influence certain wave properties, e.g. the
influences of currents with the same volume flux but different vertical profiles on solitary
waves.

4.2. Wave–current interactions in 2DH space

4.2.1. Wave propagation over a vortex-ring-like current
Vortex-ring-like currents can be generated by the Gulf Stream along eastern coastlines
of the United States, which moves warm water from the Gulf of Mexico to the Atlantic
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Ocean (Mapp et al. 1985). The presence of this large-scale current may significantly
modify incoming wave field, which are important for predicting both offshore and coastal
wave climates. The effects of a vortex-ring-like current on linear shallow-water wave
transformation have been studied using various numerical models, e.g. the parabolic
approximation of Boussinesq model (Yoon & Liu 1989), the mild-slope equation model
(Chen, Panchang & Demirbilek 2005), the coupled-mode model (Belibassakis, Gerostathis
& Athanassoulis 2011) and the weakly nonlinear and weakly dispersive Boussinesq-type
model (Zou et al. 2013). In this section, in addition to the classic case of linear
shallow-water incident waves, the present models are also used to examine weakly
nonlinear intermediate-water-depth waves propagating over a vortex-ring-like current
field, which is more realistic to the physical background of the vortex-ring-like current
field. Differences in the resulting wave fields are discussed.

Following Mapp et al. (1985), the depth-uniform current field (Ur, Uθ , Uz) is expressed
in the cylindrical coordinates (r, θ , z) as

Ur = 0, (4.1)

Uθ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C5

(
r

R1

)N

, r ≤ R1,

C6 exp

[
−
(

R2 − r
R3

)2
]
, r > R1,

(4.2)

Uz = 0, (4.3)

ηc = −1
g

∫ ∞

r

U2
θ

r
dr, (4.4)

where ηc is the free surface set-down associated with the current field, which satisfies
exactly the steady-state Euler equation. In (4.2), R3 estimates the length scale of the
current field and C6 represents the maximum magnitude of current velocity. Adopting
the parameters presented in previous studies (Yoon & Liu 1989; Zou et al. 2013), the
following values are used in the present numerical calculations, N = 2, R1 = 343.706 m,
R2 = 384.881 m, R3 = 126.830 m, C5 = 0.9 m s−1 and C6 = 1.0 m s−1. The shapes of
Uθ (r) and ηc(r) are shown in figure 17, in which the maximum value of Uθ is located
at R2 = 384.881 m as denoted by a red dot.

Two kinds of incident wave conditions are considered herein. The incident wave in
the first case has an amplitude of a1 = 0.05 m and a period of T1 = 19.43 s, with a2 =
0.5 m and T2 = 7.3 s for the second case. The still water depth is fixed at h = 10 m,
yielding the following dimensionless parameters characterizing these two incident wave
conditions: (k1h = 0.33, k1a1 = 0.0017) and (k2h = 1.0, k2a2 = 0.05). Thus, the first case
represents a linear shallow-water wave and the second case is a second-order Stokes
wave in intermediate water depth. The relative current strength (C6/

√
gh) is fixed at

0.1. Accordingly, the wave ray patterns can be calculated from the linear wave ray
theory (Arthur 1950; Kenyon 1971) as shown in figure 18(a) for both the shallow-water
wave (red lines) and the intermediate-water wave (blue lines) scenarios. In the figure,
the vortex-ring-like current field, circulating in the clockwise direction, is symbolically
represented by two concentric circles. The centre of the current field is located at (x0, y0) =
(1.0, 0.0) km. The two concentric circles have a radius of R2 and R3, which correspond to
the maximum current velocity of C6 and the velocity of C6/e, respectively. Without the
current field, wave rays are straight lines parallel to the x-axis. In the presence of the
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Figure 17. The variation of Uθ and ηc expressed in (4.2) and (4.4). Note that the red maker indicates the
maximum velocity, Uθ = C6, located at r = R2.
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Figure 18. (a) The wave ray patterns over a vortex-ring-like current. Red lines are wave rays for shallow-water
wave (k1h = 0.33); blue lines are for intermediate-water-depth wave (k2h = 1.0). (b) Contour plots of
instantaneous free surface elevations at t = 28T1 for the shallow-water incident wave case.

current field, wave rays are refracted and wave ray crossings occur in a complex manner,
suggesting that the linear wave ray theory is no longer valid and the wave diffraction needs
to be considered.

As kh values are relatively small, the present S2 model is used to simulate both
scenarios. The lengths of numerical simulations are 28T1 for shallow-water-depth and
75T2 for intermediate-water-depth cases, respectively. The spatial and temporal resolutions

936 A31-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.42


Depth-integrated wave–current models 2

0 0.5 1.0 1.5 2.0 2.5 3.00 0.5 1.0 1.5 2.0 2.5 3.0
x (km)x (km)

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

–1.5

–1.0

–0.5

0

0.5

1.0

1.5
y 

(k
m

)

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

(b)(a)

Figure 19. (a) Spatial distribution of the normalized wave heights for the case of shallow-water-depth wave
(k1h = 0.33). (b) Spatial distribution of the normalized wave heights for the case of intermediate-water-depth
wave (k2h = 1.0).

are 
x = 
y = L/18 and 
t = T/20 for both cases, where T and L are the period and
wavelength of the incident waves, respectively. Sponge layers are applied downstream for
absorbing outgoing waves. The length of the computational domain in the y-direction is set
to be sufficiently long enough to guarantee that the wall boundary conditions implemented
at north and south boundaries do not influence solutions in the area of interest.

In figure 18(b), the contour lines of instantaneous free surface elevations at the end
of the numerical simulation (t = 28T1) for the shallow-water incident wave scenario are
plotted. The parallel contour lines of incident plane waves are significantly distorted by the
presence of the vortex-ring-like current through wave refraction and diffraction. Referring
to the wave ray patterns shown in the left panel, many surface undulations along the crest
lines can be identified with the wave ray crossings.

In figure 19, spatial distributions of normalized wave heights for the shallow-water-depth
(k1h = 0.33) case and the intermediate-water-depth (k2h = 1.0) case are displayed. Here,
the wave heights are calculated by performing the wave-by-wave zero-crossing analysis on
the last five simulated waves. Note that the wavelength of the waves in intermediate water
depth is one-third of that of the shallow-water wave and the incident wave amplitude of the
intermediate-water-depth case is 10timeslargerthanthatoftheshallow-waterwave,resulting
in stronger nonlinearity for the intermediate-water-depth case. Thus, the amplification of
wave height by opposing current is more obvious in the intermediate-water-depth case;
the maximum wave height is located at (x, y) = (1.3 km, 0.4 km), which is behind the
maximum opposing current (the inner circle). Moreover, the vortex-ring-like current has
stronger refraction effects on shorter waves, resulting in different wave patterns for these
two cases, especially on the lee side of the current.

The normalized wave heights along six transects (x = constants) for the case of
shallow-water incident wave (k1h = 0.33) are shown in the left panels of figure 20.
The results from a Boussinesq-type model (Zou et al. 2013) are also shown (in black
dots) in the same panel. Generally speaking, two models have produced similar results
with slight discrepancies in the region of y > 0, where waves follow the currents.
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Figure 20. Normalized wave heights along six transects (x = constants). Here H0 is the incident wave height.
(a,c,e,g) Comparisons between the present S2 model (red lines) and the Boussinesq model (Zou et al. 2013)
(black dots) for the shallow-water-depth case (k1h = 0.33). (b,d, f,h) The present S2 model results for the
intermediate-water-depth case (k2h = 1.0).

Lastly, the wave height variations along the same transects for the case of intermediate
water depth (k2h = 1.0) are also shown in the right panels of figure 20. At x = 1.2594 km
the maximum wave height is almost three times the incident wave height because of the
enhanced nonlinearity. On the other hand, the diffracted waves behind the vortex-ring-like
current show much stronger spatial variations for their shorter wavelengths.

For both cases, the steady current velocities from the present model are obtained
by time-averaging the total horizontal velocities over the last five wave periods in the
numerical simulations. The comparisons between the model results and the prescribed
vortex-ring-like current (4.1)–(4.4) are made at several locations under the wave
trough, showing almost identical results. For completeness, the comparisons for the
intermediate-wave case are shown in the supplementary materials. The time-averaged
velocities between the wave trough and wave crest can also be calculated from the present
model solutions, which show very different patterns from the prescribed currents. To
demonstrate this feature, in figure 21 the present model results for the time-averaged
velocity at the elevation of z/h = −0.02 are compared with the prescribed current velocity
along four transects y = 0.4 km, 0.3 km, −0.3 km and −0.4 km. The elevation z/h =
−0.02 is above the wave trough but under the current-induced mean free surfaces. The
time-averaged resulting velocities are generally weaker than the prescribed current because
of the periodically fluctuating free surfaces induced by waves.
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Figure 21. Comparisons between the time-averaged resulting current field (red line) and the prescribed current
field (black line) at four transects for x component velocity, u (a,c,e,g) and y component velocity, v (b,d, f,h) at
z/h = −0.02.

4.2.2. Obliquely incident wave propagation over a 3D sheared current
Whereas the examples discussed in the previous sections all have a constant depth, in this
section, the present models are employed to simulate wave propagation and transformation
over a varying bathymetry and a current field that shears both horizontally and vertically.

The plan view of the numerical setup is sketched in figure 22(a). A numerical
wavemaker is placed at x = 0, generating obliquely incident waves with an incident angle
of 15◦ with respect to the x-axis, an amplitude of 0.016 m and a period of 1.2 s in a
still water depth of d = 0.35 m. The corresponding dimensionless wave parameters are
kd = 1.18 and ka = 0.054. A submerged ridge parallel to y-axis is installed inside the
computational domain. The submerged ridge has the same fore-slope and back-slope of
1 : 20 and the water depth on the crest of the ridge is 0.1 m with the corresponding ridge
crest width of 1.5 m (see figure 22c). Sponge layers of 2.5 m wide are implemented on
the western and eastern (x-direction) sides of the computational domain for absorbing
outgoing waves, whereas wider sponge layers (8 m) are used on the northern and southern
(y-direction) sides. Finally, the length of the computational domain in the y-direction is
set to be 60 m, which is verified to be sufficiently long to minimize influences from the
sponge-layer boundaries to the central area of interest.

A prescribed steady-state current field is installed inside the computational domain.
The current field is unidirectional in the y-direction and has a Gaussian distribution in
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Figure 22. (a) The plane view of the computational domain, where the dashed areas are the sponge layers,
the thick black line is the location of the wavemaker and the coloured contours indicate the current region.
(b) Vertical profiles of depth-uniform current (blue line) and vertically sheared current (red line) on a flat
bottom of still water depth. (c) Bottom bathymetry in the x-direction.

the x-direction, which is similar to the ‘steady shear current’ pattern proposed by Smith
(2006). However, the present current field can have different velocity profiles in the water
column. The current velocity components and the free surface elevation can be expressed
as follows

uc = 0, wc = 0, ηc = 0, (4.5a–c)

vc = vc
s g(z) = Fr

√
gd exp [−((x − x0)/r)2]g(z), −h(x) ≤ z ≤ 0, (4.6a,b)

where vc
s is the y-component of the surface current velocity, and it has a Gaussian shape

in the x-direction, being centred at x0 = 10 m, which is aligned with the centre line of the
ridge and has a length scale of r = 2 m. The location of the current field is indicated by the
contour lines in figure 22(a). The maximum intensity of the current is determined by the
Froude number (Fr) and the velocity profile in the water column is defined by g(z), where
−h ≤ z ≤ 0. The current flows in the positive y-direction. Note that the prescribed current
field over the submerged ridge satisfies the steady-state Euler equations.

In the present simulations, Fr = 0.25 is used so that the current is in a weak current
regime with a length scale comparable to the incident wavelength, which is essentially
not slowing varying. Three different scenarios are investigated: (1) pure wave propagation
(no current); (2) waves on depth-uniform currents (g(z) = 1); and (3) waves on vertically
sheared currents with [g(z) = 1.1(z/h)2 + 2.1(z/h) + 1, −h ≤ z ≤ 0]. The vertical profile
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Figure 23. The normalized instantaneous free surface elevations at the end of the numerical simulation for
(a) the pure wave case and (b) depth-uniform current case, and (c) their differences.

of the sheared current on a flat bottom is shown by the red line in figure 22(b). Note that
the current profile in the water column does not change in the y-direction. However, the
profile changes at different x-cross-section because the water depth changes.

Numerical simulations are conducted using the S2 model with spatial and temporal
resolutions of 
x = 0.04 m, 
y = 0.2 m and 
t = 0.02 s, and they are carried out for 25
wave periods, which is sufficiently long for reaching a quasi-steady state. Figure 23(a,b)
show the snapshots of normalized (by incident wave amplitude) instantaneous free
surface elevations for the pure wave case and depth-uniform current case in the area of
interest (4 m < x < 14 m, −6 m < y < 6 m) at the end of the simulation, respectively. In
figure 23(a), evidently, a train of uniform obliquely incident waves has been generated
before the toe of the submerged ridge (x = 4.25 m). Waves are refracted by the submerged
ridge and shorter waves with larger wave amplitudes can be observed on the front face and
on top of the ridge (around x = 10 m) because of shoaling effects. Compared with the pure
wave case, the wavelengths for the depth-uniform current case are longer, which can be
observed in figure 23(b). The differences of instantaneous free surface elevations between
the pure wave case and the uniform current case at the same instant are also shown in
figure 23(c). The differences mainly appear in the region x > 8.5 m, which is primarily
caused by the higher wave celerity in the case of wave–current interactions.

As both waves and currents are uniform in y-direction, we focus our analysis only on the
transect along y = 0 m. The spatial variation of the prescribed depth-uniform current and
vertically sheared current velocity at two water depths (z = −0.01 m and z = −0.05 m)
are shown in figure 24(a,b) by lines in black, respectively. In the same figure, the
corresponding numerical results from the present models are also shown for comparison.
The numerical results are obtained by time-averaging the horizontal velocities of the last
five waves in the numerical simulation (at the same transect and vertical elevation). For
the case of uniform velocity profile, the differences between the prescribed current velocity
and the model results are only noticeable at the water depth of z = −0.01 m, and the wave
effects on the current field below the wave trough are very small. For the vertically sheared
current case, whereas there is a significant difference at the water depth of z = −0.01 m,
small differences can also be observed for z = −0.05 m, which may be attributed to the
relatively abrupt changes of the bottom.
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Figure 24. (a) The spatial variation of the time-averaged velocities along y = 0 m at z = −0.01 m (blue
dash-dotted line) and z = −0.05 m (blue line) for uniform current case. The prescribed current at these two
water depths are shown by lines in black. (b) The spatial variation of the time-averaged velocities along
y = 0 m at z = −0.01 m (red dash-dotted line) and z = −0.05 m (red line) for vertically sheared current case.
The prescribed current at these two water depths are shown by lines in black. (c) The snapshot of free surface
elevations at the end of simulations for pure wave (black), waves on depth-uniform current (blue), and waves
on vertically sheared current (red) at y = 0 m. (d) The spatial variation of wave heights for pure wave (black),
waves on depth-uniform current (blue), and waves on vertically sheared current (red) at y = 0 m. Here η0 and
H0 are the incident wave amplitude and height, respectively.

Snapshots of the normalized instantaneous free surface elevations for all three cases are
also shown in figure 24(c). The differences of free surface elevations in these three cases
become significant starting from x > 9.0 m, which are caused by the combined effects of
bathymetric variation and sheared currents. Both current fields make wave celerity faster
and the depth-uniform current has more significant effects. Waves also become higher and
higher harmonic waves are generated by shoaling effects, which can be clearly seen on top
of the ridge. Wave heights are also calculated from the last five waves of each simulation
and their spatial distributions are plotted in figure 24(d). On the front slope of the ridge, the
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shoaling effects tend to amplify the wave height, the following current act in an opposite
way, which reduces the wave height. Compared with wave-alone scenario, the wave heights
on the front slope of the ridge can be 5.5 % and 2.1 % smaller for depth-uniform current
and vertically sheared current, respectively. On top of the ridge, the wave heights for the
vertical sheared current case is even larger than the wave-alone scenario, followed by the
depth-uniform current case. However, the effects of the vertical shear is less obvious on
the back-slope of the ridge, where the current magnitude decreases, and the wave heights
of wave–current interaction cases are approximately 5–10 % larger than that of wave-alone
situation. It is also interesting to note that the nonlinear features at downstream are also
more significant for cases with currents, which can be observed from both figures 24(c)
and 24(d).

5. Concluding remarks

This paper offers further extension and improvement of the depth-integrated wave–current
models developed in YL20. The new models are now capable of incorporating exactly
the arbitrarily sheared current profile in the formulation. The applications have also been
extended from 1DH problems to 2DH examples.

A theoretical linear Stoke wave-type analysis has been conducted on the S2 model to
find the embedded frequency dispersion relation for a linear wave riding on currents with
an exponential profile. The results have been compared with the corresponding theoretical
estimations based on the Rayleigh equation. The influence from the direction, intensity
and vertical structure of the current field on the applicable range of kh values of the
present models has been investigated. It has been found that the present models are capable
of capturing the correct dispersion relation comparable to that of pure wave scenarios.
However, the accuracy of the model may deteriorate for currents with strong intensity and
vertical shear close to the free surface.

The critical layer could occur near the free surface when shorter waves interacting with
wind-induced sheared currents, where more detailed discussions can be found in Maslowe
(1986), Craik (1988) and Drazin & Reid (2004). A full analysis of critical layers should
consider viscous effect. However, in terms of the stability of the Rayleigh equations the
inviscid treatment is nevertheless informative (Ellingsen & Li 2017). In the present studies,
the current velocity is always less than the wave celerity for all the periodic wave cases,
which is below the threshold for the critical layer. However, further analysis on the critical
layer using present models would be of interest.

Without considering the current effect, the present models have been validated by
several 3D benchmark laboratory experiments, in which the wave refraction, diffraction
and runup induced by bathymetry have featured. These results are documented in the
supplementary materials.

Various wave–current interaction problems have then been studied in 1DH space. For
periodic waves, the present models have been validated by analytical and numerical results
for nonlinear deep-water waves on vertically sheared currents. Numerical experiments
have then been conducted to examine the effects of more complicated current profiles,
i.e. exponential and sinusoidal profiles, on finite-amplitude periodic waves in intermediate
water depth. It has been found that the wave–current interaction for a positively
(negatively) sheared current, i.e. ∂uc/∂z > 0 (∂uc/∂z < 0), results in stronger (weaker)
time-averaged velocity than that of the superposition of time-averaged velocity associated
with the wave-alone and the prescribed current, which is also independent of the wave
propagation direction.
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The interaction between a finite-amplitude solitary wave and currents with various
vertical profiles has also been examined. The resulting solitary wave free surface
elevations, wave celerity, velocity and vorticity fields have been discussed. For the group
of currents considered here, which share the same surface velocity but different vertical
profiles, the wave celerity decreases monotonically as the volume flux of the opposing
current increases. However, this does not imply that the volume flux of the current is the
only parameter that determines the wave celerity. The detailed current vertical profile,
especially close to the free surface, still matters. Lastly, it has been found that the solitary
wave free surface elevations cannot be straightforwardly related to the volume flux of the
current, i.e. a monotonic trend has not been found between the width of the solitary wave
and the volume flux of the current.

For periodic waves interacting with vertically sheared currents, we have shown
the time-averaged velocity profiles up to the wave crest in the water column, which
are converged results by checking models of different approximations. Specifically,
the time-averaged velocities between the wave trough and crest demonstrate that the
prescribed steady current field is significantly influenced by surface wave motions, which
is drastically different from the linear superimposition of time-averaged velocity induced
by the wave-alone and prescribed current. However, the time-averaged volume flux across
the entire water column remains the same.

Two examples for simulating wave–current interactions in 2DH space have been
given. The scattering of shallow-water waves and intermediate-water waves by a
vortex-ring-like current field has been investigated. We have found that the diverging
and converging phenomena are more significant for the intermediate-water waves than
the shallow-water waves because of much shorter length scales compared with currents.
The combined effects of a 3D sheared current field and varying bathymetry have further
been demonstrated by conducting numerical experiments for oblique incident waves
propagating into an infinite long submerged ridge and a both vertically and horizontally
sheared current field, whose direction is aligned with the submerged ridge. Various
physical processes, including higher harmonic generation due to the sloping bottom, and
waves interacting with currents of horizontal and vertical shears, have been identified.
Specifically, it has been observed that the current with vertical shear results in quite
different wave celerity and wave height distributions compared with the depth-uniform
current. This implies that it is important to model the current field accurately, including
its vertical profile, before considering wave–current interaction problems. Finally, for both
cases the time-averaged velocity fields have been obtained, whereas obvious differences
have been found compared with the prescribed current field at the elevation between the
crest and trough, the current field under the wave trough seems to show small variations
compared with the prescribed current.

The models developed in this paper offer a new approach for studying waves interacting
with a prescribed steady-state current field which may have complex vertical profiles in
the water column. Compared with YL20, the present models are more advantageous when
waves are in a relatively shallow depth, which requires lower polynomial approximations,
interacting with currents of complex vertical structures. Considering the present numerical
models are capable of employing any degree of polynomial approximations together with
arbitrary current distributions, they are expected to simulate a wide range of wave–current
interactions problems from deep water to shallow water together with various current
configurations in the future.

The present formulations are still based on the Euler equations. In the future, other
physical processes such as viscous and turbulent effects will be introduced to offer a
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more comprehensive description of the wave–current interaction problems, especially
the contribution from these mechanisms on the modifications of the current field under
wave–current interactions.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.42.
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Appendix A. Depth-integrated horizontal momentum equations

In this section, the resulting depth-integrated horizontal momentum equation (2.24) is
shown in details. We recall that if u∗

i , which is responsible for the prescribed current field,
can be expressed as follows:

u∗
i (xi, σ ) = f (xi)gi(σ ), (A1)

then the corresponding vertical velocity component is

w∗
i = −Gi(σ )

∂H
∂xi

+ u∗
i

(
− ∂h

∂xi
+ σ

∂H
∂xi

)
, (A2)

where

Gi(σ ) =
∫ σ

0
gi(σ ) dσ. (A3)

Depending on the vertical dependence of each term, the Hmtm term in (2.24) can be
organized into the following form

Hmtm =
K∑

m=1

Hw
mσm−1 +

K∑
m=1

K∑
n=1

Hw
m,nσ

m+n−1

︸ ︷︷ ︸
terms in YL20

+
K∑

m=1

(
Hwc1

m σm−1gi + Hwc2
m σmg′

i + Hwc3
m σm−2Gi

)

+
K∑

m=1

(
Hc1

m Gig′
i + Hc2

m g2
i + Hc3

m σg′
i

)
, (A4)

where g′
i is the first derivative of gi(σ ), and Hw

m, Hw
m,n, Hwc1

m , Hwc2
m , Hwc3

m , Hc1
m , Hc2

m and
Hc3

m are only functions of horizontal coordinates and time. For brevity, they are given in the
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supplementary materials. We remark that models developed in YL20 only contain terms
in the first line of (A4).

Similarly, Vmtm in (2.24) can be organized as

Vmtm =
K∑

m=1

(Vw1
m σm−1 + Vw2

m σm) +
K∑

m=1

K∑
n=1

(Vw1
m,nσ

m+n−2 + Vw2
m,nσ

m+n−1)

︸ ︷︷ ︸
terms in YL20

+
K∑

m=1

(Vwc1
m σm−1gi + Vwc2

m σmgi + Vwc3
m σmg′

i

+ Vwc4
m σm+1g′

i + Vwc5
m σm−2Gi + Vwc6

m σm−1Gi)

+
K∑

m=1

(Vc1
m σgi + Vc2

m Gigi + Vc3
m g2

i + Vc4
m G(σ )g′

i

+ Vc5
m σg2

i + Vc6
m σg′

i + Vc7
m Gi + Vc8

m σ 2g′
i + Vc9

m σGig′
i), (A5)

where Vw1
m , Vw2

m , Vw1
m,n, Vw2

m,n, Vwc1
m , Vwc2

m , Vwc3
m , Vwc4

m , Vwc5
m , Vwc6

m , Vc1
m , Vc2

m , Vc3
m , Vc4

m , Vc5
m ,

Vc6
m , Vc7

m , Vc8
m and Vc9

m are only functions of horizontal coordinates and time and are given
in the supplementary materials. We remark that models developed in YL20 only contain
terms in the first line of (A5).

The vertical and horizontal dependencies are separated by the arrangements as shown
above. The vertical dependence is further removed by the vertical integration as defined
in (2.24). For example, for the YL20 terms in Hmtm and Vmtm, there are only two kinds of
vertical integrals involved, i.e.

Aq
p =

∫ cq+1

cq

σ p−1, Bq
p =

∫ cq+1

cq

∫ 1

σ

σ p−1, (A6a,b)

where q = 0, 1, 2, . . . , (K − 1) and p = 1, 2, . . . , (2K − 1). The above two integrals can
be calculated analytically and pre-stored for later use. Other vertical integrals that are
related with the prescribed steady current field can be treated in a similar way. However, for
those integrals that may be difficult to integrate analytically, they can be calculated through
numerical integration (e.g. trapezoidal rule). Finally, the resulting numerical model is
more general and applicable to model waves on currents in the form of (A1) using any
degree of approximations on u′

i.

Appendix B. Comments on the internal numerical wavemaker

In this section, the performance of the internal numerical wavemaker is discussed in detail.
The generated waves will be compared with Stokes wave theory in terms of both free
surface elevations and velocity field. Specifically, the observations of time-averaged mean
free surface and time-averaged mean velocity are also reported.

The internal wavemaker approach used in this paper was first proposed by Lee & Suh
(1998) and Lee et al. (2001). Later, Hsiao et al. (2005) extended the original line source
to the spatially distributed source, which is that employed herein. Based on mild-slope
equations, Schäffer & Sørensen (2006) provided the theoretical foundation of this internal
wavemaker formulation. Here, we illustrate the application of the internal wavemaker for
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the 1DH case. The basic approach of the internal wavemaker is to add a prescribed amount
of free surface elevation, η∗(x, t), to the calculated surface elevation at each time step of
the computation. In the present numerical models, η∗(x, t) is a simple harmonic function
in time with wave period, T , and is distributed spatially as a Gaussian-shaped function.
Thus, the corresponding η∗ is expressed as (Hsiao et al. 2005)

η∗(x′, t) = 
t
T

Cg

C
ηIR(β) exp[−β(x′/L)2], (B1)

where

ηI = a cos(2πt/T), (B2)

R(β) = 2
[√

π

β
exp

(
−π2

β

)]−1

, (B3)

and 
t is the numerical time step, a, L, Cg and C are the amplitude, wavelength, wave
group speed and wave celerity, respectively, based on the linear wave theory and x′ is the
distance to the centre of the numerical wavemaker. The effective width of the wavemaker
is determined by β (see Wei, Kirby & Sinha (1999) for detail) and it is taken to be β =
20 in simulations presented in this paper, which makes the effective length to be one
wavelength (Hsiao et al. 2005). Finally, R(β) is an additional coefficient induced by the
spatially distributed Gaussian-shape function.

To demonstrate the effectiveness of the internal wavemaker, the wave condition of case
1 in § B of the supplementary materials is considered here: wave amplitude a = 0.035 m,
wave period T = 1.412 s and water depth h = 0.35 m. This wave condition corresponds
to a Stokes third-order wave in intermediate water depth with wavelength L = 2.33 m,
kh = 1.0 and ka = 0.1. Numerical simulations are performed in a 1DH domain of 35L in
length. The internal source is centred at x = 3.9L and sponge layers of 2L are placed at
both ends to absorb outgoing waves. The spatial and temporal resolution of 
x = L/48
and 
t = T/60 are used in the numerical experiments. Although the single harmonic
wave is specified as an input in the wavemaker theory, the generated waves quickly
show nonlinear features outside the generation region. Finally, the numerical simulation is
terminated when waves in the computational domain reach quasi-steady-state, which takes
approximately 35T .

Numerical simulations are conducted using both the S2 and S3 models. Once the
numerical simulation ends, the zero-crossing analysis is conducted on 10 waves in the
centre of the numerical flume which are away from the wavemaker and downstream
boundary. The calculated wavelength is 2.32 m for both models, which is very close to
the anticipated value of 2.33 m, based on the third-order amplitude dispersion relation.
Phase- and time-averaging are performed on the time series of free surface elevations
and horizontal velocities for the 10 waves recorded at x = 16L, close to the centre of
the numerical flume, to minimize the influences from the numerical wavemaker and
downstream boundary. The comparisons of the free surface elevations and horizontal
velocities at three different elevations (z = −0.1 m, −0.2 m, −0.3 m) are shown in
figure 25, in which the horizontal velocity is normalized by the maximum horizontal
velocity predicted by the third-order Stokes wave theory. Good agreements are observed
between the numerical results (of S2 and S3 models) and the theory for both free surface
elevations and horizontal velocities. However, a close inspection of the vertical profiles
of the horizontal velocity under wave crest and trough, as depicted in the left panel
of figure 26, reveals that the S2 model provides a better agreement under the wave
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Figure 25. Comparisons of phase-averaged time series free surface elevations and horizontal velocities at
three elevations between the numerical results (blue lines in panel (a,c,e,g), S2 model results; blue lines in
panel (b,d, f,h), S3 model results) and Stoke third-order theory (red lines in panels a–h).

crest than beneath the wave trough. The vertical profile of the time-averaged horizontal
velocity in the water column is also shown by the black line in figure 26. Below the
wave trough, the time-averaged velocities are slightly negative, whereas the time-averaged
velocities between the wave crest and wave trough are positive, namely in the direction
of wave propagation. Below the wave trough (−1 < z/h < −0.143), the depth-averaged
mean current value is −0.82 × 10−2 m s−1, which is 3.8 % of the maximum horizontal
velocity. The time-averaged mean free surface is −8.9 × 10−4 m, which is 2.5 % of the
wave amplitude.

The numerical results of the S3 model are closer to the theory (see the right panels in
figures 25 and 26), which is not surprising. The quadratic velocity profile in the water
column used in the S3 model captures the theoretical profiles of the horizontal velocity
beneath the wave crest more accurately. However, the velocity magnitudes under the
wave trough are still larger than the theoretical solutions. It is interesting to observe that
the mean free surface (−8.8 × 10−4 m) and the depth-averaged mean horizontal velocity
(−0.84 × 10−2 m s−1) are almost the same as those obtained by the S2 model.

Numerical simulations of pure wave propagation have been conducted for other periodic
wave conditions that have been discussed in this paper. Similar findings on the free surface
elevations and horizontal velocity fields are also observed in all cases. Table 2 summarizes
the resulting relative mean free surface and relative negative mean velocity for these wave
conditions. We find the relative mean free surface is always smaller than the relative
negative mean velocity. For waves with the same relative water depth, larger nonlinearity
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Figure 26. Comparisons of vertical profiles of the phased-averaged horizontal velocity under the wave crest
and trough between numerical results (blue lines in panel (a), S2 model results; blue lines in panel (b), S3
model results) and third-order Stoke theory (red lines in panels a,b). Black lines show vertical profiles of
time-averaged horizontal velocity obtained from numerical results.

Case Amplitude (m) Depth (m) Period (s) kh ka H/h surface velocity

1 0.0351 0.35 1.412 0.95 0.10 0.2 2.5 % 3.8 %
2 0.0357 0.45 0.877 2.40 0.19 0.16 1.6 % 3.2 %
3 0.0615 0.35 1.42 0.95 0.16 0.34 3.0 % 5.4 %
4 0.1 1.0 2.0 1.20 0.12 0.20 2.5 % 4.0 %
5 5.1 200.0 10.0 8.05 0.20 0.05 0.8 % 1.0 %

Table 2. Summary of all the test cases on pure wave propagation using the internal wavemaker with H being
the wave height here. The last two columns show the relative magnitude of mean free surface and mean negative
velocity, respectively. Cases 1–3 correspond to test cases 1–3 in § B of the supplementary material and cases 4
and 5 are the wave conditions used in § 4.1.1.

will induce larger relative mean values. This phenomenon is less obvious for deep-water
waves.

The numerical experiments suggest that the internal wavemaker may generate a small
mean free surface ‘set-down’ and a small negative mean ‘current’. This is because the input
waves from the internal wavemaker do not satisfy the model equations, resulting in these
mean quantities. One could try to adjust the input parameters in the internal wavemaker
so as to eliminate these mean quantities. However, it is a non-trivial exercise due to the
complex nonlinear properties in the models and the smallness of the mean quantities.
Although we do not expect that these mean quantities will alter the pure wave propagation
and wave–current interaction processes because of their small magnitude, however, the
need for improving the implementation of the boundary conditions associated with the
incident wave properties or a better numerical wavemaker algorithm should be noted.
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