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ON g-EXPONENTIAL FUNCTIONSFOR |q| = 1

D. S. LUBINSKY

ABSTRACT. We discuss the g-exponential functions eq, Eq for g on the unit circle,
especidly their continuity in g, and analogues of thelimit relation limg_.; eg((1—0g)2) =
€.

1. Introduction and results. In recent years, there has been increasing interest in
g-seriesfor |g| = 1. Thecasewhereqisnot aroot of unity hasbeen useful ininvestigating
various phenomenain Padé approximation [3—7], [15] and the case where q is aroot of
unity hasbeen useful in theformer and in various applicationsin theoretical physics[17],
[19-21]. While investigating Ramanujan’s continued fraction for |g| = 1, the author was
led to consider continuity properties of g-exponentials for g on the unit circle. Recall
that the g-exponential functionsare [10, p. 9]

L) &f@ =3 2 /(@

i=
12) Ed = 20"V @ ay;

=

where (a;q)p = 1andfor 1 < n < oo,
(L3 @an =1[a—ad),

i=
If |g| < 1, then &5 and Eq admit the product representations [1], [2], [10]
(1.4) &2 =1/(z0x; Eo2d=(-z0
and hence
(1.5) &()Ey(-2) = 1.
Their connection with the exponential function is the last functional equation, and the
limit
(1.6) Lqueq((l —q)z)=¢€= lim Eq((1—a)2)

Herethelimit istakenwith q restricted to 0 < g < 1. See[1], [2], [8-10]. Mclntosh [16]
has studied the asymptotic behaviour of series that include the functions ey(2), Eq(2) as
g— 1with 0 < q < 1andzrestricted to be real, but without scaling the variable z

Received by the editors June 20, 1996; revised August 23, 1996.

AMS subject classification: Primary: 33D05; secondary: 11A55, 11K70.
Key words and phrases. g-series, g-exponentials.

(©Canadian Mathematical Society 1998.

86

https://doi.org/10.4153/CMB-1998-014-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-014-x

g-EXPONENTIAL FUNCTIONS 87

In this paper, we consider g, Eq for g on the unit circle. Obviously g;, Ey are not
defined for q aroot of unity, but at least their Maclaurin series coefficients are defined
for g not aroot of unity. The radius of convergenceof both eq and Eg is

n - 1/n
[Ja-a)|

.7 R(Q) := liminf
n—oo lizg

It follows from awell known identity (and we shall indicate the proof in Section 2) that
(1.8) R(g) = liminf |1 — q"|*/".
n—oo

The latter is readily formulated in terms of diophantine approximation: If g = €, and
B :=6/(2r), and {x} denotesthe distance from x € R to its nearest integer, it is easy to
see that

(1.9) R(q) = liminf [{ng}¥/".
It isthen clear that R(g) = 1 for “most” q. Indeed, if
(1.10) G:={q:|q/ =1.R@ <1}

then G isanF, set that haslinear measure 0, Hausdorff dimension 0, and even logarithmic
dimension 2. This is a consequence of the Jarnik-Besicovitch theorem, see e.g. [14]. It
is by no means obvious that R(g) may assume any value in [0, 1]; this follows from a
lemmaof G. Petruska[18, Lemma 2].

We notethat (1.5) persistsfor |g| = 1; thisiseasily verified from the Maclaurin series.
In fact, in view of the simple identity

(111) Eq(2) = eq(—2)

it takes the more attractive form

(1.12) &y(Deq(02) = 1.
Moreover, as a consequence of the functional equations
(1.13) &(d2) = eq()(1 —2); Eq(4) =Eq(2)/(1+2)

which are easily verified from the Maclaurin series (the infinite products in (1.4) no
longer have meaning), we note the following simple:

PROPOSITION 1.1. Letq=€?, 6/(2r)irrational. Then e, and E4 have natural bound-
ariesonthecircle |zl = R(q).

We include the proof of this, although it is a special case of more general resultsin
[3]. Our goal isto study two questionsthat arise in analysing g-series for |g| = 1:

() Towhat extent are ey, Eq continuousin g?

(I For garoot of unity, what is the correct analogue of (1.6)?
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The latter would suggest how to define a g-exponential function for g aroot of unity
other than 1. We feel that (1) has intrinsic interest in that it indicates how solutions of
the functional equation (1.13) vary as g varies on the unit circle. However, our main
motivation arose in analyzing Ramanujan’s continued fraction for |g| = 1, where the
continuity properties of e; and similar functions give insight into Padé convergence
theory (we shall present this elsewhere). We feel that (1), (I1) provide a model for many
of the problemsthat arise in treating g-series for |q| = 1.

Obviously since &, Eq are not defined for g aroot of unity we must be careful not to
stray too closeto roots of unity in limiting processes. Accordingly, we definethe (closed
and, as we shall see, perfect) set

(1.14) S(p.L):={q:¥n>L,|1—q"¥" > p}.

We prove:

THEOREM 1.2. Let |qo| = 1 and R(qo) > 0. Let |gk| = 1 Yk, and assume that
(1.15) kIim Ok = o-

The following are equivalent:
(1) For each p € (0, 1) there exist L and ko such that {ci g2, C S(pR(qo). L).
(1) Uniformly in compact subsets of |z| < R(qp),

(1.16) 1im e,(2) = e,).
and
lim Eq = Eq,(2).
It is noteworthy that the (simpler) radial limit
lim €4 (2) = e (2. |2 <R()
was established by Hardy and Littlewood [11]. We remark that more generally, if

X h(Q
(1.17) fo(@) = Fz(j) ) 2

where each h;(q) is continuousin g and

m(sup (@) = 1;

(1.18) i
1720 g1=1

then the above proof shows that if (I) holds, then locally uniformly in |z| < R(qp),

(1.19) lim fy, = fo,(2)
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Next, we turn to analogues of (1.6). As a polynomial in q, (q; ), has a zero of
multiplicity nat g = 1, but only a zero of multiplicity [n/2] at q = —1. (Hereand in the
sequel, [X] denotes the greatest integer < x). More generally at a primitive I-th root of
unity, (g; g)» has a zero of multiplicity only [n/I]. As a consequence, the scaling of the
variable zin (1.6) givesfor go aprimitive I-th root of unity, | > 2,

(1.20) JLTO e((l—az)=1

under the conditions of the following theorem. So a more meaningful scaling of the
variable z must be sought, and intuitively, it seems that it should involve (1 — q—‘l)l/'.
This is the situation in the following theorem. The scaling also allows usto let g — qg
through awider class than in Theorem 1.2. Accordingly we definefor o > 0

(1.21) T@E.lLL)={q:vyn>L|[1-d¥">0ol1-d*" >0}

Then we can state:

THEOREM 1.3. Let go be a primitive I-th root of unity. Let |q«| = 1 Vk, and assume
that (1.15) holds. The following are equivalent:

(I) For eacho > 0, there exist L and ko such that {q«}2, C T (0,1, L).

(11 Uniformly in compact subsets of C,

(1.22) JLToeqk((l—%)l/lz) _ @

The same limit holdsif we replace ey by E.

Note that one may use any of the | values of (1 — %)1/' in (1.22). Alternative
formulations of (1.22) include

| .
(1.23) im ey ([[la-@)] ') = ¢
J:
or
lim eq (L~ q)]"'2) = €.

Soit seemsthat €/ isthe proper g-exponential function when q isaprimitive I-th root
of unity.

We shall aso consider limits as g — ¢ from inside the unit circle, where we can
allow somewhat more than a non-tangential limit: Define for givengo, o > 0,

Q(qo, ) = {q: g <landl—|g| > |1—%|"}.

The case o = 1 corresponds essentially to non-tangential limits, that is a cone with
vertex at do; the region when restricted to |1 — %| < lincreases as « increases. We
prove:
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THEOREM 1.4. Let qp be a primitive |-th root of unity and o« > 0. Then

i (274"

9€Q(do, )
uniformly in compact subsets of C.

An obvious question iswhether there exist for agiven qo sequences{ g} fulfilling the
hypothesesof Theorems 1.2 or 1.3, so that the specified convergence can take place! We
shall prove this using elementary continued fraction theory; we shall also reformulate
the conditions of Theorem 1.2. For agivenq = €, 6 € [0, 2n), set

0
(1.24) B :=p(0) = >

i
and let 3 have continued fraction expansion

LA O ]

(1.25) BO) =

B 2_7'(' B |a1 |a2 |a3

with convergents
(1.26) TG R R
Xi0) la |a las E
(Soadll &, mj, xj are non-negative integers). Small valuesof |1 — q"| correspond to large
denominators ; in the convergents of 3. Accordingly, we definefor 0 < o < 1,

log xn+1(6)

xn(0)
We may now reformulate the condition of Theorem 1.2:

PROPOSITION 1.5. Let 0 < 7 < 1. Let g, = €%, k > 0 and assume that (1.15) holds.
The following are equivalent:

(I) ¥p € (0.1). 3L and ko such that {ai}i2,,  S(pr, L).

(1) ¥p € (0,1), 3L and ko such that {6 }2, < U(pr, L).

(1.27) U(o.L) :={6 €[0,2n) : < Iog%. n>Lj.

As a consequence, we can construct sequences fulfilling the hypotheses of Theo-
rem1.2:

THEOREM 1.6. Let g = e wherefy / (2r)isirrational. Let0 < 7 < 1. Thefollowing
are equivalent:

(1) FH{ak} with gk # qo; R(ak) > 7, k > 1; with gx — o, k — oo and such that for
each p € (0. 1) there exist L and ko such that {ai }7%,,  S(pr. L).

(1) R(0o) =

In particular, choosing 7 = R((o) gives a sequence satisfying the requirements of
Theorem 1.2. We note that the proof shows that each S(p, L) is perfect, that is has no

isolated points. Our proof of (I1) = (1) is constructive as is the proof of the following
result:
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THEOREM 1.7. For eachqg thatisa primitivel-th root of unity, there existsa sequence
{ak} with ok 7 0o; R(ak) = 1, k > 1, with gx — 0o, k — oo and satisfying the hypothesis
() of Theorem 1.3.

Our proof of Theorems 1.6, 1.7 is easily modified to give infinitely many non-
trivialy distinct sequenceswith the desired property. It does not however indicate “ what
proportion” of the sequencesthat approach g have the desired property. Intuitively, the
restriction that every g with k > ko should liein S(p, L) severely restricts the sequence.

We present the proofsin Section 2.

2. Proofs. We shall make use of the following identity:

— &, Zn — &, Zn —
@h %@ =2 G 03 ) = SP(P)

Hardy and Littlewood [11] proved that even for g on the unit circle this identity holds
inside the radius of convergence of either series, and hence ®, and g, have the same
radius of convergence. Then (1.8) follows. We can now give the

PROOF OF PROPOSITION 1.1. We remarked that the functional equations (1.13) may
easily be verified from the Maclaurin series for e, and Eq even for g on the unit circle.
Thus if z is a point of analyticity of e4 on |z = R(q), then so is g1z, and hence so
are {q*jzo}fgo and as the latter is dense, we obtain that e, is analytic on the circle of
convergenceof its power series, acontradiction. Similarly for Eq; Alternatively one may
use either (1.5) or the simpleidentity

Eq(?) = eq(—02)

and note that R(q) = R(q). n
We turn to the

PROOF OF THEOREM 1.2. Note first that (1.12) shows that ey, has no zerosin B :
{z: |2l < R(qo)}. Thus the convergence of e, to &, is equivalent to that of €' to et
Our hypotheseson {qx} ensure that for each fixed L,

L 2 L 2

lim =
HOJ.:ZO (Ak; Aw); ,Zo (%o; Go);

uniformly in compact subsetsof B. Thusthelocally uniform convergencein Theorem 1.2
is equivalent to the uniform boundedness of {eatkl} in compact subsets of B. Theidentity
(2.1) shows that this is equivalent to uniform boundedness of {| Re®, |} in compact
subsets of B, and consequently of {®, } in compact subsets of B [13, p. 193]. Since
a fixed number of terms of the Maclaurin series of ®, converge as k — oo to the
corresponding terms in the Maclaurin series of ®g,, and since L, norms on a circle
centre 0 may be used to bound above L., horms on a smaller concentric circle, we see
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that the convergence in Theorem 1.2 is equivalent to the following assertion: For each
0 < r < R(qp), there exists L and kg such that

o0 r2n
2.2 ——— <C, k>kg
@2) 2 - P

Clearly if {au}}2,, C S(r,L) for some ko, then the series in (2.2) is bounded above by
2, n~2, independently of k > ko. Conversely, if (2.2) holds for agivenr and ko, then

for any s < r we claim there exists ky and L; such that {q g2, C S(s, Ly). If not, we

chooseinfinitely many k and n = n(k) for which n(k) — oo, k — oo and

- <s
and hence
n 2( r )2n

——— >N (= — 0Q, n— oo

In(1 — ap)|? s
contradicting (2.2). Sincer and hence s may be made arbitrarily closeto R(qp), we have
the converse assertion of Theorem 1.2. ]

We turn to the

PrOOF OF THEOREM 1.3. Wefirst note thefollowing limit, which concernsindividual
terms of the Maclaurin series of e;((1— a“g)l/'z):

1— 2yt —2 PR
(23) lim ( QO) - <| /kl |fn—k.| .
b (g Pn 0 otherwise

Recall that [X] denotesthe greatest integer < x. Thefactor (1— %) occursprecisely [n/1]
timesin (g; ), asapolynomial in g, since qo isazero of 1 — ¢ iff j isamultiple of I. It
follows that for n not amultiple of |, we haven/I > [n/I] and so we have the desired
limit. Now let us supposethat n = kl. Then asq — qo,

— ayn/l - _4a -

@—gV' e 14 | —>kHl 1

@dn =0 M@ —a™) =0 (THZHL — o)) (] +1)
Butif Q(2) := (Z — 1)/(z— 1), then Q has zeros at the I-th roots of unity other than 1,
thatisatqf), 1 <j <l—1,s0

SCRICEEY
and hence | |
T -dy=ow=1
Sowe have(2.3). By much the same reasoning asin the proof of Theorem 1.2, we obtain

the locally uniform convergencein Theorem 1.3, iff for eachr > 0, there exist ko and L

such that
0o r2n|:|_ _ %|2n/l

%2 <C. k>k.
el [N —a)?
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Inturn, as
L-dl/l1—F 1 k—o
Jo

thisis equivalent to the following: For each s > 0, there exist k; and L, such that

2 SM1— g !

2.4 - X
@4 2 B — P =

k > k.

We see that the 2n-th root of the term with index nin the seriesis

s|l1— g/
|1/In1/n|l _ qﬂll/n'

Because of the freedom of choicein s, we see much as in the previous proof that (2.4)
holds with a corresponding value of ki, L1 for each s, iff for each ¢ > 0, there exist k;
and L, such that

1—agf"" > oll -, n>Lo k>ke

that is {ak}2, C T (0.1, L2). "

PROOF OF THEOREM 1.4. We note from (2.3) that individual terms of the Maclaurin
series of ey((1— q—cl)l/ '2) convergeto the corresponding terms of &/ asq— qo. Thus
it sufficesto establish boundednessindependent of q € Q(qo, «). As before, using (2.1),
this boils down to estimation, for each fixed s, of

A 00 S2n|:|__ qI|2n/|
’ = |2n/1 |n(1 _ qn)|2 :

But for g € Q(qo, o) and close enoughto go
1-qd" | =1—|9"=1—]q

q ay\'_ o

>1— = > — = = —ql.

> |- gl =z o= (g) [ =cn—dl

Thus
=i 11— 22
A<C2S —q [2/=2e
n:L1|2n/In2

For a suitably large L; and q close to o this is clearly bounded above independent
of g. ]

Before turning to the proof of Proposition 1.5, we recall some elementary properties
of continued fractions [12]. Our notationisasin (1.24) to (1.26). Firstly

(25) < Ixi(6)8(0) — m(0)] <

1
2Xj+1(9) Xj+1(0) ‘
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Moreover, if 7, x are coprimeand 7/ x is not aconvergent, then

1
(26) XB0) — 7l = 5.

X
Therecurrence relation for the denominators of the convergentsis

(2.7) Xi(6) = ayxj_,(6) +xj-200). | =2
Finally, since {x} € [—1. 1] for real x, we havefor q=€&’, 3(6) = £,
ol < 2n{nB(6)}|
2.8 1—q" =2|sinn{n .
(2.8) | q'| = 2|sinm{nG}| > 41{n3(0)}]
Weturn to the
PROOF OF PROPOSITION 1.5. In view of the last inequality, we see that (1) of Propo-
sition 1.5is equivaent to the following: For each p € (0, 1), 9L and ko such that
{nB@HY" > pr. n>L k> ko,

Now if nis not adenominator of a convergent of the continued fraction for 3(6), then
(2.6) shows that

[{nB@}Y" > (2n) /",
If nisadenominator, say, n = x;(6k), then (2.5) showsthat

(2Xj+1(0k))71/m(0k) < [{nB@)HY" < xjea(B) 10,

It follows that (1) of Proposition 1.5 is equivalent to the following: For each p € (0, 1),
3L and kg such that

Xi+1(O) "N > o for x(Bk) > L. k> ko.

Thisisalmost (I1) of Proposition 1.5, the only difference being that instead of x;(6x) > L,
wewantj > L;. Thisfollowsin view of thefact that for fixed j, we havefor large enough
kthat x;(0k) = x;(0o). n

PROOF OF THEOREM 1.6. We first show that (II) implies (I) Let us assume that
qo = €% and R(qp) > 7. Write
1,4, 1
+ L 4.

o
)= —=—"-+ L
ﬁ( 0) 2 |a1 |a2 |a3

(note that 3(Ao) isirrational, so the c.f. does not terminate). We define

0 1 1 1 1 1
5(9k):_k:_|+_|+... | + | + |
2r  lar  ap a1 |a+tl ek
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Thus the c.f. for 3(6k) is obtained from that for 5(fy) by adding 1 to its k-th c.f.
coefficient. Then the c.f. of both 3(6y) and 3(6x) have the same first k — 1 convergents
and then (2.5) showsthat 3(6k) — £(fo), k — oo, and hence gx — qo, k — 00. Next, in
our situation the recurrence relations for the denominators of the convergents become;

Xj(0k) = gxj-1(0k) + xj—2(0k), ] 7K
and
Xi(0k) = (@ + D)xj-1(0) + xj—2(0k), | =k
Thenas x;(0k) = xj(0o), | <k,
Xk(Bk) = xk(o) *+ xk-1(60)
soforj =k
Xj(00) < x;(0k) < 2x;(6o)-

This inequality also holds trivially for j < k, and an easy induction on the recurrence
relation showsthat it holdsfor al j > 1. Thenfor all j, k

log xj+1(6) _ 1092 _ 10g xj+1(6o)
xi0k)  ~ x;j(0o) xj(0o)

But since R(qo) > 7, foreach0 < p < p’ < p” < 1, wehave

|1_ q8|1/n > p"T
for n large enough, and as in the previous proof, we deduce that

log xj+1(00) 1
AV < |0 -
xj(o) 9 p'T

for j large enough. Thus we can find L such that

Mﬂogi. i>L k>1
xi0) T Tpr T -

So {6k}, € U(pr.L) and hence Proposition 1.5 shows that {cx} has the required
properties. Moreover, the last inequality for each p < 1 showsthat for each k, we have

R(@k) > .
We turn to the proof that (1) implies (11). Note that

S(m,L)=ﬂL{q:IQI=1 and [1—q"[Y" > pr}
n=

sois closed. Then if qo is the limit of {q}e2,, C S(pr.L) it follows that go € S(pr, L)
and hence R(qo) > pr. Sincethisistrue for each p < 1, we have R(qg) > 7. m

Next, we give the
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PROOF OF THEOREM 1.7. Write (for somer, m depending on 3(6p))

1 1 1 _r
)= —+—+...— = —
ﬁ(o) |al |a2 |am I
s Uy, Yy, 1y,
Ok) = — . + =+
e P P P P TR T T

Then as 3(6k) is a quadratic irrational, R(qx) = 1, and the estimate (2.5) shows that
B(6k) — B(0o), k — o0. Thec.f.’s of 3(6p) and 5(F) have the samefirst m convergents.

Moreover,
xm(f) = 1;
< (k+ 2l
Xmea(80 = Kon(8) + xm 160 | S 0D
Forj>m+1,
Xi+1(0k) = xj(0k) + xj—1(6k)
and so
Xi+1(0) < 2xj(0k). J=m+1.
Then
1y log x;j+1(0k) log2 +log x;(6k)
()G = o (_17) > ex (_—J)
xia(6i) X (6k) - X (6k)
log2 log(kl) .
> =y = >
Z exp( K + K ) j>m+1

Next, as| = xm(6k), (2.8) and then (2.5) show that

2
[1-d < 2nl{1800}] < 3

Then if nis not a denominator of a convergent of the c.f. of 3(6x), we obtain (recall

(2.6)) | n )
1- qk 1/n !
T—qpr =@ (27r)
and if nis adenominator, say n = x;(6k), with j > m+ 1, then (recall (2.5))
|1 —qg*/n _ K\ 1/
Toqr 2 (z) (2un@) "

g n( K g 1292 , 109

ki ki
Clearly, given o > 0, we can find ky and L such that this last terms exceedso forn > L,
k > ko. So {qx} satisfies the hypothesis (1) of Theorem 1.3. n
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