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THE HOPF RING FOR P(n) 

DOUGLAS C. RAVENEL AND W. STEPHEN WILSON 

ABSTRACT. We show that E*(P(n) ), the ̂ -homology of the Q-spectrum for P(n), 
is an E* free Hopf ring for E a complex oriented theory with /„ sent to 0. This covers 
the cases P(q)*(P(n) ) and K(q)*(P(n) ), q > n. The generators of the Hopf ring are 
those necessary for the stable result. The motivation for this paper is to show that P{n) 
satisfies all of the conditions for the machinery of unstable cohomology operations set 
up in [BJW95]. This can then be used to produce splittings analogous to those for BP 
done in [Wil75]. 

1. Introduction. The spectrum P(n) for n > 0 is the Z?P-module spectrum obtained 
by killing the ideal 

In = {p, vi, v2 • • • v„-\) C TT*(BP) 

via the Sullivan-Baas construction, [Baa73], [BM71], and [JW75]. For odd primes it is a 
nice multiplicative spectrum by [Mor79], [SY76], and [Wur77]. It comes equipped with 
a stable cofibration 
(1.1) Z2{pn-])P(n) —> P(n) —> P(n + 1) 

which gives the following short exact sequence in homotopy 

0 > P(n% - ^ P(n\ • P(n + 1), > 0. 

The i-th space in the Q-spectrum for P(n) will be denoted by P{n).. BecauseP(n) is 
a ring spectrum there are maps 

P(n).xP(n).-^P(n)^ 

corresponding to cup product, in addition to the loop space product 

P(n).xP(n).—->P(n).. 

These induce pairings 

o: £ , (P(/i).) (8) £,(P(/i)y) -^E*(P(n).J 

and 

•:£,(P(/i).) ®£*(P(/i).) -*E*(P(n).). 
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THE HOPF RING FOR P(n) 1045 

for a generalized homology theory E*. If £* has a Kiinneth isomorphism for these spaces, 
e.g. if they are £* free, then these pairings satisfy certain identities, making E*(P(n)^) 
into a Hopfring [RW77], i.e., a ring object in the category of coalgebras. The object 
of this paper is to describe this structure explicitly for suitable theories £*(—), namely, 
when E is a complex orientable spectrum with In = 0. 

In the next section we will define some special elements 

^ W i ( W , ) , 

[v/] G P(n)Q{P{r^_w_{)) for / > /i, and 

b{i)eP(n)2pl(P(n)2) f o r i > 0 , 

which have already been defined in previous papers. 
Let 

M v V = eF o „ $ o . . . o ^ o [ # # { • • •] o b* o b^ • • • 

where & = 0 or 1, iq = 0 or 1, kq > 0, andy^ > 0 (K and J finite). 

DEFINITION 1.2. We say eFo/[\fC]bJ is n-allowable if 

J = pwA4 + / + 1 A ^ , + • - • +pmAdm + / 

where A</ has a 1 in the d-th place and zeros elsewhere, dn < dn+\ < • • • < dm and J ' is 
non-negative implies km - 0. In other words, 

does not divide e^a1^^ when dw < dn+\ < • • • < dm. We will denote the set of such 
( ^ , J ) b y ^ . 

We say eEal\^\y is A-JP/WS allowable ife6aI[vK]b/+A° is «-allowable. We will denote 
the set of such (K, J) by j £ . Note that ^ + C J I . 

Note that when restricted to elements where k0 equals 0, 0-plus allowable as defined 
above coincides with allowable as defined in [RW77], (and is the same as 1-allowable 
with z'o = 0). For n = oo, the allowability condition is vacuous. 

Let TP/c(x) = P(x)/(xr); we say that such an x has height pk. Let E be a 2?P-module 
spectrum. Then we have a map BP —> E. For p an odd prime, P(n) is the universal 
multiplicative 2?P-module spectrum with fi*(In) = 0. This fact follows from the work of 
Wiirgler in [Wur77, p. 477,6.8]. Thus if E has //*(/„) = 0, then the map p factors through 
P(n). 

THEOREM 1.3. Let E be a multiplicative BP-module spectrum with p*(In) = 0, n > 0. 
Letp be an odd prime. As E^-algebras: 

(K~/)€-2„+ /0=0 

(KJ)eA„ 

® ® ^ V M ^ ) ® ® /W]6 J ) 
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1046 D. C. RAVENEL AND W. S. WILSON 

where p(I) is the smallest t with z„_, = 0, and M is the exponent sequence consisting 
entirely of ones, i.e., aM - a^ o f l ^ o - - - fl(W-i). 

This calculation includes the calculation of K(q)*(P(n)^) for q > n. For q < n, 
this calculation was carried out in [HRW, Theorem 1.5]. The results have very little in 
common. 

If we restrict to elements with ko = 0 then the theorem is also true as stated for n = 0, 
P(0) being BP by definition. In that case there are no «(/)S, so we always have / = M = 0, 
which means the truncated polynomials factors are trivial. As remarked above, 0-plus 
allowability (for elements with ko = 0) is the same as allowability as defined in [RW77], 
so Theorem 1.3 coincides with the main theorem of [RW77]. Note that P(l) is just 
BPmodp. 

For n = oo the theorem gives the usual Hopf ring description of the homology of mod/7 
Eilenberg-MacLane spaces. As remarked above, the allowability condition is vacuous in 
this case. There is no polynomial factor since M is infinite, K = 0, and p(I) = 1 for all 7, 
so the truncated polynomial algebras all have height/?. See [Wil82, Section 8] for more 
details. 

The theorem will be proved by studying the bar spectral sequence (see Section 3) for 
mod/? homology going from HjP(n).) to H*(P(ri). ). We then show that the Atiyah-
Hirzebruch spectral sequence collapses for appropriate £*(—). For n = 0 and n = oo 
the bar spectral sequence always collapses, but not for 0 < n < oo. There are no 
multiplicative extensions for n = oo. The extensions differ significantly between the 
« = 0 case, studied in [RW77] and the n > 0 cases studied here which more resemble 
those in [Wil84]. We will give examples to illustrate in the next section. 

The main theorem above contains a description of the generators. No description of 
Hopf algebras is complete without understanding the primitives. Although Theorem 1.3 
contains all the information about the coproduct in principle, we can be more explicit. 
Furthermore, we need a more explicit description during our proof. Both Theorem 1.3 
and our results about primitives will be proven inductively simultaneously by degree. 

THEOREM 1.4. Let E be as in Theorem 1.3. The primitives in E*(P(n)^) have the 
following description: 

(a) A basis for the primitive elements is given by all eEa1\yK]bJ such that 
(i) if e= 1 then(K,J)ef%, 

(ii) ife = 0 then i0 +y'o > 0 and (K.J) <E ft*. 
(b) A basis for the primitive elements of height p is given by all of the above primitives 

a7[v^]Z?J such that in-\ = 0. 
(c) In the mod/? homology, H*(P{ri)^j, the iterated p-th powers of the generators in 

Theorem 1.3 are all primitives. They are those primitives with e = 0 and z'o = 1 
with (K,J) £ !An — S^ modulo the vector space generated by a1^]^ with z'o = 1 
and(K,J) £ J%£ (which are primitive generators). 

Part (a) of the theorem still holds for the n - 0 case. Part (c) is about the nontrivial 
/?-th powers. Some generators are not primitive and so it is interesting to note that all of 
their p-th powers are primitive. 
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From now on we assume that n > 0. 
Our proof of 1.3 will follow the lines of several previous papers; in particular, [RW77], 

[RW80], and [Wil84]. As in [Wil84], it is enough to prove the result for ordinary mod/? 
homology and then show the Atiyah-Hirzebruch spectral sequence collapses for E. 
Consequently, we will focus most of our attention on ordinary homology In fact, our 
theorem and proof lies somewhere between the work in [Wil84] and [RW77]. In turn, 
the work of [Wil84] lies somewhere between [RW77] and [RW80]. 

Our proof follows the philosophy of the second author that one can compute the 
homology of spaces in an f2-spectrum if one knows the stable homotopy and the stable 
homology. The homotopy gives the zero dimensional homology of all the spaces and if 
one computes by induction on degree using the bar spectral sequence any false computa
tion of a differential or extension should lead to a contradiction with the stable homology. 
This works in many cases, including this one. Getting a nice Hopf ring description is an 
entirely different matter. It seems to depend on having the stable elements appear at the 
earliest possible stage unstably. 

There are a number of Hopf rings like this that have been computed. Some are 
"good" and some are "bad". Examples of good ones are £*(#P*), E a complex ori-
entable theory, [RW77]; E*(K(n)J, E a complex orientable theory with In = 0, [Wil84]; 

//* (K(Z/(p), *) V [Wil82, Section 8];K(n\(-) forEilenberg-MacLane spaces, [RW80]; 
K(n)*(k(n) ), [Kra90]; H*(KO\ [Str92]; and more recently the breakthrough description 
of //*(£S°,Z/(2)) in [Tur], and its sequel for //*(£>£*, Z/(2)) in [ETW]. All of these 
examples can have their Hopf rings described with just a few generators and relations. 
There are other similar calculations where the Hopf rings are not so nice, for example 
for bo, bit, BP(n), and k(ri). The standard mod/? homology of these does not work out 
so well as a Hopf ring. Despite that obstacle, the results for bu and k(n) have been given 
very nice descriptions in [Har91]. 

By [Wur77] and [Yag77] we know that P{n)*(P(n)) is free over P(n)*. This result is 
all that is necessary to show that P(n) satisfies all of the machinery for stable operations 
as in [Boa95]. Our results show: 

COROLLARY 1.5. Both P(n)*(P(n)t) and the module of indecomposables, 

QP{ri)*(P(n)^), are free over P(n\. 

These two new conditions are enough to make all of the machinery of unstable 
operations in [BJW95] work, which was the motivation for this paper. In [BJW95], this 
machinery is used to reprove the second author's splitting theorem for the spaces in the 
Q-spectrum for BP, [Wil75]. The second author had conjectured a similar splitting for 
P(n) and this paper together with [BJW95] allows that splitting to be carried through; 
see [BW]. The lowest cases involve Morava ^-theories; e.g. P{n) ~ £Qz) x Y. 

We would like to thank the referee for his or her careful reading, particularly for 
pointing our a serious error in our notation. The referee also suggested we do a global 
version of Theorem 1.3 but this has already been written into [BW]. 
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The/? = 2 case deserves some discussion. As the theorem is stated it is true for/7 = 2 
as well. In particular it is true for mod 2 homology. The problem is that all the spectra 
E that we care about, such as K(n) or P(n), are not commutative ring spectra. Even in 
those cases the result is true as modules if not as algebras because we get the general 
E from the collapsing of the Atiyah-Hirzebruch spectral sequence. As in [Wil84], no 
problems are caused because of the lack of commutativity of P(n) in P{n)y We make 
other comments about p = 2 in the next section. 

2. Basic properties. We have a long proposition analogous to [Wil84, Proposi
tion 1.1]. 

PROPOSITION 2.1. Let E be as in Theorem 1.3. Let p be an odd prime. We have 
elements 

eEExjPjn)^ 

a>£ £2/(£(*),) forO<i<pn, 

[vt] G Eo(P(n)_2{pi_{)) for i > n, and 

bi £ E2i(P(n)2) Mi>0 

such that (letting b^ = b^ and a<j) = a^): 
(a) They are natural with respect to E. 
(b) The homomorphismx i—> e ox is the homology suspension map. 
(c) The coproduct is given by at —» £ #/_/ (g) a/ and bt —> £ 6/_/ 0 bj. 
(d) They are all permanent cycles in the Atiyah-Hirzebruch spectral sequence for 

P(n\{P(n)X 
(e) e o e = —b\. 
(f) a(i) o a(J) = -£*(/) o a(i). 

(g) b% = 0. 
(h) a** = 0fori<n-l. 

(0 aZ-\) = Mv"Mo) - flf(0) ° [v„] o b0^~\ 
0) /i*(vw)e = e o [v„] o b0^~\ 

PROOF. The proof of this proposition is identical to that of [ Wil84, Proposition 1.1]. 
In fact, that paper uses P(n) in the proof. For some of the results one only needs to notice 
that P(n) and k(n) are the same up to degree 2(pn+l — 1) and that the proposition takes 
place in low degrees. A sign has crept into (e) because of a correction from [BJW95]. • 

We will recall briefly the construction of these elements. 
• Let L denote the (2pn — 2)-skeleton of K(Z/(p), l ) . Then there is a unique lifting 

P(n)x 

,-••••"' i 
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and hence a map E*(L) —> E* (P{n) ). The elements e and a, are the images of the 
standard elements in E*(L). 

• [vjc] is the Hurewicz image of 

v* G TTV_ 2 (P( / I ) ) = 7 r 0 (P (0 ) . . v J . 

• There is a canonical generator ofP(ri)2(CP°°)9 which corresponds to a map CP°° —> 
P(ri). The elements />, are the images under this map of the standard classes in 
IACP°°). 

THE CASE/? = 2. The comments of [Wil84] are relevant here, e should be incorporated 
into the a's for coproduct purposes and a^ o <z(/) is not zero. One must fiddle with the 
proof a little, but not much. 

The proof of our theorem will rely on being able to identify elements in the bar 
spectral sequence, compute differentials and solve multiplicative extension problems, all 
using Hopf ring techniques. The n = 0 case of [RW77] has no differentials but does have 
extension problems. For the bar spectral sequence going from //* (P(0)) to //* (P(0)) 
there are extensions when / is odd. We will illustrate this phenomenon with an example 
for/= l .For£>01et 

g* = e o [ v 1 ] * o f t ^ I o . . . o ^ ; ) G / / * ( P ( 0 ) 1 ) . 

Then //* (P(0) x) has the exterior algebra 

£(go,gi,.-.) 

as a factor, and the corresponding Tor group contains the divided power algebra 

r(<7go,<rgi,...) 

as a factor; see 3.2. Now for k > 0 we have (in ordinary mod/? homology) 

vgk = e ° e ° [v\] ° (̂O)"1 ° ' *' ° ^(T-i) by ProPosition 2.1(b) 

= —b(0) o [v*] o b°^] o • • • o bTz\) by Proposition 2.1(e) 

=-([v.] o b*) o [v*-1] o b^ o... o ^r;, 
- * $ o [v*-1] o ̂ f"1 o • • • o ̂  using 2.6 

= ([v,] o ̂ r ° K" 2 ] o ^ - ' o • • • o ^ 

by the Hopf ring distributive law [RW77, 1.12(c)(vi)] 

= - < ° [vt-2] ° *$r' ° • • • ° C o usi"g2-6 

±b*^ 
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It follows that the divided power factor above in the E^-term corresponds to a polynomial 
factor 

P(fc«»Ai),...) 

in//*(P(0)2) and also in E*(P(0)2)-
For P(n) with n > 0 this type of extension never occurs because of Proposition 2.1 (g). 

The type of extension we have is more interesting because they frequently lead to 
truncated polynomial algebras and are implied by the relations Proposition 2.1(h) and 
(i). Since we work in ordinary mod/? homology fi(vn) = 0. For n = 1, Proposition 2.1(i) 
says 

so 

*(0) "W) L M J ^ O ) 

fl$=(-a(0)°[v1]o^1r 

= — (tf(0))*p ° [vi] o fr°^_1 by the Hopf ring distributive law 

= a(0)o[v?]o6°g')"
1ofc°f-1 

«<§) = -«(0) ° [Vj] o b^X o ̂ f-1 o ft^"1 

so 0(0) o x for suitable x could be a polynomial generator. 
For n = 2 we have 

< ) = 0 

0(7) = -0(0) ° [v2] o £°£}" 

so 

<f)2 = ( - « ( 0 ) o [ v 2 ] o ^ - 1 r 

- W ^ o h l o ^ - 1 

and 

so 

= 0 

(0(0)° a{\))*
p = a(\) o (a{\))*

p 

= -a{l) o a{0) o [v2] o b°{P}~
1 

= 0 ( O ) O 0 ( i ) o [ v 2 ] o ^ ) ~
1 

(0(O) o a{])Y
p2 = 0(o) o a{]) o [v^] o 6°£}

_1 o 6°^" 
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and for larger n the same thing happens with powers of aM - a^ o A(1) o • • • a^n-\). This 
accounts for the polynomial factor in Theorem 1.3. 

Also observe that for n = 3, Proposition 2.1(i) gives 

(fl(0)Ofl(l))V = « ( l ) ° ( ^ ) 

= 0, 

(fl(0) o a{2)T
P = a(l)o(a{2)T

P 

= -a(])o(a{0)o[v3]obo
{£~]) 

= a(0)oa{])o[v3]obo
(£~] 

(fl(o) o a(2)T
p2 = 0, 

(aii)oa{2)Yp = a{2)o{a{2)y
p 

= -a(2)°(a{0)o[v3]obo
{£~]) 

= «(0)O«(2)o[v3]o^)
3~1 

so 

and 

so 
(a(l)oa(2)y

p = 0. 

This (and similar computations for larger n) accounts for the truncations in Theorem 1.3. 
For the spectral sequence computations of the next section, we will need the following 

results about/7-th powers. 
Define shift operators 5on / (if /„_ i = 0) and J by 

(2.2) ^ = °M°°$)°-'-4-\) a n d 

hs{J) _ ho/o 0 l,o/, 

LEMMA 2.3. /« the mod/? homology ofP(n)^, let (K,J) be in \ , 
(a) then 

{a\^}bJrp=0 ifi„-x=0, 

(b) ifin-\ = 1 let I = I" + &n-\. Hfc/wve 

and 
(c) lfI = Masinl.3, 

{aM[vK]bJfp = ±aM[xA^K]b^"-l^+s^. 
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This is not much information right now because the potentially nonzero p-th powers 
are not usually in allowable form. The introduction of the [vn] together with the possibility 
that somey*£ > pn messes this up. However, this does give us some useful information. If 
/ is not M (as in 1.3) then the iterated p-th power must eventually be zero but in the case 
(c) we could have a polynomial generator. Even though we do not know, at this stage, if 
these /7-th powers are really nonzero, we know something about their properties if they 
are. 

COROLLARY 2.4. Each nonzero p-th power in Lemma 2.3 is divisible by a^) and is 
primitive. 

PROOF OF LEMMA 2.3. Assume first that / is empty and J = Am + J1 where j m is the 
first non-zero index in J. Then using the Hopf ring distributive law and Proposition 2.1 (g) 
we have 

( [ ^ V = ( ^ ) ) o [ ^ ^ 

= 0. 

Similarly if / = Aw + / (where m is the first nonzero index in I) and in-\ = 0, we have, 
using Proposition 2.1(h) 

{a^^fP = ( ^ W ^ v * ] ^ 

= 0. 

However, when in-\ = 1, #5(/) is not defined, so we must proceed differently. We 
write a1 = a1" o a^n-\) and use Proposition 2.1(i) and get 

(al[v*]b/yp = ±(fl^_1))o^/">[i/:]65(-/) 

= ±(fl(0) o [vn] o b%-*) o ^ 7 ' V ] ^ ( J ) 

= ±aAo+s{I"] [vA"+A']6(^ "] )Ao+5(J). 

Part (c) follows from part (b). • 

PROOF OF COROLLARY. Observation tells us that our elements are divisible by a(o). 
Since a^ is a primitive and we know that circle product with a primitive is a primitive, 
all of our elements are primitive. • 

We now have to vary a little from [Wil84]. When we do so, we need only go back to 
[RW77] to find what we need. Let us work, as always when we use standard homology, 
in mod/? homology. Let Q stand for the indecomposables and [1^] = ([v„], [v^+i],...). 
Then we have: 

THEOREM 2.5. In QH^Pjn),)/^}02 o QH*(P(n)J we have: 

i=n 
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PROOF. The proof is the same as the proof of [RW77, Theorem 3.14, p. 259]. • 

This follows from the main relation, [RW77, Theorem 3.8], which covers our case 
and can be rewritten as: 

THEOREM 2.6. Letb(t) = EW". Then, in P(n\P(n) ^[[s]], 

We need another piece of [RW77] which was not needed in [Wil84]. Namely, we need 
a theorem that allows us to reduce non-basis elements to basis elements. The relation we 
use to do this is Theorem 2.5, but it is not an easy one to apply. 

THEOREM 2,7. In QH* (P(n)\ any eEal\x^\bJ can be written in terms of n-allowable 
elements. 

PROOF. The construction and proof of an algorithm for the reduction of non-allowable 
elements is done on pp. 273—275 of [RW77]. The proof applies with only notational 
modification to the case of ^-allowable when 1=0. We can then circle multiply by a1 to 
get our result. • 

Theorems 1.3 and 1.4 are stated for rather general E as described in Theorem 1.3. We 
do all of our calculations in mod/? homology and so we must lift our results to E. 

PROOF OF THEOREMS 1.3 AND 1.4 FOR GENERAL E FROM THE THEOREMS FOR mod/? 
HOMOLOGY. It is enough, for Theorem 1.3, to show that the Atiyah-Hirzebruch spectral 
sequence collapses. The Atiyah-Hirzebruch spectral sequence respects the two products, 
o and *, and all elements in P(n)* (P(n)^) are constructed using these two products from 
the basic elements of Proposition 2.1. Since the basic elements are all permanent cycles 
by Proposition 2.1(d), every element is a permanent cycle and the spectral sequence 
collapses. The elements of Theorem 1.4(a) are all primitive and no more can be created. 
Part (b) also still holds. The only concern is the possibility that for P{n) the truncated 
polynomial generators do not truncate at the same place because of a shift in filtrations. 
However, Proposition 2.1(h) and (i) tells us that the height of an element is determined 
strictly by the partem of its a's. The results for general E follow by narurality from those 
for P(n). u 

3. The spectral sequence. All that remains is to prove Theorems 1.3 and 1.4 for 
mod/? homology. We prove our two theorems simultaneously by induction on degree in 
the bar spectral sequence. Recall that for a loop space X with classifying space BX the 
bar spectral sequence converges to H*(BX), and its £2-term is 

Tor^;w(Z/(p),Z/0r?)); 

we will abbreviate this group by Tor^;(X) or //*.*(7/*(J0)- When BX is also a loop space, 
we have a spectral sequence of Hopf algebras. (See the discussion in [HRW, Section 2].) 
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In this section we collect all of the facts that describe the complete behavior of this 
spectral sequence in the caseX - P(n)., including its differentials and solutions to the 
algebra extension problems. Our proof is similar to that of [Wil84] throughout except 
that we need a little more information from time to time. We could have mimiced the 
proof completely but instead we make some improvements. 

We will prove Theorems 1.3 and 1.4 by induction on degree using the bar spectral 
sequence with Hopf rings, [TW80]. We let P(n)'. be the zero component of P{n).. 

Then P(n). ~ P(n)/ x P(n)'., where P(n)f denotes the group 7r_y(P(w)). We assume the 
calculations in Theorems 1.3, 1.4 and the results stated below (specifically Lemma 3.6 
and Theorem 3.7) are correct for Hj(P(n)t) with i < k. (The value of Ho(P(n)^) 
is obvious, given our knowledge of 7r*\P(n)j.) The bar spectral sequence determines 
Hj(P(n)'^ for / < k and so we get Hj(P(n)^) for / < k. This induction is always 
with us, although frequently only implicitly. Let a denote the suspension in the spectral 
sequence and <j> the transpotent. Most of our notation goes back to [RW80]. 

For future use let 
(3.1) m(J) = mm{tjk?0}, 

and define m(I) similarly. 
When we are working in Ho(P(n)^) we really need [v,-] — [0_2(p/_i)] to get it into 

the augmentation ideal. See [RW77] for further details. In positive degrees this does not 
affect anything. 

The following standard result enables us to compute all of the relevant Tor groups. 

PROPOSITION 3.2. The group Tor*(Z/(p),Z/(p)) = Tor* for a graded Z/(p)-
algebra K has the following properties: 

(i) It commutes with tensor products, i.e., 

TOTK^K2 = Tor*1® Tor*2. 

(ii) For K = E(x) (an exterior algebra on an odd dimensional generator x), 

J0TE(x) = Y ^ 

a divided power algebra on the suspension ofx, with 7/(crx) (E Tor^S represented in the 

algebraic bar construction by ®'JC. As an algebra, 

T(ax) = TPX (ax, lp(ax\ 7^(ax),...) 

where 7o(crx) = ax. 
(Hi) For K = P(x) (a polynomial algebra on an even dimensional generator x), 

Tor™ = E(ax\ 

an exterior algebra on the suspension ofx, ax G Tor^Y]. 
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(iv) For K = TP/((x) (a truncated polynomial algebra of height pk on an even 
dimensional generator x), 

TorK = E(ax)®r(<f)(xpk~1)), 

where </>(y) is the transpotentofy, with 7,(</>(y)) E Tor̂ . .. ,. A representative cycle for 

<j)(y) isyP~l ®yandforli(<j){yj), (g)7'^-1 ®y). 

The Tor groups corresponding to the homology given in Theorem 1.3 are given below 
in Lemma 3.6. 

In our proof we will need to be able to identify elements in the spectral sequence. 
We usually cannot do this precisely but must introduce some filtrations. In particular, 
we need to introduce an entirely new filtration. To do that we need to review, following 
[TW80], how the Hopf ring pairing fits into the bar spectral sequence. We recall how this 
pairing is constructed. The bar spectral sequence converging to H*(P{ri) +1) is based on 
the bar filtration of the space 

where the B in the middle here is for the classifying space. In [TW80] it was shown that 
the circle product respects this filtration, i.e., the map 

mg+i 
AP(n) r—> £<»W 

induces maps 

for each /. In the bar filtration we have cofibre sequences 

Bi-iP(n)q —B,mq 

where this last space is the i-th suspension of the /-fold smash product ofP(ri) . It follows 
that the pairing induces maps 

(3.3) l'P(nf; AP(n)r — *'%£&,• 

This map is the usual circle product on each of the / factors. 
Now recall the Verschiebung map V, defined on any cocommutative coalgebra as the 

dual of the p-th power map. Since our bar spectral sequence is one of bicommutative 
Hopf algebras, it has a Verschiebung map 

w-4) ^ps.pt > ^s.t 

which, if one ignores the grading, is a Hopf algebra map. In addition, it respects the 
circle product pairing, i.e., 

V(xoy) = (Vx)o(Vy). 
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The Verschiebung is a standard tool; we will also need the following variant of it. 
There is an internal Verschiebung 

(H*(X)) ^ HSJ(H*(XJ) 

defined on the algebraic bar construction, i.e. E\^ by 

Kint(jCi 0 X2 ® • ' • ® Xs) = Vx\ (g) Vx2 <g) • • • ® Kx,. 

Because F(x *>>) = ^W * ^ 0 0 w e s e e m a t înt commutes with dx and is defined on E\^, 
our Tor for the spectral sequence. Reviewing the definition of the Hopf algebra structure 
on Tor we see that V-m{ is, ignoring the gradings, a Hopf algebra map. From (3.3) we can 
deduce that VmX satisfies the identity 

(3.5) Vm((x\ ®x2®--®xs)oy) = (Vmt(xl (g)*2® •••®**))o Vy-

Now we are ready to identify the Tor group for the algebra of Theorem 1.3. 

LEMMA 3.6. Letp be any prime. In the bar spectral sequence, 

The Tor group for the algebra of Theorem 1.3 is as follows. 

El.{H*(P(n) J ) ~ Tor^\z/(p),Z/(pj) = / / M ( f t ( W j ) 

~ 0 F(ae o af^rf) ® 0 ^(cra7^]^7) 
( / : .J)G^+ /0=o 

(KJ)eA„ 

(0 0 ^ ^ [ v * ] ^ ) ® 0 r ^ f l ' t v ^ l f r 7 ) ) . 
/'o=l (KJ)£Jl, 

{KJ)£!K /„_,=<> 

PROOF. The Tor group for each factor in 1.3 can be computed using Proposition 3.2. 
The result is shown in the table given below. 

The only difficulty here is identifying the transpotent elements. From Lemma 2.3 we 
get the in-\ condition. From Theorem 1.4 we can find all of the elements of height/? 
in the truncated polynomial factors of Theorem 1.3 except the non-primitive generators 
which can then be read off directly from Theorem 1.3. 

We can consolidate the third and fifth factors on the right. • 
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Factor Tor group 

QvcjKW Elea'tv*]!/) ®(KJ**i Tiaea'^f) 

® /o=o TP^a'^f) 
(KJ)zA„ 

r(0(a/[vA]Z/)) 
/„-i=0 

®(Kj)eKP{aM[vK\b') O f ^ e ^ ^ ^ ^ ] ^ ) 

We will need to identify the generators, 7^/, in our Tor using the Hopf ring pairing. We 
can only do this modulo filtrations which is adequate for our needs. The first filtration is 
given by the Verschiebung where we have that V*hpi(crx)) = 7o(tf*) and we see that V1 

kills all other elements in this filtration except those of this form. In this case, V1 kills all 
decomposables so when we work modulo the kernel of V1 we are just working modulo 
decomposables. However, when we work with 7^ (<t>(y)), V1 does not kill elements of the 
form lpi(cFX\) * 1 pi(0x2) but these terms will not show up and we can still work modulo 
decomposables. 

Our second filtration comes from VmX and it is important for us to see how it acts on our 
Tor groups. V kills any primitive and anything with an e, a^ or fyo) is a primitive so for 
starters, Vmt kills the first and third factors of Lemma 3.6. When using this filtration the 
exterior elements from the second factor will never enter in. All we need to be concerned 
with then is what happens with the fourth factor. If z'o or jo is greater than zero then 
our factor goes to zero. If both are zero then we can define the inverse shift operator, 
s~l on / and J. Since V(a(i+\)) = a^ and V{b^\)) = b^ we have that VmX induces an 
isomorphism: 

We will be able to identify elements modulo the kernel of the V(nt which we now 
understand. 

We can now describe the behavior of the entire bar spectral sequence. 

THEOREM 3.7. Let p be any prime. 
(a) In the Hopf ring pairing of the bar spectral sequence we have: For J ^ O and 

k = m(J), consider 

o:H„(H*(P(n)^ , ) ) ® H*(P(n) g) -> H^fajPjn) j ) . 
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ft) 1pj((reaI[vK]tr,~Ak) o b(k+i) =
 /ypi((TeaI[vK]bJ) modulo decomposablesfor 

fti) Ipi^iq1^]^-^)^ ob(k+j+\) = 7p» ((K^lV^fr7)) modulo decomposables and 

the kernel of V?nt where q = min(/w(7), m(J)), for (K,J) E \ and in-\ = 0. 
(b) For J = 0, / 7̂  0, and k = m(I), consider 

oiH^fapjn)^)} ^H^Pi^^H^H^Pjn)^)). 

ft) Ipiicrea1"^^]) o a{k+i) = ( - l / ^ ^ ^ o W i y ^ ) modulo decomposables, 
k + i<n. 

fti) 7p.-(0(fl7~A*[v^])) oa{k+i+\) = (-l)/(/)7/7-(</>(a/[v^])) modulo decomposables 
and the kernel of VfnV for k + i + 1 < n and in-\ = 0. 

(c) Let q = mm{j\in-j = 1} if I f 0, a«J « + 1 if I = 0. The following differentials are 
nonzero: 

ft) dPq~x on ipiaeaf^br1), 1f 0 and (AT, J) E J£ . 
^> ^ ~ ' ~ 1 o/i 7^-1 (^[v^lfr 7)) , (K,J)eX and /„_, = 0. 

(#) 77*e differential targets of(c) are all linearly independent and, modulo the vector 
space generated by the <7a7[v ]̂feJ with z'o = 0 and (K,J) E J%£, a basis for 
the vector space they generate is given by all aa1^]^ with z'o = 0 such that 

(e) Let q = min{/|/w_y = 1}, up to sign in E^ 

ft) Ipiiaea1^]^), (K,J) E J^, represents ̂ '(/)jy^V+A0) modulo decompos
ables where if I ^ 0 then i < q. 

fti) Ipifaa^xPty^yfor^^J) E J^n, in-\ =0, represents the element 
a^W+^yK^iJ) modui0 decomposables and the kernel of v™«{m{I)MJ)\ 
where i < q — 1. (If I = 0 then q = n+ \.) 

(Hi) cra7[v^]/3J represents ea1^]^ when (K,J) E 5§. 
(f) As an algebra, E^ is 

<g) Eieaf^rf) 0 ® TPxia1^}^) 
{KJ)e^ {KJ)eA„ 

PROOF, (a) First we must note that both the 7 -̂ elements exist in the spectral sequence 
and they do. 

(a)(i) Next we work modulo decomposables so we can apply V1 to both sides and we 
need only show the i = 0 case, or, 

aea1^]^'^ o b{k) = oed^tf 

for (K, J) E 5Q which is obvious. 
(a)(ii) First we apply V1 to see we need only show 

C / V [ V ^ J ~ A A ) O b{k+]) = ^ [v^Jf r 7 ) . 
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Next we want to apply V?nl. lfk = m{J) = q then we have 

cj>{Vq(a'[^]bJ-^))obw = {Vi{a'[vK]bJ-^yp~x ® V«{a'[vK]bJ-^j)obm 

Since there are only p nontrivial terms in the iterated coproduct of b(i) this is trivial. If 
k = m{J) > m(I) = q then we want to show 

<f>{V(a,[^]bJ^))obm^q) = {r>{a'[^]bJ-^r-' ® FVtv*]* 7 -*) ) o A ( 1 ^ ) 

= cj){V"(a,[vK]bJ)). 

The argument is now different. The p terms in <j> are all primitive. All bj except for7 a 
power of p are decomposable so the circle product of a primitive times any of them is 
trivial. Thus the only nontrivial term is the one we want. 

(b) Again we must confirm that all of our elements are defined in the spectral sequence 
or space. They are. 

(b)(i) We apply F7 and all we need to do is prove: 

oeJ-^lvt] o a{k) = (-l) / ( / )~ W 7 [ v * ] 

which follows immediately. 
(b)(ii) Again we apply F7 to get down to: 

<Ka,-Ak[v*T) o aiM) = (-l)/(/)0(a7[iA]). 

We now apply V^nt where k = m(T) to get 

The result now follows like the b(\) case above. 
(e)(i) For J ^ 0 this follows by our induction from (a)(i). If / = 0 we ground our 

induction by using the definition of the b^ which clearly corresponds (up to sign) to 
lpi{(je). When J = 0 we use (b)(i) and induction while / 7* 0. The induction starts with 
ae = eoe = —b\ = —b(0) (the [v*] doesn't matter here). 

(e)(ii) For J f 0 this follows by our induction from (a)(ii). When J = 0 we use (b)(ii) 
and induction while 7 ^ 0 . The induction starts with the recognition that <I>([1] — [0]) is 
0(0) and so 7p/(</>([ 1] — [0])) is a^ (the [v*] doesn't matter here either). These are low 
degree elements and our space is just BZ/(p) in this range so these are easy to see. 

(e)(iii) Follows by induction on degree and the definition of the suspension. 
(f)(truncated polynomial factor) We show that the even dimensional generators in 

(f) are all there in E^. Later, when we are done with the differentials, we finish the 
proof. All of the elements in (e) must be infinite cycles by the same induction we used to 
identify them. The elements in (e)(i) correspond to to first term in Lemma 3.6. Because 
(K,J) e ^ in (e)(i), we get (K,J) £ J%„ in (f). The terms in (e)(i) give us all the 
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terms in (the even part of) (f) with m(J) < m(I). (e)(ii) corresponds to the fourth part of 
Lemma 3.6 and gives us the m(I) < m(J) terms in (f). (e)(iii) corresponds to the elements 
in the odd part of (f) (which are not hit by differentials). 

(c) and (d) The guiding principle for the differentials is that any lpl with an a^ in 
it has a differential on it. Of course a^n) doesn't exist and this is why. We must note 
that in (c), the elements we assert have differentials are the lowest lpi possible because 
for (c)(i), (e)(i) showed the lower ones were infinite cycles and likewise for (c)(ii) and 

(e)(ii). 
Differentials in our Hopf algebra must start with a generator and go to a primitive, 

so the only generators which can have differentials are the lpi and if they support a 
nontrivial differential then the target must be an odd degree primitive. All of our odd 
degree primitives are located in filtration one and are our exterior algebra generators. 
Note that if dr(lpm(xf) =y where y is an exterior generator, then it follows formally that 
(up to nonzero scalar multiplication) 

dr(lspm(xj) = ^ _ i ) r ( x ) 

for all s > 0. Thus the factor E(y) ® T(x) in the J?2-term gets replaced by 

TPx(x,lp(x)--l^{xj) 

in E^1. Each of our differentials takes this form. 
Recall that in Lemma 3.6 we have two exterior factors. We want the odd elements 

in (f) to survive. The remainder are the elements in (d) which we want to be hit by 
differentials. To show that differentials are what we want them to be we show that the 
proposed targets must indeed die. We then show, strictly by counting, that the targets are 
in one-to-one correspondence with our proposed sources. Since our proposed sources 
are the lowest possible degree elements which could support differentials and our targets 
are known to be hit, we infer that our proposed sources are in fact our sources. 

So, we have two parts left to finish our differentials. (1) We must show the proposed 
targets are hit by differentials and (2) we must do the counting argument. We defer the 
counting argument until later. 

We want to show that all of the proposed targets, aa1^]!^ with z'o = 0 such that 
(K, J) G %n — -̂ J", must be zero modulo the same type of elements in 5Q. If they are not 
zero then they must be represented by ea1^]^ and this, in turn, gives rise to an element 
aeal\x^\bJ in the next spectral sequence for the next space. This element is even degree 
so must represent a7[v^]y+A°. Because (K,J) £ J^ we have (K, J + A0) ^ \ . This 
means that it can be rewritten in terms of ^-allowable elements. The algorithm does not 
affect the z'o = 0 condition or the fact that there must be a /3(o). Thus it can be rewritten 
in terms of elements that we are working modulo. Thus we know that there is a relation 
somewhere. There are only two ways for a relation to come up: (1) this last element 
could be a p-th power or (2) our differential is as claimed. We are done if we show this 
last element is not a p-th power. This follows immediately from Corollary 2.4 which 
says that a p-th power must have z'o = 1. 
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We must now do our counting. When that is complete, we'll see that the elements 
in (f) are all that remain, both odd and even. So, showing our sources are in one-to-
one correspondence with our targets will finish the proof of Theorem 3.7. We have 
to do a similar counting argument in order to solve all the extension problems to get 
Theorems 1.3 and 1.4 so we separate out the common part. 

LEMMA 3.8. There is a one-to-one correspondence between the set 

{[vK+A"]bJ+{p"-])AG:(K,J) e JWo = 0} 

and the set 

{ [ / y ' : ( r , / ) €^ -^ } . 

PROOF. TO see this, write 

J = p"Adit +/>"+1A^, + • • • +pmAdm +J" 

where m is maximal (this can be vacuous, i.e. J = J", in which case we set m = n — 1) 
and dn < dn+\ < - - < dm and J" is non-negative. Now let 

j> = j " + (p* _ 1 )Ao +p^Adn_l +/?"+2A,„+1_1 + • • • +pm+l A,w_, 

andA:'=A>Aw+i. • 

We will now do the counting argument for the differentials. We recall that we have 
to show that the sources listed in Theorem 3.7(c) are in one-to-one correspondence with 
the e<27[v̂ ]Z?J which have z'o = 0 and have (K, J) £ J^ — J4£. Strictly for the purposes of 
counting we introduce a non-element, #(„), and incorporate it into our notation, eEa]\\^\bJ. 
We can, for counting purposes only, identify the set of differential source elements in 
Theorem 3.7(c) with the set, 

{a,[v*]b,:(K,J) E !An,in = l,i0 = 0J 0 =0}. 

Theorem 3.7(c)(i) gives those with m(T) > m(J) by looking at Theorem 3.7(e)(i) and 
Theorem 3.7(c)(ii) gives those with m(I) < m(J) by looking at Theorem 3.7(e)(ii). That 
is a one-to-one correspondence. We now want to pair these up with the targets of the 
differentials. To do that we just replace the a^n) with ^ [ v ^ ] ^ - 1 . This gives us a one-to-one 
correspondence between the sources of the differentials listed in Theorem 3.7(c) and the 
set 

{ea^^b^"-^: (K,J) e ^ i„ = 0, i0 = 0 j 0 = 0}. 

Then Lemma 3.8 finishes our counting argument. • 
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PROOF OF THEOREMS 1.3 AND 1.4 FOR mod/? HOMOLOGY. TO finish Theorem 1.3 we 
must solve the extension problems remaining in Theorem 3.7(f). Theorem 1.4(a) can just 
be read off the spectral sequence. The first part of (c), that all/?-th powers are primitive, 
follows from Corollary 2.4 which says that a/7-th power is divisible by a^). In order to 
complete the proof we must show that all generators and iterated p-th powers with an 
fl(W_i) in them must have nontrivial p-th powers, (b) will follow and so will the solution 
to the extensions that we need. 

First we'll do a counting argument to show that things can work out the way we 
suggest. The elements we want to be p-th powers are the ^[v^fr7 with z'o = 1 and 
(K,J) E J^n — -fl£. We need our correspondence to be with generators and p-th powers 
with /w_i = 1 in this degree divided by/?. That combination consists of all ( / [ v ^ ] / / 
with in-\ - 1 with (K1\J') £ !\ (by induction!). First we show that we have a one-to-
one correspondence and then we show that our suggested/?-th powers must indeed be 
/?-th powers. Since we show our elements to be in one-to-one correspondence with the 
only elements that can possibly have nontrivial p-th powers, the/?-th powers must be as 
claimed. 

To do our counting we just take the/?-th power of a1 [v* }bJ. By Lemma 2.3 we have 

(ar[vfC']bl'yp = ±aAo+s^-A"^\vK'+A"]b(p"~mo+siJ,). 

Lemma 3.8 now gives us the one-to-one correspondence we seek. 
We now have to finish the proof of Theorem 1.4(c) that the iterated p-th powers of the 

generators in Theorem 1.3 are those primitives a/[v/:]Zr/ with /0 = 1 and ( ^ , J ) G J ^ - J ^ + 

modulo the vector space generated by ^[v^JZr7 with z'o = 1 and (K, J) £ J%£. Having done 
our counting argument, it is enough to show that these elements must indeed be p-th 
powers. We observe that all of our differentials start in total degrees divisible by 2/? so 
the targets must be in degrees equal to —1 mod 2/?. If our elements are not/?-th powers, 
then they will suspend to exterior generators in the next bar spectral sequence. Here 
they cannot be targets of differentials because they have degree +1 mod 2/?. Thus, such 
an element would suspend once more and be represented by aI[^"\b,+A° and (K, J + An) 
would cease to be in \ . It is now in degree 2 mod 2/? so it cannot be a p-th power here 
which is the only way to create a relation. Thus it must be a/?-th power where we said it 
would be. • 
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