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THE OHSAWA-TAKEGOSHI EXTENSION THEOREM

ON SOME UNBOUNDED SETS

ŻYWOMIR DINEW

Abstract. We use a method of Berndtsson to obtain a simplification of Oh-

sawa’s result concerning extension of L
2-holomorphic functions. We also study

versions of the Ohsawa-Takegoshi theorem for some unbounded pseudoconvex

domains, with an application to the theory of Bergman spaces. Using these

methods we improve some constants, that arise in related inequalities.

§0. Introduction

In [O-T] Ohsawa and Takegoshi obtained the following result:

Theorem 1. Let ν be a plurisubharmonic function on a bounded pseu-

doconvex domain D ⊂ C
n, let H ⊂ C

n be a complex hyperplane and let f

be a holomorphic function on D ∩H satisfying

∫

D∩H
|f(z)|2e−ν(z)|D∩H dλ2n−2 <∞.

(Here λ2n−2 stands for the 2n − 2-dimensional Lebesgue measure). Then

there exists a holomorphic function F on D, such that F|D∩H = f and

∫

D
|F (z)|2e−ν(z) dλ2n ≤ C0

∫

D∩H
|f(z)|2e−ν(z)|D∩H dλ2n−2.

Here C0 is a constant, that depends only on the diameter of D.

The proof used ∂ methods and somehow complicated theory of Kähler

metrics. Because of the great importance of this result and the remarkable

applications (for example it yields interesting estimates of the Bergman

kernel), it motivated plenty of generalizations and new proofs. Most of the

research is carried in the direction of changing D∩H to varieties, or stating
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the theorem in the setting of bundles. It seems that the case, when one keeps

H to be a hyperplane, but relaxes the condition of boundedness of D, is far

less studied, although in many papers Ohsawa-Takegoshi type theorems are

proved for unbounded D’s, with various restrictions on the domain (see e.g.,

[Be2], [D-H]). Since it is clear that one cannot expect an Ohsawa-Takegoshi

type estimate for any unbounded pseudoconvex D, it seems interesting to

characterize these, on which some version of the theorem holds. One possible

goal of such characterization is explained below.

Of course, when we deal with unbounded domains, C0 cannot depend

on the diameter of the domain, so we must look for another quantitative

characteristic of the set.

In [O1] the following generalization of Theorem 1 was established.

Theorem 2. Let D, ν and H be as in Theorem 1 and let d(z,H)

be the Euclidean distance from z ∈ C
n to the hyperplane H. Then, for

any plurisubharmonic function ϕ on D, such that ϕ(z) + 2 log d(z,H) is

bounded from above, there exists a constant C1, depending only on supD(ϕ+

2 log d( · ,H)), such that for any holomorphic function f on D ∩H, satisfy-

ing
∫

D∩H
|f(z)|2e−ν(z)|D∩H−ϕ(z)|D∩H dλ2n−2 <∞,

there exists a holomorphic function F on D, satisfying F|D∩H = f and

∫

D
|F (z)|2e−ν(z) dλ2n ≤ C1

∫

D∩H
|f(z)|2e−ν(z)|D∩H−ϕ(z)|D∩H dλ2n−2.

Although stated for bounded domains, Theorem 2 holds also for some

general ones (the approximation argument, which is by no means new, is

given in Section 1).

About a year later Berndtsson simplified the proof of Theorem 1. The

main advantage of his method is that it avoids the Kähler metrics, as well

as the construction of local extensions.

The main goal of this paper is to show, that Berndtsson’s arguments,

with minor modifications, can be used to prove Theorem 2 with the con-

stant C1 = 4πesupD(ϕ+2 log d( · ,H)), much better than in the original paper

of Ohsawa. An alternative proof of this theorem was given in [D-H]. The

author believes that the arguments contained in this paper are simpler.

Let GΩ(z, · ) be the negative Green function of a domain Ω ⊂ C, with

pole at z.
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Denote by

c(Ω, z) = exp

(

lim
ζ→z

GΩ(z, ζ) − log |z − ζ|
)

the so called logarithmic capacity.

One defines the Bergman kernel as KΩ(z) = sup |f(z)|2
R

Ω |f(z)|2 dλ2 , f ∈ O(Ω),

f is not identically 0.

The following version of Theorem 2 seems to be more handy

Theorem 3. Let D ⊂ Ω × C
n−1, where Ω ⊂ C is a planar domain.

Let 0 ∈ D. Let ν, f , F be as above. Then

∫

D
|F (z)|2e−ν(z) dλ2n

≤ 4π

(c(Ω, 0))2

∫

D∩{z1=0}
|f(z′)|2e−ν(z′)|D∩{z1=0} dλ2n−2(z′).

One just needs to substitute 2(GΩ(0, z1) − log |z1|) for ϕ(z1, z
′), which

is a harmonic function in the first variable and hence pluriharmonic, to

see that Theorem 3 follows directly from Theorem 2. This estimate is in

some sense optimal in terms of Ω, because the capacity is nonzero exactly

when Ω has nonpolar complement in C, which in the one-dimensional situa-

tion is equivalent to the existence of nonzero square-integrable holomorphic

function.

As noted by many, the Ohsawa-Takegoshi estimate is some kind of

multidimensional estimate for the Bergman kernel. In dimension one we

have the following problem (still open).

Conjecture. (Suita) For Ω ⊂ C-open and bounded (see [S], where

the problem is investigated in the setting of Riemann surfaces) πKΩ(z) ≥
(c(Ω, z))2.

Applying Theorem 3 to the one dimensional case, with ν = 0 (then

clearly the section {z1 = 0} ∩D degenerates to a single point and instead

of the integral we have valuation on the right hand side), we get

4πKΩ(0) ≥ (c(Ω, 0))2.

To author’s knowledge the best constant so far (2π) was obtained by

Z. B locki (see [Bl]), by using slightly different methods.
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Instead of taking valuation, we could of course proceed as follows. We

choose D to be a Cartesian product Ω×H (H-is any bounded pseudoconvex

domain, Ω-as above open and one-dimensional). In this case the minimal

(by norm) extension is of the form h(z1)f(z′), where f is the function to

be extended (which is independent of z1), h-is the function which realizes

the supremum in the definition of the Bergman kernel and h(0) = 1, which

is an easy consequence of Fubini’s theorem. We also immediately get the

above estimate.

It is worth mentioning, that if we apply Berndtsson’s argument (see

[Be1], [Be2]) directly, by passing to the infimum, we get the constant to be
4π

(cβ(Ω,0))2
, where cβ(Ω, 0) is the analytic capacity.

In [W] Wiegerinck showed that it is possible to construct domains Ω

in C
2, such that dimL2 ∩ O(Ω) is any nonzero integer. The domains con-

structed are not pseudoconvex and any pseudoconvex domain that contains

such a domain has trivial L2 ∩ O space. In [J-P] the following problem is

set: does there exist a pseudoconvex domain whose L2∩O space is finite di-

mensional and non-trivial. From the full characterization of plane domains

(this can be found in [W]) and Theorem 3 we easily deduce the following.

Corollary. If Ω is a pseudoconvex domain in C
2, for which ∃X ∈ C

2,

such that the projection pr{λX,λ∈C} Ω has nonpolar complement in C, then

dimL2 ∩ O(Ω) = 0 or ∞. Moreover if there exists a section orthogonal to

{λX, λ ∈ C} with nonpolar complement, then dimL2 ∩ O(Ω) = ∞ (and

hence almost all such sections have nonpolar complements).

This of course falls short of full characterization, since for example the

following pseudoconvex Reinhardt domain

{(z, w) ∈ C
2 : |w| ≤ ef(ln|z|)},

where

f(x) =

{√
−2x, x < 0

−x2

2 , x ≥ 0

has non-trivial Bergman space, but does not satisfy the conditions of the

corollary. The Corollary is particularily useful for Hartogs domains, since

all we have to check is that the base has nonpolar complement.

I would like to express my grattitude to Professor Zbigniew B locki for

helpful discussions and encouragement.
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§1. Proof of Theorem 2

From now on we will assume, without loss of generality, that D ∩H is

identical with {z1 = 0} ∩ D. Then log d(z,H) reduces to log |z1|. In the

whole paper ∂
∗
ψ will stand for the formal adjoint operator to ∂, that is

〈∂α, β〉L2
(0,1)

(D,ψ) = 〈α, ∂∗ψβ〉L2
(0,0)

(D,ψ)

in the notation of the Hilbert space of L2-functions (forms) with weight e−ψ.

Then ∂
∗
ψ is easily explicitly calculated as

∂
∗
ψα = −eψ

n
∑

j=1

∂

∂zj
(e−ψαj).

We do almost the same as in [Be1]. The following can be found there.

Let D be a smoothly bounded domain defined as the sublevel ρ < 0 of

a C∞ and strictly plurisubharmonic function ρ. Let the weight function ψ

be plurisubharmonic and (temporarily) we will assume that it is smooth.

We also temporarily assume that ϕ is smooth and defined on some neigh-

bourhood of D.

Then:

(†) If g is a ∂-closed (0, 1)-current, defined in a neighbourhood of D and

u is a L1 function in D, such that

∫

D
g · αe−ψ dλ2n =

∫

D
u∂

∗
ψαe

−ψ dλ2n

for all smooth, ∂-closed (0, 1)-forms α on D, satisfying the ∂-Neumann

boundary conditions, then ∂u = g in the sense of distributions.

(††) If g and D are as above and the inequality

∣

∣

∣

∣

∫

D
g · αe−ψ dλ2n

∣

∣

∣

∣

2

≤ C

∫

D
|∂∗ψα|2

e−ψ

τ
dλ2n,

where 1
τ is an integrable, non-negative function, holds for all forms α of the

above type, then there exists an u, such that ∂u = g (also in the sense of

distributions) and
∫

D
|u|2τe−ψ ≤ C.
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(†††) If D, ψ and ρ are as above, α-fixed smooth (0, 1)-form, satisfying

the ∂-Neumann boundary conditions and w be a function that is smooth on

some neighborhood of D (or can be approximated by such functions, with

control of the derivatives), then

∫

D
w

n
∑

j,k=1

ψjkαjαke
−ψ dλ2n −

∫

D

n
∑

j,k=1

wjkαjαke
−ψ dλ2n

+

∫

D
w|∂∗ψα|2e−ψ dλ2n +

∫

D
w

n
∑

j,k=1

∣

∣

∣

∣

∂αj

∂zk

∣

∣

∣

∣

2

e−ψ dλ2n

+

∫

∂D
w

n
∑

j,k=1

ρjkαjαke
−ψ dσ

2n−1

|∂ρ|

= 2 Re

∫

D
w∂∂

∗
ψα · αe−ψ dλ2n +

∫

D
w|∂α|2e−ψ dλ2n.

Here β ·γ stands for the dot product in C
n i.e., β ·γ = β1γ1+β2γ2+· · ·+

βnγn and ∂-Neumann boundary conditions for α means, that αy∂ρ|∂D = 0,

or equivalently
∑n

j=1 αj
∂
∂zj
ρ = 0 on the boundary of D, where α = α1dz1 +

· · · + αndzn.

Note that the right hand side of the equality (†††) can be written as

2 Re〈w∂∂∗ψα, α〉L2
(0,1)

(D,ψ) + ‖
√
w∂α‖2

L2
(0,2)

(D,ψ)

= 2〈w∂∗ψα, ∂
∗
ψα〉L2

(0,0)
(D,ψ) − 2 Re〈∂∗ψα∂w, α〉L2

(0,1)
(D,ψ)

+ ‖
√
w∂α‖2

L2
(0,2)

(D,ψ)

= 2‖
√
w∂

∗
ψα‖2

L2
(0,0)

(D,ψ) + ‖
√
w∂α‖2

L2
(0,2)

(D,ψ)

− 2 Re

∫

D
∂
∗
ψα(∂w · α)e−ψ dλ2n,

hence for closed α, nonnegative w and plurisubharmonic ψ, (†††) turns into

the following inequality:

−
∫

D

n
∑

j,k=1

wjkαjαke
−ψ dλ2n(1.1)

≤ ‖
√
w∂

∗
ψα‖2

L2
(0,0)

(D,ψ) + 2

∫

D
|∂∗ψα||∂w · α|e−ψ dλ2n.
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Let

c′ = sup
D

{ϕ(z) + 2 log |z1|}.

Let now w = −1
π (ϕ + 2 log |z1| − c′). (Or like in [Be1] 1

π log 1
eϕ+2 log |z1|−c′

).

Note, that clearly D ⊂ {w ≥ 0}. Then

wjk(z) =
−ϕjk(z)

π
− δj,1δ1,kµ{z1=0}(z),

where µ{z1=0} is the 2n− 2-dimensional Lebesgue measure concentrated on

{z1 = 0}. So for this choice of w and with ϕ - plurisubharmonic (1.1) turns

into
∫

{z1=0}∩D
|α1|2e−ψ dλ2n−2(1.2)

≤
∫

D

−(ϕ+ 2 log |z1| − c′)

π
|∂∗ψα|2e−ψ dλ2n

+ 2

∫

D
|∂∗ψα|

∣

∣

∣

∣

∂

(

ϕ+ 2 log |z1| − c′

π

)

· α
∣

∣

∣

∣

e−ψ dλ2n.

Note that this w has singularity along the complex hyperplane, so we have

to use the approximation in (†††).
Now we apply formula (†††) to the function w = 1 − eδ(ϕ+2 log |z1|−c′)

with 0 < δ < 1 arbitrary.

∂2

∂zi∂zj

(

1 − eδ(ϕ+2 log |z1|−c′)
)

=
∂

∂zi

[

−eδ(ϕ+2 log |z1|−c′)
(

δϕzj +
δ1,jδ

z1

)

]

= −eδ(ϕ+2 log |z1|−c′)

[

δϕzizj + πδi,1δ1,jδµ{z1=0}

+
(

δϕzi +
δi,1δ

z1

)(

δϕzj +
δ1,jδ

zj

)

]

.

Note, that the term with the concentrated measure in fact disappears, since

eδ(ϕ+2 log |z1|−c′) = 0 on {z1 = 0} ∩D.
∫

D
e−δ(ϕ+2 log |z1|−c′)|∂w · α|2e−ψ dλ2n

=

∫

D
eδ(ϕ+2 log |z1|−c′)|δ∂(ϕ + 2 log |z1| − c′) · α|2e−ψ dλ2n

https://doi.org/10.1017/S0027763000009430 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009430
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=

∫

D

n
∑

i,j=1

eδ(ϕ+2 log |z1|−c′)
(

δϕzi +
δi,1δ

z1

)(

δϕzj +
δ1,jδ

zj

)

αiαje
−ψ dλ2n

≤
∫

D
eδ(ϕ+2 log |z1|−c′)

n
∑

i,j=1

[

δϕzizj +
(

δϕzi +
δi,1δ

z1

)(

δϕzj +
δ1,jδ

zj

)

]

× αiαje
−ψ dλ2n

= −
∫

D

n
∑

j,k=1

wjkαjαke
−ψ dλ2n

now we apply (1.1) to get

≤
∫

D
w|∂∗ψα|2e−ψ dλ2n + 2

∫

D
|∂∗ψα||∂w · α|e−ψ dλ2n

=

∫

D
(1 − eδ(ϕ+2 log |z1|−c′))|∂∗ψα|2e−ψ dλ2n + 2

∫

D
|∂∗ψα||∂w · α|e−ψ dλ2n.

We use the elementary inequality xy ≤ x2 + 1
4y

2 within the second integral

(

x :=
√

2e
1
2
δ(ϕ+2 log |z1|−c′)|∂∗ψα|, y :=

√
2e−

1
2
δ(ϕ+2 log |z1|−c′)|∂w · α|

)

and by rearranging we get

∫

D
|∂w · α|2e−ψ dλ2n ≤

∫

D
e−δ(ϕ+2 log |z1|−c′)|∂w · α|2e−ψ dλ2n(1.3)

≤ 2

δ2

∫

D
(1 + eδ(ϕ+2 log |z1|−c′))|∂∗ψα|2e−ψ dλ2n

≤ 4

δ2

∫

D
|∂∗ψα|2e−ψ dλ2n.

Applying the inequality xy ≤ x2

eδ(ϕ+2 log |z1|−c′)
+ eδ(ϕ+2 log |z1|−c′)

4 y2 to (1.2) and

using (1.3), we get

∫

{z1=0}∩D
|α1|2e−ψdλ2n−2

(1.4)

≤
∫

D
|∂∗ψα|2

( 1

π
log

1

eϕ+2 log |z1|−c′
+

2

πeδ(ϕ+2 log |z1|−c′)
+

2

πδ2

)

e−ψ dλ2n,
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which is (again by elementary inequality i.e., log 1
x1/δ + 2

x + 2
δ2 ≤ (2 + 2

δ2 ) 1
x ,

for x ≤ 1) dominated by

1

π

(

2 +
2

δ2

)

∫

D
|∂∗ψα|2

1

eδ(ϕ+2 log |z1|−c′)
e−ψ dλ2n.

As noted in [Be1] δ assures, that the last integral is finite (note that ϕ is

smooth, hence locally bounded and by the assumption, that it is defined on

a neighbourhood of D it does not tend to infinity near the boundary).

Now let g = f∂ 1
z1

. If α is as stated in (†) we get

∣

∣

∣

∣

∫

D
g · αe−ψ dλ2n

∣

∣

∣

∣

2

= π2

∣

∣

∣

∣

∫

{z1=0}∩D
fα1e

−ψ|{z1=0}∩D dλ2n−2

∣

∣

∣

∣

2

≤ π2

∫

{z1=0}∩D
|α1|2e−ψ|{z1=0}∩D dλ2n−2

×
∫

{z1=0}∩D
|f |2e−ψ|{z1=0}∩D dλ2n−2

≤
(

2 +
2

δ2

)

π

∫

D
|∂∗ψα|2

1

eδ(ϕ+2 log |z1|−c′)
e−ψ dλ2n

×
∫

{z1=0}∩D
|f |2e−ψ|{z1=0}∩D dλ2n−2.

Hence by (††), there is an uδ, such that ∂uδ = g and

∫

D
|uδ|2eδ(ϕ+2 log |z1|−c′)e−ψ dλ2n

≤
(

2 +
2

δ2

)

π

∫

{z1=0}∩D
|f |2e−ψ|{z1=0}∩D dλ2n−2.

By taking the weak limit of a subsequence of uδ when δ → 1, we obtain an

u, ∂u = g and
∫

D
|u|2|z1|2eϕ−c

′
e−ψ dλ2n ≤ 4π

∫

{z1=0}∩D
|f |2e−ψ|{z1=0}∩D dλ2n−2.

Note that uz1 is holomorphic (and uz1 = f on {z1 = 0}∩D), since ∂(uz1) =

z1∂u = z1f∂
1
z1

= 0 and uz1 = z1(u− f
z1

) + f , where u− f
z1

is holomorphic.

Now observe, that from the only beginning we could have chosen ψ =

ν+ϕ−c′, which by no means spoils the plurisubharmonicity nor the smooth-

ness. Then on the left hand side we obtain
∫

D |u|2|z1|2e−ν dλ2n and on the

https://doi.org/10.1017/S0027763000009430 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009430
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right

4πec
′
∫

{z1=0}∩D
|f(z)|2e−ν|{z1=0}∩D−ϕ|{z1=0}∩D dλ2n−2.

For general domains we carry out standard exhaustion procedure (like in

[H], Theorem 4.4.2). It is well known, that for every pseudoconvex domain

there exists a strictly plurisubharmonic and smooth exhaustion function η.

By Sard’s theorem the sublevels Dx = {η < x} of η are smoothly-bounded

for almost every x (we just take ρ = η − x). We choose an increasing

sequence {xn}∞n=1 of x’s such that Dxn is smoothly-bounded and exhaust

D. Let νε,x, ϕε,x be the ε-regularizations of ν|Dx
and ϕ|Dx

, defined as

convolutions with smoothing kernel. For every x: νε,x ↘ ν|Dx
, ϕε,x ↘ ϕ|Dx

,

as ε ↘ 0. So by diagonal methods we can choose {εn}∞n=1, εn ↘ 0, such

that νεn = νεn,xn , ϕεn = ϕεn,xn , are smooth on Dεn = (Dxn)εn = {z ∈
Dxn : dist(z, ∂Dxn) > εn} and Dxn−1 ⊂ Dεn (it is clear that Dxn−1 ⊂ Dxn ,

we impose the last condition in order to carry out the argument on Dxn−1 ,

which is pseudoconvex and smoothly bounded, rather than on Dεn).

4πec
′

∫

{z1=0}∩D
|f |2e−ν|{z1=0}∩D−ϕ|{z1=0}∩D dλ2n−2

≥ 4πec
′′

∫

{z1=0}∩Dεn

|f |2e−ν|{z1=0}∩Dεn−ϕ|{z1=0}∩Dεn dλ2n−2,

where c′′ ≤ c′ is the supremum of ϕ( · ) + 2 log |z1| on Dεn

≥ 4πec
′′

∫

{z1=0}∩Dxn−1

|f |2e−νεn |{z1=0}∩Dxn−1
−ϕεn |{z1=0}∩Dxn−1 dλ2n−2.

Now we can find an extension for Dxn−1 , νεn and ϕεn

≥ 4πec
′′

4πec
′′
εn

∫

Dxn−1

|Fεn |2e−νεn dλ2n,

where c′′εn
is the supremum of ϕεn( · ) + 2 log |z1| on Dxn−1 .

Hence Fεn has a subsequence, weakly convergent on every Dxn−1 to a

limit F in L2(D, νεn), for every n and this limit is holomorphic, since ∂ |Dεn

of it is zero for every n. Clearly 4πec′′

4πec
′′
εn

→ 1. Now by by passing to the limit

when n→ ∞, we obtain Theorem 2.

We derived C1 ≤ 4πec
′
.
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§2. Final remarks

Note that if we impose severe restrictions on ν, we can get an es-

timate with arbitrarily small constant (which of course makes the situ-

ation more distant from the setting of Suita’s conjecture). If instead of

xy ≤ x2

eδ(ϕ+2 log |z1|−c′)
+ eδ(ϕ+2 log |z1|−c′)

4 y2 in (1.2), we apply

xy ≤ γ
x2

eδ(ϕ+2 log |z1|−c′)
+

1

γ

eδ(ϕ+2 log |z1|−c′)

4
y2,

then (1.4) becomes

∫

{z1=0}∩D
|α1|2e−ψ dλ2n−2

≤
∫

D
|∂∗ψα|2

( 1

π
log

1

eϕ+2 log |z1|−c′
+

2γ

πeδ(ϕ+2 log |z1|−c′)
+

2

πδ2γ

)

e−ψ dλ2n.

Now

log
1

x1/δ
+

2γ

x
+

2

δ2γ
≤ 2γ + ε

xe−A|z1|
2 ,

for x ≤ 1, by choosing A substantially big. At the end we get

∫

D
|u|2|z1|2eϕ−c

′
e−A|z1|

2
e−ψ dλ2n

≤ (2γ + ε)π

∫

{z1=0}∩D
|f |2e−ψ|{z1=0}∩D dλ2n−2

and we can choose ψ(z) = ν(z) + ϕ(z) − c′ −A|z1|2, for every ν, such that

ν11 ≥ A in order to keep ψ plurisubharmonic. Then we get

∫

D
|F (z)|2e−ν(z) dλ2n

≤ (2γ + ε)πec
′

∫

D∩H
|f(z)|2e−ν(z)|D∩H−ϕ(z)|D∩H dλ2n−2,

for arbitrarily small γ and ε (but with the mentioned dependence of ν on

A, hence on γ and ε).
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