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The determination of

Fibonacci groups

A.M. Brunner

Fibonacci groups are the groups

F{2, r) = gp(al5 a^ ..., tf^ : a ^ = a^^; i = 1, ..., r;

V l = V ar+2 = a2^ '

where r is a natural number. The groups F(2, 8) and F{2, 10)

are shown to he infinite, thus leaving F(2, 9) as the only-

Fibonacci group whose finiteness or infiniteness has not been

determined.

1 . Introduction

Fibonacci groups are the groups

(1) F(2, r) = gp(al5 a^ ..., ap+2 : a ^ = a^a^, i = 1, ..., r;

where r is a natural number.

According to [/] the finite groups F(2, r) are known, except when

r - 8, 9 and 10 . This note will establish that F(2, 8) and F(2, 10)

are infinite.

The results now known are as follows: F{2, 0) is the free group of

rank 2 ; F(2, 1) and F(2, 2) are the trivial group; F(2, 3) is the
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quaternion group of order 8 ; ^(2, 1*) is cyclic of order 5 , F(2, 5)

is cyclic of order 11 ; F(2, 6) is the infinite metabelian group

gp(a, b; b~^a2b = a~2, a~Xb2a = b~2) ; F(2, 7) is cyclic of order 29

(established using an electronic computer by John Cannon (1971) and

confirmed by Jane Watson); F(2, 8) and F(2, 10) are infinite; and,

when n i 11 the groups F(2, n) are infinite (Lyndon; see [J]).

In [/] Problem It asks whether the factor group of F{2, 10) obtained

by adding the relation a, = a_ to the relations in (1) is finite. The

o 1

group turns out to be gp(a, b; a = b = a" b~ db = l ) and has order

11*23 . A proof i s not given here as i t i s long, and an easy method for

showing F(2, 10) to be in f in i t e i s given below.

2 . The group F ( 2 , 8)

THEOREM 2 . 1 . The group F(2, 8) is infinite: an infinite epimorph

is the group gp(e, d; a = d = (cd) = {adr) = l) .

The p r o o f o f t h e t h e o r e m f o l l o w s from Lemmas 2 . 2 and 2 . 3 b e l o w .

LEMMA 2 . 2 . The group H = gp(e , d; a2 = d3 = {ad)3 = [ad2]5 = l ) is

an epimorph of F(2, 8) .

Proof. F i r s t ly the elements d and ad a generate H ; for

[ad3o)2 = cdic2dic = ado as a2 = <25 = 1 , and since (ad)3 = 1 , the

element a i s obtained as a~ = dodcdcdod = d[ad a) d[ad a) d .

Now set x. = d , X- = ad a and x „ = x x for n = 1, 2, . . . .1 2 w+2 n+1 n ' '

An easy calculation using the relations of H shows that a; = cd cd ,

x. = od adcd a , x = cacd~ a , Xg = cacdradcd a , x = cacd^ ,

Xn = d~ cd a , x= d and x = cd c .

• The required epimorphism i s the one mapping a. to x. for
tr If

i = 1 , 2 , . . . , 1 0 .

LEMMA 2 . 3 . The groicp H = gp(e , d; c2 = d3 = (cd)3 = [cd2)3 = l ) is
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infinite.

Proof. The group

A = gpL, ov c2, a3; o\ = c\ = c\ = o\ = 1,

i s i n f in i t e ; indeed, the free product of two cyclic groups of order 2 i s

an epimorph, as can easily toe seen "by placing c = 1 and a = a .

Moreover A has an automorphism X °f order 5 , with c-X = °-

( i = 0, 1, 2) and o^x = e
0

c
1

c
2

C 3 •

Since A i s i n f i n i t e , an extension

, c l f e 2 , c3, d : <? = c2
Q = l; cf = c.+v i = 0, 1, 2;

of A by means of x is infinite also. Rewritten in terms of its

generators a = a d this becomes

a, d;o2 = d^ = l, / = c c d / / = cdod\/

or,

gp(e, d; c2 =

which is H .

3. The group F ( 2 , 10)

THEOREM 3 .1 . The group F{2, 10) is infinite.

Proof. Let

" 1 1 0] [0 1 0]

-1 0 0 , A = \0 0 1
_ 0 0 l j L1 ° °J

be matrices over the integers, and set A „ = A A for n = 1, 2, ...

A short" calculation shows that A = A and A ? = A , so there is an
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epimorphism of F(2, 10) onto the matrix group generated by A and A~

mapping a. to A. for i = 1, 2, . . . , 12 .

Now

- 2 -1 I"1 -1

A = A dA A \ = 0 1 1
' ^ L d 0 0 - 1

so that

A2 =
1 0 1
0 1 0

T P 0 lj

an element which clearly has infinite order. It follows that F(2, 10) is

infinite.
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