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Equidistribution of primitive rational points
on expanding horospheres

Manfred Einsiedler, Shahar Mozes, Nimish Shah and Uri Shapira

ABSTRACT

We confirm a conjecture of Marklof regarding the limiting distribution of certain
sparse collections of points on expanding horospheres. These collections are obtained
by intersecting the expanded horosphere with a certain manifold of complementary
dimension and turns out to be of arithmetic nature. This result is then used along
the lines suggested by Marklof to give an analogue of a result of Schmidt regarding
the distribution of shapes of lattices orthogonal to integer vectors.

1. Main results

1.1 The main theorem

Given integers m >n > 1, let d 4+ m and consider the space Xd = SLd( )/SL4(Z) on which

e SL4(R) and its subgroups act. Unless otherwise stated, when we write an element g € G

as a matrix g = (é g ), we shall mean that A, B, C, D represent matrices of dimensions m x m,
m X n, n x m, and n X n, respectively. We refer to these as the block components of g. We shall
denote the identity matrix in dimension k by I and often write just I = I if the dimension is
clear from the context. Similarly, 0 will denote the zero matrix in various dimensions.

Consider the following subgroups of G:

def I 0
U< {(u I> tu € Matnxm(R)},
v LYY L e Matyxn(R
0 1) VE atmxn(R) ¢,

(B ) heSta®y e Mt ®)

Also define the diagonal matrices

det [y~ /M 0
a(y) = <y 0 m yfn> for y € Rsp.

We denote by g € X4 the identity coset SL4(Z) and set, for u € Mat, xm (R),

def (I O
Tu = ua I Zo
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DEFINITION 1.1. Given a subgroup L < G and a point * € Xy we say that the orbit Lz is
periodic if it supports an L-invariant probability measure. In this case we denote by mp, the
unique L-invariant probability measure supported on Lz and refer to it as the Haar measure on
the orbit.

The orbits Uzg, Vag and Hxg are periodic and their respective Haar measures will play
a prominent role in our discussion. In our discussion the cases m > n and m = n will exhibit
different phenomena and in order to be able to have unified statements we use the following
notation throughout:
0 def {mych if m =n,
mp,, ifm>n.

DEFINITION 1.2. We say that a matrix u € Mat, «,,m(Z) is k-primitive, where k is a positive
integer, if the reduction modulo k of its columns span (Z/ kZ)n.

Consider the finite! set

P {(Tp-14s Tp-14) : W is k-primitive} C Uxg x U, (1.1)

and let 1, denote the normalized counting measure on 75k; i.e.

~ det 1
M (e2)ePy

Finally, let us denote a(k) = (e,a(k)) € G x G. With this notation we can state our main result.

THEOREM 1.3. As k — oo, a(k). g LN my,, X 6.

We remark that our main tool is [Sha98], which extends the fundamental work of
Ratner [Rat91a]. We also note that some of our arguments are similar to [MS95].

1.2 An application

Theorem 1.3 is a generalization of a result by Marklof [Mar10, Theorem 6]. Marklof’s result has
various applications, most notably to the distribution of Frobenius numbers, circulant graphs,
and the shapes of co-dimension 1 primitive subgroups of Z¢ (see [Mar10, MS13]). Naturally, in
each of these discussions an application of Theorem 1.3 gives new results. We give one such
application which is an analogue of a certain equidistribution result of Schmidt [Sch98]. We

follow closely the viewpoint of [Marl0].

Assume n = 1,m > 2 so that d = m + 1 > 3. The quotient Z,, e SO (R\X,, will be

referred to as the space of shapes of m-dimensional lattices. We equip Z,,, with the probability
measure myz_ which is by definition the image of my,  under the natural projection.

For any integer vector v € Z%, let us denote A, def 73N {v}+; that is, A, is the lattice of integer
points in the m-dimensional orthocomplement of v in R?. We may choose a matrix k, € SO4(R)
so that k,A, C R™ x {0} C R?, and so that k,v lies on the positive half of the dth coordinate
axis. After normalizing the covolume of k,A, to be 1, we obtain a point in X,,. As the choice
of k, is only well defined up to the action of SO,,(R), we obtain a well-defined point in Z,,
which we denote henceforth by [A,]. There is a certain redundancy in considering A, if v € Z¢
is non-primitive (that is, if it is an integer multiple of another integer vector). We therefore

! Note that for two integer matrices, if u; = uz mod k then Tp—1uy = Th—1uy-
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denote by 74 the subset of primitive integer vectors. Note that a vector (ug,...,um, k) € Z% is

primitive if and only if the vector (u1,...,uy) € Z"™ is k-primitive as in Definition 1.2. Finally,

let Boo & {z € R?: ||2||oo < 1} and OBy denote its boundary. As an application of Theorem 1.3

we prove the following result in §8.

THEOREM 1.4. Let F C 0By, be a measurable set of positive measure having a boundary in 0B
of measure 0 with respect to the m-dimensional Lebesgue measure on 0B.,. For any positive
integer k, let

def 1
Me = = OrA,]-
1Z4 N kF| Z [Ao]
veEZINKF

W*
Then n, — mg,, as k — oc.

Note that the choice of the fs-norm yields a much more elegant statement as we have the
relation
{Ay:ve 2 oo =k} = {

Primitive m-dimensional subgroups }
of Z¢ of covolume = k '

We suggest the following conjecture.?

CONJECTURE 1.5. Let d > 3 and let Ba(r) denote the Euclide@n ball of radius r > 0 in R¢.
Then if r, — oo is a sequence of radii such that [0B2(ry) N 7% — oo, then the collections
{[Ay] : v € OBs(ry) N Z4} equidistribute in Z,,.

2. Outline and initial steps

2.1 A motivating low-dimensional example

We now prove Theorem 1.3 in the case n = m = 1 to which the techniques of the later parts of
this paper do not apply. We learned the argument we give here from Marklof, and to the best of
our understanding this result was his reason for anticipating the validity of Theorem 1.3.

We identify both of the orbits Uzg = {(19)zo: s € R} and Vg = {(§{)zo : ¢t € R} with
R/Z and use the parameters s,t respectively to describe them. We wish to analyze for which
values of y

a(y)Uzxo N Vg # 0, (2.1)

and if this happens, we wish to understand the asymptotics of the joint distribution of the set

{snemmean () 1)o=(f 1)l 22)

Following the definitions, one sees that (s,t) is in the set in (2.2) if and only if there exists
(% ) € SLy(Z) which solves the equation

(yy;l 2) (fz i) B ((1) i) (2.3)

Equation (2.3) has a solution if and only if the following three conditions on the variables y, s, ¢
are satisfied (note that we may assume s,t € (0,1]): (i) y = k is a positive integer; (ii) t = £/k
for some 1 < ¢ < k with ged(¢, k) = 1; and (iii) s = ¢*/k, where ¢* is the number 1 < ¢* < k
satisfying ¢ - £* = 1 mod k.

2 Significant progress towards the suggested conjecture was obtained recently in [AES14, AES15].
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To summarize, if (2.1) holds then y = k for some positive integer k and the set in (2.2) equals

{(/k, 0 /k) € (R/Z)* : 1 < £ <k, ged(, k) = 1}, (2.4)

Taking into account both descriptions (2.2), (2.4) and our identification (R/Z)? = Uz x Vo, we
see that this set is exactly a(k)Py which appears as the support of the measure in Theorem 1.3.
If we denote the normalized counting measure on (2.4) by 6, then the statement of Theorem 1.3
is interpreted as saying that 6 equidistributes in (R/Z)? as k — oo. This equidistribution
statement translates to estimating Kloosterman sums

K(a,bk)y= Y emilarth) = gk) / emilatt0s) g, (2.5)
1 Sosk (R/2)2
ged(z,k)=1

where ¢(k) is the Euler function. The known estimates for Kloosterman sums (see, for example,
[Twa02, p. 48, Equation (2.25)]), imply that for any choice of (a,b) € Z? not both 0, ¢(k) "1 K (a,
b, k) — 0 as k — oo, which establishes the desired equidistribution of 6.

This establishes the case m = n = 1 in Theorem 1.3. The main objective of this paper is to
establish the case m > 2 using techniques from homogeneous dynamics.

2.2 A basic observation and the structure of the proof
Similarly to (1.1) and (1.2), let us define

P {z-14 1 wis k-primitive} C Uz C Xy, (2.6)
def 1
pe = W Z Oz (2.7)
k TEP)

Using the fact that the a(y)-action is mixing on Xy, one can show that that the pushed
periodic orbit a(y)Uzq equidistributes in Xy when y — oo, as U is the expanding horospherical
subgroup of a(y) (see, for example, [Mar04]). On the other hand, the collection P, C Uz
is composed of rational points z for which the trajectories {a(y)x}y>1 are divergent in Xj.
It is therefore natural to investigate the tension between these two facts and to analyze the
distribution of a(yx)Px in Xy for various choices of sequences y; — oo. Setting yr = k as in
Theorem 1.3 is natural because of the following lemma (which is in some sense the starting point
of our discussion).?

LEMMA 2.1 (Basic lemma). For any positive integer k, a(k)Py C Hxg.

We prove Lemma 2.1 towards the end of this section. It shows that we cannot expect the
sequence a(k).puy to equidistribute in Uzg X Xy as any limit point of this sequence is clearly a
measure? supported in Uzg x Hzxy.

The space X,,, = SL;,,(R)/SLy,(Z) is naturally embedded in Hzg C Xy, simply by identifying
SL,,(R) as a subgroup of H in the obvious way. Throughout we alternate between thinking of
X,, as a subset of X; and as the space of m-dimensional unimodular lattices in R™. When
thinking of X, as the space of m-dimensional lattices, the identity coset xy corresponds to the

lattice Z™. There is a natural projection 73 : Hxg — X, defined by

h def (b 0
for = <O ‘I,> xo € Hxy, m3(z) = <0 I) SL4(Z),

3 See Remark 2.6 for other natural choices of yg.
4 A priori the limit measure is not even known to be a probability measure.

670

https://doi.org/10.1112/50010437X15007605 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007605

EQUIDISTRIBUTION OF PRIMITIVE RATIONAL POINTS

which corresponds to the m-dimensional unimodular lattice hZ™. Let

v < (ms).alk)wpn, (2.8)

and consider the diagram with natural projection maps

(Uxo X H.To, 5(k)*ﬁk)
(Uzo, pr) (Hzo, a(k)«pr) (2.9)

|

(Xma v k)
We describe the structure of the proof of Theorem 1.3 using diagram (2.9).

Step 1. Establish the convergence LN my,,, which takes place on the left-hand side of
diagram (2.9).

Step 2. Show the convergence vy, N (73)+0, which equals my, in the case m > n, and the Dirac
measure 0, in the case m = n. This convergence takes place on the right-hand side at
the bottom of diagram (2.9).

Step 3. Use Step 2 to establish the convergence a(k).px LA taking place on the right-hand
side of diagram (2.9). Many of the ideas appearing in the argument of Step 3 already
appear in simplified versions in the proof of Step 1.

Step 4. Combine Steps 1 and 3 and use a disjointness argument to prove the convergence

a(k)«pix v my,, X 0 taking place at the top of diagram (2.9).

We comment here that one could prove Step 1 quite easily using Fourier transform arguments.
We choose a different approach that is more compatible with the proofs of the other steps (see
the footnote following Lemma 4.8).

2.3 The method of proof
From this point on we will assume m > 2. As described above, in the course of the proof of

Theorem 1.3 we will frequently need to establish a convergence 7, 5 71 of probability measures.
It will turn out that all the measures involved are A-invariant under natural actions of the group®

A {(%1 (g) 161 € SLy(Z), 62 € SLn(Z)}-

The following is the strategy we will use for proving such a claim. One starts by classifying
the A-ergodic measures and shows that there are only countably many such. Say {o;}:2,, with
n = 0p. Then, given an accumulation point 1’ of 7,, the ergodic decomposition of 1’ is given
by 0 =32, cio; with ¢; > 0 and )~ ¢; = 1. One then appeals to a non-accumulation result to
show that the only possibility of ¢; being positive is that supp(n,,) C supp(o;) for infinitely many
values of n. One then verifies that the only ¢ for which such an inclusion is possible is i = 0.

5 Note that the assumption that m > 2 is equivalent to A being non-trivial.
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The above strategy is constructed from (i) a non-accumulation result and (ii) a measure
classification result. In § 3 we prove the non-accumulation result. In § 4 we prove various measure
classification results. In §6 we use the above strategy to prove Theorem 1.3 through Steps 1-4
which are described after (2.9).

2.4 Elementary divisors

In this subsection we gather together some further preliminaries that will be needed throughout
the paper. We shall use the following theorem, the proof of which can be found in [SwiOl,
Appendix Lemma A2, Theorem Al].

THEOREM 2.2 (Elementary divisors). Let ¥ # {0} be a subgroup of Z™. Then there exist an
integer 1 < r < m and positive integers {1, ...,¢, such that {;|¢;11 and such that one can find
a basis v1,...,v, of Z™ for which {1v1,..., L. v, form a basis for ¥. Furthermore, the numbers
r,¢; with this property are unique and are called the rank and the elementary divisors of ¥ with
respect to Z™, respectively.

The following restatement of Theorem 2.2 will be more convenient for us.

LEMMA 2.3. Consider the action of (%1 (?2) € A on u € Mat,, «xm(Z) given by (501 502)“ = Soudy .
Each A-orbit in Maty,«m,(Z) contains an element of the form

121 0 0
u=1lo . 0 ... 0 (2.10)
0 ln 0
such that the ¢; are integers satisfying ¢1|ls| ... |¢,. Moreover, the integers ¢; are unique up to

sign.

Proof. The lemma follows from an application of Theorem 2.2 to the group ¥ generated by the
rows of u in Z™. Note that if rank(X) = r < n then the tuple (41,...,¥,) ends with n — r zeros.
Note also that the only case where we cannot require that ¢; > 0 is when n = m and u is an

invertible matrix with negative determinant. O
Let us refer to the tuple (¢1,...,¢,) attached to the A-orbit of u as its elementary divisors
tuple.

Since k-primitivity as defined in Definition 1.2 is invariant under the A-action, it is clear that
u is k-primitive if and only if ¢, is coprime to k. For the proof of Lemma 2.1 we will use the
following characterization of k-primitivity.

LEMMA 2.4. The matrix u € Maty,xy,(Z) is k-primitive if and only if there exists a matrix
7 € SLq(Z) whose bottom n rows coincide with the n x d matrix (u kI,).

Proof. 1t is straightforward to show that the property described in the statement of the lemma
is also invariant under the action of A. It follows that it is enough to verify the validity of the
statement for matrices u in the form (2.10). Clearly if the elementary divisor ¢,, is not coprime to
k, that is, if u is not k-primitive, then the bottom row of (u kIn) is not a primitive vector in Z%
and so the existence of v as in the statement is ruled out. If, on the other hand, u is k-primitive
then the elementary divisors ¢; are all coprime to k. It follows that there are integers e;, f; such
that det(Z ];Z) = 1. The determinant of the d x d matrix

diag(ej...en) 0  diag(fi...fn)
0 Ln—m 0 (2.11)
diag (¢1...4,) O diag (k... k)

€

~
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equals []7 det( Z ];l ) = 1 (because after conjugating by a suitable permutation matrix, the
matrix ~ transforms into a block-diagonal matrix with diagonal blocks being equal to the (Z J;l )

complemented by m —n 1’s). O

2.5 Proof of the basic lemma

Proof of Lemma 2.1. Note that in order to show that a point z = gzg € Xy lies in Hxg, one
needs to show that there exists v € I' such that gy € H. Let u € Maty, xm(Z) be k-primitive and
a(k)z-14 € a(k)Py be the corresponding point. By Lemma 2.4, u is k-primitive if and only if
there exists a matrix 7! € I whose bottom n rows are given by the rows of the n x d matrix
(u k[n). It follows that if we denote by A,, By, C,, D, the block components of +y, then

I 0\ __ (k™ 0\ (A, By\_ (k"/™A, k/™B,
alk) <k1u I)V_( u kl) (C7 D,)~ 0 ) (212)

The above equation shows that the point a(k)x-1, belongs to Hxg as desired. O

Remark 2.5. Equation (2.12) (which is an analogous to (2.3)), is fundamental for our discussion
and deserves some attention. We note two things.

(1) Let u be k-primitive and suppose = solves (2.12). By considering determinants we see
that A, € Mat,,(Z) must have determinant k™. This means that when considered as a lattice in
R™ m3(a(k)zp-1,) equals K/ ™A,Z™, and up to homothety equals A,Z™ which is a subgroup
of index k™ of Z™. In Lemma 6.1 we show that the collection {m3(a(k)x-1,) : u is k-primitive}
consists of all such lattices of a given Hecke-type (see Definition 5.1 for terminology).

(2) Assume again that u is k-primitive and that - solves (2.12). The first m columns of ~
form a basis for the discrete group of rank m which we denote by Ay ), consisting of integer
vectors in the orthocomplement of the linear space spanned by the rows of the n x d matrix
(u KkI). It follows that w3(a(k)xy-1,), as a lattice in R™, is (up to homothety) the projection
of A,k onto the copy of R™ given by the first m-coordinates. This is what furnishes the link
with Schmidt’s theorem and its strengthening given in Theorem 1.4.

Remark 2.6. Let yr — oo be given. By Lemma 2.1, a(yx)Px = a(yx/k)a(k)Pr C a(yr/k)Hxo.
Thus, if we set y, = k% for some positive a, then we obtain that a(k®)Py C a(k®"!)Hzo. In the
case a > 1, the collection a(k®)Py is therefore contained in the uniformly divergent periodic orbit
a(k®1)Hzg, and in particular, the sequence of measures a(k®). i converges to the zero measure
on Xg4. In the case a < 1, the collection a(k®)Py is therefore contained in the equidistributing
periodic orbit a(k“1)Hxg. It turns out that one can prove an analogue of Theorem 1.3 in this
context. This analysis is non-trivial and we plan on elaborating on it in a future paper.

3. Non-accumulation

Our goal in this section is to prove a certain non-accumulation result (Theorem 3.1) that will be
used in various steps in the proof of Theorem 1.3. Although we do not aim at greatest generality,
we still choose to state and prove the results in a somewhat abstract setting (if only to isolate
the necessary features that are needed for the result to hold). To this end, in this section only,
we abandon the notation introduced so far and make the following assumptions. Let G be a real
Lie group, let I' < G be a lattice, and let A, L < G be closed subgroups with A being discrete
and generated by finitely many Ad-unipotent elements. Assume, furthermore, that there is a
decomposition

Lie(G) = Lie(L) ® W (3.1)
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such that W is invariant under the action of A via the adjoint representation. Let X = G/T" and
z € X be a point such that the orbit Lz is periodic and A-invariant.

THEOREM 3.1 (Non-accumulation). Let G,I',A,L,z,W, X be as above and assume the A-
representation on W does not contain any fixed vectors. Let P, C X be a sequence of finite
A-invariant sets and py the normalized counting measure on Py. If P, N Lz = @ for all k then
any weak™ accumulation point o of {yu}7° | satisfies o(Lz) = 0.

We use the absolute value symbol |- | to denote the usual absolute value of a real number as
well as the Lebesgue measure of a set and the cardinality of a finite set. This should not cause
any confusion. In the proof of Theorem 3.1 we will need to use some elementary properties of
polynomials which we now recall. The following lemma may be found in [KSS02, Proposition
3.2.2].

LEMMA 3.2. For any degree d there exists a constant cq > 0 such that for any polynomial
p: R — R of degree bounded by d, for any interval I C R, we have that if p = max{|p(x)|:z € I}

then for arny 0<e S P,
zel: x)| <€ € 1/d

We deduce the following integer-value version of this lemma.

LEMMA 3.3. For any degree d there exists a constant cq > 0 such that for any polynomial
p: N — R of degree bounded by d, for any interval J C N, we have that if p = max{|p(n)| : n € J}
then for any 0 < € < p,

[{n € J:|p(n)| < e} e\ d
% <‘3"l(p> vl (33)

Proof. Let I C R denote the real interval defined as the convex hull of J. For ¢ > 0 let I, def

{z el:|p(x)] <e}and J 3 {n € J:|p(n)| < €}. The set I is a disjoint union of finitely many
closed intervals I ¢ for £ = 1...k. We have that

[Tl =1.NZ| =) I, NZ|
l

= Z 1+ Z |Ie,gﬁZ|

LI NZ|=1 LI oNZ]>1

<d+ Y 2l <d+2I,
0|1 NZI>1

where we used that if /. , contains more than one integer then
|Ie,€ N Z| < 2|Ie,€‘v

and also that the number of ¢ for which I., contains a single integer is bounded by the degree
d of the polynomial because between each pair of such intervals there must be a zero of the
derivative.

Inequality (3.3) now follows from (3.2) (with a slightly bigger constant c). 0
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Proof of Theorem 3.1. Let o be a weak™ accumulation point as in the statement. Let 21 C X be
a compact set. We will show that for K3 def Q1N Lz one has (K1) = 0. This is enough as Lz is a
countable union of such sets. Choose some norm on Lie(G) and denote by BY the ball of radius
e around 0 in W. Choose an open set 1 and a compact set {23 such that (i) @ C Q1 C Qp,
(ii) 21 N (exp BV (X ~ 92)) = {; in other words, €2, is big enough so that one cannot reach 2y
by acting on points outside of {29 by elements of the form expw, where w € W is of norm less
than or equal to 1. Let I~(1 def §~21 N Lz and Ko def Qs N Lz and for any € > 0 any subset F' C Lz
denote by T (e, F) e {exp(w)z : z € F,w € W, and ||w|| < €} the e-tube around F'.

There exists 0 < €9 < 1/2 small enough so that the map (w, z) — exp(w)x from BY x K; —
T (€0, K3) is a homeomorphism onto its image. This gives a natural coordinate system on the
eo-tube around Ky; we denote for y € T (o, K2) by wy € BZ;/ the W-coordinate and by z, € Lz
the orbit-coordinate so that the identity y = exp(wy)x, holds for y € T (o, K2).

Let uq,...,ur € A be Ad-unipotent elements that generate A. Let 0 < € < ¢g and set

Si(e, K1) % {y € T(e, K1) : Ady, (wy) # wy},

j=1,...,7, so that T(e, K1)~ K| = U1 Sie, K1). The inclusion D is clear. The other inclusion
holds because A is generated by the u; and W contains no A-fixed non-zero vectors. We will find
a function ¥(€) — ¢ 0 such that for any j,

1P, N Si(e, K1)
| P
Since P, N Lz = @, this implies that

< ¢(e) for any k. (3.4)

< 1) —

|PkﬂT€K1 Z‘Pkﬂs 6K1)|
|Pk| e—)O

| Py

In turn, this implies that o(K;) = 0 as desired because T (e, K1) is an open set containing the
compact set K.
To this end, fix 1 < j < r and denote, for each y € S;(e, K1),

py(n) € AL (w,)].

Note that as u; is Ad-unipotent it follows that (for an appropriate choice of a norm || - ||), py(n)
is a non-constant polynomial in n of degree less than or equal to d for some integer d depending
on dim G only. Let us use the following notation:

. ydﬁf max{n > 0: p,(k) < € for 0 <k < n};
e J,%0,n,)NnzZ;
o ydﬁf{uy n e Jy};

def
o M= max;=1..r HAdijH-

Observe that n, is finite as p,(n) is non-constant. We will shortly show that the following
properties hold for y,y1,y2 € Sj(e, K1):

(1) VNV, #0 =V, CVy, or Vyy, C Vs

(2) Vy NS, K1) € {uly < py(n) < €2);

(3) py(ny) = (co/M)%;

(4) [Jy| = log(eo/€)/log M.
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We now conclude the proof using properties (1)—(4). Given any k, we choose a finite collection
{yi} € P, N Sj(e, K1) so that the Vy, are maximal with respect to inclusion among {V, : y €
P, N Sj(e, K1)}, and such that P, N S (e, K1) C \U; Vi:- By property (1) we deduce that the Vj,
are dlSJOlIlt. Since V,, C Py, we deduce that >, [Jy,|/|Pk| < 1. It follows that

!Pkﬂsj(@fﬁ)\ (U, Vi, N Sj(e, K1) Z [yl Vi N Sj(e, Ky
| Py | | Py | | P |y

by (2) Z [ Syl Hn € Jy, 1pyi(n) < Y
s | P |y

by (3), (4)<and (3.3) € 2/d d
h “ co/M * log(eo/€)/log M

As this last expression goes to 0 as € — 0 we conclude that (3.4) holds with this last expression
as (). It remains to verify the validity of (1)—(4).

(1) Assume yl,yg € Sj(e, K1) are such that V,, NV, # @; that is, there exists n; € J,, such
that u'yr = uys. Assume without loss of generality that na < n1 and so ul'™"*y; = y» and
ny —ng € Jy,. Followmg the definitions we see that V,, C V}, as desired.

(2) Let y € Sj(e,l?l) and assume n € J, is such that p,(n) > € so that we know that

e < [|[Ady, (wy)|| < €. We need to show that ujy ¢ Sj(e,fﬁ). We have that
ujy = uj exp(wy)u; "ujzy = exp(Ady (wy))ujzy. (3.5)

If ujzy ¢ Qy then (3.5) implies that u7y € exp B (X \ Qg), which is disjoint from T (e, K1)
by choice of Q. So, in particular, u}y ¢ Sj(e,f?l). If on the other hand ujz, € Qy, then as
ujxy € Lz (because Lz is A-invariant), we deduce that u}x, € K> which in turn implies by (3.5)
that u}y € T (eo, K2) and the orbit and W coordinates of w7y are given by Ady, (wy) and ujz,,

respectively. By the lower bound on the W-coordinate we deduce that ufy ¢ T (e, K2) and, in
particular, uy ¢ S;(e, Ky).

(3) We have that ¢y < HAdnerl (wy) || < M+/py(ny).
(4) Similarly, ey < HAdnyH( )| < M Tle, O

COROLLARY 3.4. The conclusion of Theorem 3.1 remains valid if the assumption P,N Lz =@ is
relaxed to |P, N Lz|/|Py| — 0 as k — oo.

Proof. We split ux, = (1 — Oék)M;lc + ozk,u% with ,u};, 1 = 1,2, being the normalized counting
measures on P, \ Lz and P, N Lz, respectively. In this case oy = | P, N Lz|/|Px| = 0 as k — o0
by assumption and so the accumulation points of uz are the same as those of u,lc for which
Theorem 3.1 applies. O

4. A-invariance and measure classifications

In this section we will show that all the measures appearing in our discussions are invariant under
a certain group A. We will then classify all the A-invariant and ergodic probability measures in
certain situations. This will serve us in the proof of Theorem 1.3 along the lines described in §2.3.
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4.1 Invariance
We revert to the notation introduced in §§1 and 2. In particular, recall that the subgroup
A ~ SL,,(Z) x SL,,(Z) < SL4(Z) is defined by

A {(%1 (%) . 5, € SLin(Z), 62 € SLn(Z)}. (4.1)

Further, let AA < G x G denote the diagonal embedding of A in G x G.

LEMMA 4.1. The following periodic orbits in either X4 or X4 X Xy and probability measures
supported on them are A-invariant or Aa-invariant, respectively:

(1) the periodic orbit Uz and the measures my ., {px : k € Z>o};

2) the periodic orbit Hxo and the measures mpy,, {a(k)«ptr : k € Zso};

e e e
> W
~— — — ~— ~—

the periodic orbit Vxo and the measure my,;

the periodic orbit X,, and the measures mx, vy :k € Z=o};

the periodic orbit Uzxg x Hxo and the measures myz, X My, {a(k)fr 1 k € Zso};
the periodic orbit Uz X Vxg and the measure my,, X my,.

Proof. The A-actions on Uzg, Hxg and X, are given respectively by

51 0\ /I 0 B I 0
(5 5) (0 7)#0= (s 1) (4
5 0\ (h S1h  6yvoy !
(5 5) (0 7)w=(8" "7 ) (49

5t ON/h O _(&h 0
0 &)\o 1)~ \ o )%

The A-action on Vg is given by a similar formula. This shows that the corresponding periodic
orbits are indeed A-invariant. Also, as conjugation by A fixes the volume form on the groups
giving rise to these periodic orbits, the Haar measures on these periodic orbits are preserved.

The measures p are Aa-invariant because it follows from (4.2) and Definition 1.2 that Py
is Aa-invariant. In turn, because the Aa-action on Xy x Xy commutes with that of a(k), we
conclude that a(k).py is Aa-invariant. Similarly, a(k).py is A-invariant. The invariance of the
measure v, now follows from that of py as the projection 73 in (2.9) intertwines the A-actions
on Hxg and X,,. O

4.2 Rationality issues

We will need the following lemmas in order to establish various rationality statements when
classifying measures. These rationality statements are important to us because they imply the
countability of the measures we classify in each discussion. This countability is used later along
the lines described in §2.3.

LEMMA 4.2. Let N be an integer and let A € SLy(Z) be matrix acting naturally on the torus
TV = RY /ZN. Assume that all the eigenvalues of X are not roots of unity. Then, if w € TV has
a finite A\-orbit then w is a rational point (that is, any vector representing it is rational).

Proof. Assume that Mw = w. If w € RY projects to w then this means that there is an integer
vector e such that Mw = w + e or, equivalently, (M — I)w = e. By assumption M/ — [ is invertible
and its inverse is a rational matrix, so w = (M — I)~!e is rational as well. O
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We recall the definition of the commensurator group. Let G’ be a topological group and

IV < G’ a closed subgroup. Let commg (TV) def {g € G :gl"g71 T” are commensurable}.

LEMMA 4.3. Let G’ be a topological group and I, A’ closed subgroups.

(1) Let g € G" and q € commey (I"). Then, if the orbit Agl" C G'/I" is finite, then so is AgqI”.
(2) IfT" < G' is a lattice then q € commey (1) if and only the orbit of I"gI" C G'/T” is finite.

Proof. (1) Note that A’gIY ¢ G'/T" is finite if and only if Staby gI" = A’ NgI"g™! < A’ is of
finite index. As ¢ € commg/ (I'") we deduce that the intersection ggI"q~1g=t N gl'g~! is of finite
index in both groups. In particular, A’ N gqI'¢ 19~ < A’ is of finite index. Arguing in reverse
this, implies now that A’gql” C G’/T” is finite.

(2) One direction of implication follows by applying part (1) to A’ =T". In the other direction,
if the orbit I¢I" is finite then, as before, this implies that the group Stabp ¢qI' = IV N ¢qIVg™!
is of finite index in I". In particular, it is a lattice in G’, which forces its index in ¢I'¢~' to be
finite as well; that is, ¢ € commg (TV). |

LEMMA 4.4. If (§7 )zo has a finite A-orbit then

g € commgy, (r)(SLin(Z)) and v is rational.

0
27)zo.
Proof. We prove the first statement. The second statement follows by applying the involution
on X4 induced by the transpose inverse operation. Assume A(g }')mo is finite. Projecting to
Xm = SLy(R)/SLy,(Z), we deduce by Lemma 4.3(2) that

A similar statement holds for (

g S CommSLm(R) (SLm(Z))

In turn, this implies that ¢ = (g (}) € commg (SLg(Z)). It now follows from Lemma 4.3(1) that
A(§Y)a rwo = A(E Y )ag is finite as well. Thus we have reduced the discussion to the situation
where g = 1.

We now identify Vo with the torus RV / ZN with N = m-n and apply Lemma 4.2 to conclude
that v is rational. Indeed it is straightforward to verify the existence of A € A that acts on RY
without roots of unity as eigenvalues. |

4.3 Measure classifications in general

THEOREM 4.5. Let p be a A-invariant and ergodic probability measure on X4. Then there exist
an intermediate subgroup A < L < G and a periodic L-orbit Lx C Xy, such that u is the
L-invariant probability measure myp,;.

This theorem is a particular case of a more general measure classification by Shah [Sha9§]
which uses and generalizes Ratner’s measure classification theorem [Rat9la, Rat91b]. It is
applicable since A = SL,,,(Z) x SL,(Z) is generated by unipotent elements. In fact, because
A is a lattice in a semisimple Lie subgroup of G with no compact factors, using the suspension
technique [Wit94, Corollary 5.8] it is straightforward to deduce Theorem 4.5 directly from
Ratner’s measure classification theorem for the actions of semisimple groups without compact
factors (for a simplified proof for this case, see [Ein06]).

For a closed subgroup L < G we denote by L° the connected component of the identity of L.
We have the following corollary which will be more convenient for us.
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COROLLARY 4.6. Let  be a A-invariant and ergodic probability measure on X4 and let L,z be
the group and the point that arise by applying Theorem 4.5 so that y = myp,. Then there exist
Z1,...,TxN € Lx such that Lx = |_|Z]\L1 L°x;, each orbit L°x; is periodic, A acts transitively by
permuting the collection of orbits {L°x;}, and pu = (1/N) Z{V Mmyog, .

Proof. As L° < L is open and closed, the orbit Lz decomposes into a union of (relatively) open
and closed L°-orbits. As p is finite, this decomposition is finite, Lz = |_|fi1 L°x;. As L° is a
normal subgroup of L, A acts on the L°-orbits by permuting them. Moreover, the ergodicity
assumption implies that this action is transitive. It follows that u(L°z;) = N~! and the formula
= (1/N)SY mpe,, follows. O

For convenience of reference we also state the following elementary lemma whose proof we
omit.

LEMMA 4.7. Let Fy, Fy be closed subgroups of G and x € Xg4. If Fixz C Fyx then FY C Fy.

The rest of this section is devoted to classifying A-invariant and ergodic measures in various
situations that will be encountered in the course of the proof of Theorem 1.3.

4.4 Measures supported in Uxg
Let us define

Tor(Uzo) % {14 € Uz : 0 € Matyxm(Z)}. (4.4)

LEMMA 4.8. The ergodic A-invariant probability measures on Uxg are exactly the normalized
counting measures on finite A-orbits and my,,. Moreover, any finite A-orbit is contained in
Tory(Uxg) for some positive integer k.

Proof. Let® 1 be an ergodic A-invariant measure supported in the orbit Uxzy. Applying
Theorem 4.5, we conclude the existence of a closed subgroup A < L < G such that p is
the L-invariant probability measure supported on a periodic L-orbit. Applying Lemma 4.7 we
conclude that L° < U. Viewing L° as a subspace of Mat,, ., (R) = U, the fact that A normalizes L°
translates into this subspace being invariant under the linear representation of A on Mat,, x.m, (R)
(here (4 ) € SLin(R) x SLy(R) acts on u € Maty,xm (R) by DuA™!). As this representation of
SLy,(R) x SLy,(R) is irreducible and A is Zariski dense in the former group, we deduce that L°
is either the trivial group or U.

If L° = U then clearly © = my,,. If L° is trivial, an application of Corollary 4.6 gives that p
is the normalized counting measure on a finite A-orbit Az, C Uxg. Lemma 4.4 implies now that
u is in fact a rational matrix. If k£ is a common denominator for its entries then z,, € Torg(Uxg)
as desired. a

4.5 Measures supported in Hxg

Our next objective is to classify the A-invariant ergodic probability measures supported in Hxzg.
By Theorem 4.5 and Corollary 4.6 such a measure is always of the form (1/N)> mp,,, where
L < G is a closed connected subgroup normalized by A. As Lx; C Hxg and L is connected, we
conclude from Lemma 4.7 that L < H. We have the following classification of groups.

5 Lemma 4.8 could be proved using Fourier arguments, but we choose to appeal to Theorem 4.5 as this is more
compatible with the later arguments. Furthermore, this is by no means a new result and the proof is included for
expository reasons. For a similar argument, see, for example, [Wit94, Example 5.9].
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LEMMA 4.9. Let L < H be a closed connected subgroup normalized by A. Then there are four
possibilities:

(1) L={e};

(2) L=V = {(g‘;) v € Mat,xn(R)};
(3)L SL ={(29):heSL,(R)};
(4) L

Proof. Consider the projection of L in the simple group SL,,(R) = H/V. As L is normalized
by A, this projection is a connected subgroup normalized by SL,,,(Z), and by Zariski density we
deduce that it is a connected normal subgroup. It therefore follows that this projection is either
trivial or SL,,(R). In the first case, L < V. As the adjoint action of A on the Lie algebra of V'
(which is isomorphic to V itself) is irreducible, it follows that either L = V or L is the trivial
group.

Assume then that the projection of L is onto and consider the subgroup V' = L NV which
is normalized by A. The same irreducibility argument as before implies that either V/ =V or V'
is trivial. In the first case L = H. In the second case the projection of L onto H/V must also be
injective so there exists a map 1 : SL, (R) — Mat,, xn (R) such that L = {(g w(jg)) :g € SL,,(R)}.
IfA=(39) € A then )\(5 w(o ))/\*1 = (g ‘WI(‘S)) € L so that 0¢(d) = ¢(9). By Zariski density we
deduce that this formula holds for any 0 € SL,,(R). In turn, if 1 is not an eigenvalue of §, this
implies that the columns of 1 (J) must be zero. We conclude by continuity that v vanishes and
so L is the standard copy of SL,,(R) in H. O

In light of Lemma 4.9 (and for the sake of the current discussion), the following definition
makes sense.

DEFINITION 4.10. We say that a A-invariant and ergodic measure on Hxg is of type (1)—(4)
depending on which one of the four groups that appear in Lemma 4.9 is attached to it.

COROLLARY 4.11. The following is a classification of the A-invariant and ergodic probability
measures on Hxg.

(1) Measures of type (1) are simply normalized counting measures on a (necessarily finite)
A-orbit of a point of the form (! )zo, in which h € commg,  r)(SLi(Z)) and v is rational. If

such a measure projects to 0., under (m3). then we can choose h = I.

(2) Measures of type (2) are of the form (1/N) Zl ,my,,, where {x;} is the A-orbit of
T = (8 9):160, in which h € commgy,  (r)(SLin(Z)). There is only one such measure that projects
to 0z, and that is my .

(3) Measures of type (3) are of the form (1/N) SV mgy, . (R)z;, Where z; = (Iv

07 )xo and the
v; are rational. All such measures project under (73), to mx,, .

(4) There is only one measure of type (4), namely mp,,, and it projects under (m3), to
mx

m*

Proof. Let p denote a A-invariant and ergodic probability measure on Hxg and present it as
= (1/N) Zi\f my,, with L connected and determining the type as explained above. We prove
statements (1)—(3), as (4) is clear.
(1) If p is of type (1) we deduce from the ergodicity that {z;}}' forms a finite A-orbit and
Lemma 4.4 gives the commensurability and rationality statements. The statement regarding the
projection is clear.
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)xo. Using the V-invariance we may assume
without loss of generality that v; = 0 and so m3(z;) = x;. Then (m3)pu = (1/N) > i\/ 0z, is a finitely
supported A-invariant and ergodic measure and so the x; form an orbit. Now, by Lemma 4.4,
hy € commgy, ) (SLin(Z)) as required.

(3) Assume g is of type (3). As the periodic orbits SL,, (R)x; are closed and the SL,,(R)-orbits
are transverse to the V-orbits (all of which are periodic in Hzg), we deduce that the intersection
supp(p) N Vg, which is A-invariant and closed, is finite. Lemma 4.4 now implies that the points
x;, which without loss of generality might be assumed to belong to supp(u) NV, have rational
representatives. O

(2) Suppose 1 is of type (2) and write z; = (

Vi
I

4.6 Measures supported in Uxg X Hxg
THEOREM 4.12. The only Aa-invariant probability measure on Uxy x Hxy which projects under
m and my to My, My, respectively, is the product measure myr,, X Mgy, .

Proof. Let u € A be a unipotent element that belongs to the subgroup SL,,(Z) < A (such an
element always exists as m > 2). Note the following two facts.

(1) The action of u on (Hxo, mpy,) is mixing by the Howe-Moore theorem applied to the
action of SL,,(R).

(2) The action of u on the torus T"*™ = Uz is by a unipotent automorphism and so the
ergodic components of my,, with respect to the action of u are minimal rotation on compact
abelian groups.

The theorem now follows from the following two lemmas. a

LEMMA 4.13 (cf. [Gla03, Theorem 6.27]). Let (X, u,u), (Y,v,u) be two dynamical systems. If
(X, p,u) is a minimal rotation on a compact abelian group and (Y, v,u) is mixing, then the two
systems are disjoint.

LEMMA 4.14. Let (X, p,u), (Y,v,u) be two dynamical systems such that v is ergodic and let
p = [ pgdp(z) be the ergodic decomposition of p . Then, if for p-almost every x the systems
(X, pz,u), (Y,v,u) are disjoint, then (X, u,u), (Y,v,u) are disjoint as well.

We give both proofs for the sake of completeness.

Proof of Lemma 4.13. Let n be a joining of p,v. As n is a joining, the projections py : (X x Y,

n) — (X, 1), py : (X xY,n) — (Y,v) induce injections of the L2-spaces; that is, the Hilbert

spaces Hx o L3(X,u), Hy f L?(Y,v) are isometrically embedded in H &f L*(X x Y,n). We

denote by H°, H%, H) the subspaces orthogonal to the constant functions in each of the spaces.
Showing that 7 is the product measure is the same as showing that the two subspaces HS, H-
of H° are orthogonal. For this, note that the mixing assumption for the u-action on (Y,v) is
equivalent to saying that for each v € ’Hg), the sequence T;'v converges weakly to 0, where we
write T,, for the unitary operator on H induced by the u-action. If the two subspaces are not
orthogonal, then there exists a vector 0 # v € ’Hgf that has a non-trivial projection to Hg(. Let
us denote this projection of v by w € 7—[9(. We claim that T;'w must converge weakly to 0 as
well. This simply follows from the fact that the projection commutes with 7, as the subspace
we project on is T,-invariant and T, is unitary. However, as (X, p, u) is isomorphic to a minimal
rotation on a compact group there exists an integer sequence nj — oo such that T)/Fw — w
as k — oo. This contradiction implies the lemma. O
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Proof of Lemma 4.14. Let 1 be a joining of u, v and let

n= /n(x,y) dn(xa y)

be the ergodic decomposition of 7. Let py,py denote the projections from X x Y to X,
Y respectively. For n-almost every (z,y) we have that (py)7(sy) is an ergodic u-invariant
probability measure on Y and as 7 projects to v we deduce that v = [ (Py )«M(a,y) dn(,y). Since
v is ergodic we conclude that v = (py )7, for n-almost any (z,y). By a similar reasoning
one can argue that for n-almost every (x,y), (Dx)«7(z,y) = M- 1t follows that for n-almost any
(z,y) the ergodic component 7, is a joining of u,; and v and therefore by our disjointness
assumption we have 7, ) = pz X v for n-almost any pair (z,y). This implies the lemma. O

4.7 Measures supported in Uxg X Vg
We will use the following notation in the special case where m = n = 2. Let us denote by

)# = (flb ;c) For coprime integers

L, % { <(plu ?) , <é q‘}#>) ‘ue Matg(R)} <UxV. (4.5)

THEOREM 4.15. Assume n = m. Let n be a Aa-invariant and ergodic probability measure
supported on Uz x Vxg and suppose (T1)«n = My, (72)«) = My4,. Then n = myz, X my,,,
orn=2andn=(1/N) ZJIV my, (z,.4:), Where p,q are coprime integers and the points x;,y;
may be chosen to have rational matrix representatives.

u — u” the linear isomorphism of Mats(R) given by (ZZ
p,q we denote

Proof. In an abuse of notation we write A for Aa. We identify Uxg x Vzy with the product torus
T x T and recall that the A = SL,,(Z) x SL,(Z)-action on it is induced by the A-representation
on Mat,(R) x Mat,(R) given by (see (4.2), (4.3)),

(61,02) (0, v) = (Sué;t, 51voy ). (4.6)

As A is generated by unipotents, a suitable application of Theorem 4.5 implies that there
exist a A-invariant subspace W C Mat,,(R) x Mat,,(R) and finitely many periodic orbits {WW (u;,
vi) ¥ T x T such that n = (1/N) Zjlv My (y, v,)- From our assumption that 7 is a joining of
my/;, and my,, we conclude that W projects onto Mat,, (R) under both left and right projections.

We will need the following general representation-theoretic lemma. Its proof is straightforward
and left to the reader.

LEMMA 4.16. Let p;, for i = 1,2, be two irreducible representations of a group A on the vector
spaces V; and let p = py @ po. If {0} & W & Vi @ Vi is a A-invariant subspace, then either
W =V x {0}, or W = {0} x Va, or there is an isomorphism ¢ : (Vi,p1) = (Va,p2) of A-
representations such that W = {(v, p(v)) : v € V1 }.

We apply this lemma with V; = V5, = Mat,(R), with the representations p; of A which
are given by restricting to left and right coordinates of the formula (4.6), and with W being the
subspace identified above which is attached to n. If W is the whole space then n = my;, X my,.
Otherwise, we deduce from the lemma (and the fact that W projects onto each factor) the
existence of the isomorphism . Then, applying (4.6) to the diagonal copy of SL,(Z) in A, we
deduce that the image of the line {sI : s € R} C V; must be stable under conjugation by every
element of SL,,(Z), which implies that this line must be mapped to itself. Therefore, there exists
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a scalar p, such that ¢(I) = p,I. It then follows from (4.6) that the restriction of ¢ to the set
{s6 :s € R,6 € SL,(Z)} is given by the formula

P(56) = ppsd L. (4.7)

For n > 2 this is not a linear map and so the existence of ¢ is ruled out, and so indeed n =
myr,, X my,, as claimed.
In the case n = 2, on the other hand, formula (4.7) is given by

a b d —b
S O -

which is linear, and by Zariski density this must be the formula for ¢ on V; = Maty(R). By the
above lemma we have that

W = {(u, Pwu#) :u € Mat,(R)},

and since it has periodic orbits in T x ’]I‘”Q, p, must be rational, say p, = p/q for some coprime
integers p, ¢. Under our identifications W corresponds to the subgroup L, , from (4.5).

Finally, we need to justify the rationality of the points (u;, v;). Consider the action of A on
the quotient torus T x T /W which we identify with the standard torus TV for a suitable N.
The measure 71 projects there to a finitely supported A-invariant measure. It is straightforward
to show the existence of A € A which acts on RY = Mat,, x Mat,, /W without roots of unity as
eigenvalues, and therefore by Lemma 4.2 we conclude the rationality of the images of (u;, v;) in
TV and in turn the desired rationality before projecting (because W is a rational space). O

5. Hecke friends

For any positive integer ¢ and an m-dimensional lattice z € X,, we define the set of ¢-Hecke
friends of x to be the collection of lattices

{E_l/mA : A is a subgroup of index ¢ of x} C X,,.

Clearly, it is enough to understand the collection of ¢-Hecke friends of Z™, for if x = hZ™ for
some h € SL,,,(R), then the collection of ¢-Hecke friends of = is simply the image under h of the
corresponding collection for Z™.

Given a subgroup A < Z™ of index ¢, we choose u € Mat,,(Z) whose columns form a basis
for A and with detu > 0. By Lemma 2.3 (and its proof) there is a unique positive elementary
divisors tuple (¢1,...,4y,) attached to it. Consequently, £ = [[]" ¢;. It is straightforward to show
that the tuple does not depend on the choice of u and so we make the following definition.

DEFINITION 5.1. Given an /-Hecke friend of Z™, we define its Hecke type to be the corresponding
m-tuple of elementary divisors.

The above discussion could be restated as follows.

LEMMA 5.2. The collection of ¢-Hecke friends of Z™ is partitioned into SL,,(Z)-orbits in the
following way

{¢-Hecke friends of Z™} = | | SLm(Z) diag (61, ..., 6n)Z™,
(fl,...,fm)

where the union is taken over the {-Hecke types; that is, all positive tuples (¢1,. ..,y ) such that
€i|€i+1 and Hgn fz = /.
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The following equidistribution result will be needed in the proof of Theorem 1.3.

THEOREM 5.3. Let {(li1,...,lim)};2, be a sequence of types of £;-Hecke friends of Z'™, where

L; def H’anl ij, and let v; denote the normalized counting measure supported on the collection

of €;-Hecke friends of Z™ of type ({;1, ..., ¥im). Then v; LN my, if and only if l;y, /i1 —> oo.

Proof. This theorem follows from [COUO1]. More conveniently, it is a special case of [EO0G,
Theorem 1.2]. This result states that for ¢; € GL,,(Q), the normalized counting measure on the
(finite) orbit 1/(det ¢;)*/™ SLy,(Z)qZ™ equidistributes to my, once degq; — 0o, where deg g; is
the size of the corresponding orbit. We apply this for ¢; = diag (¢;1, ..., im). We need to explain
why the condition deg(diag (¢;1,...,%im)) — oo is equivalent to the requirement ¢;,,, /¢;; —> oo.

Without loss of generality we may assume on scaling by 1/¢;; that ¢;; = 1. If ¢;,,, is bounded
along some subsequence, then clearly the degrees do not diverge to co. On the other hand,
if (1,...,4,) is a Hecke type and ¢, > M, then there exists some 1 < r < m such that
lri1/l > MY™ Then the orbit SL,,(Z)diag (1,...,£,)Z™ contains an embedded copy of the
orbit SLy(Z) ((1] 0 +(1] /e, )Z? which contains at least p°~!(p+1) points where p® is the largest prime
power dividing ¢,11/¢,. As this prime power goes to oo with M, we are done. |

6. Proof of Theorem 1.3

We follow the scheme presented after (2.9), dividing the proof into four steps.

6.1 Step 1

In this step we establish the convergence pj — my,,. Let 0 be a weak® limit of the sequence
{pr}. By Lemma 4.1(1), o is a A-invariant probability measure. By Lemma 4.8 there are only

countably many A-invariant ergodic probability measures on Uxy. We let og def myr,, and
let {0;}°, be any enumeration of the measures supported on finite A-orbits. By the ergodic
decomposition we may write 0 = Y >° ¢;o;, where ¢; > 0 and >, ¢; = 1. The proof of Step 1
will be concluded once we show that cg = 1. By Lemma 4.8, each o;, ¢ > 0, is supported in the
torsion points Torg, (Uxg) for some integer k;. It is straightforward to show that for k > k; we
have that Py N Torg, (Uzg) = ¥, and so for all large enough k the support of py is disjoint from
the orbit on which o; is supported. We now apply the non-accumulation theorem (Theorem 3.1)
and deduce that ¢; = 0 for ¢ > 0 as desired. Theorem 3.1 is applied with the following choices:
G=AxU,T =A X Mat,xm(Z), L =A, z being one of the points in the support of ;. The
space W, being a linear complement of Lie(L) = {0}, equals Lie(U) = Mat,, xm(R) and indeed
there are no A-fixed vectors in W other than zero.

6.2 Step 2

In this step we establish the convergence vy N (73),0. This follows from the following lemma.

LEMMA 6.1. The measure vy def (7m3)sa(k)«py is the normalized counting measure on the

collection of k™-Hecke friends of Z™ of type (1...1k...k). In particular, if m > n, vy

equidistributes to my, and if m = n then vy, is the Dirac measure supported on xy.

Proof. The last sentence in the statement simply follows from Theorem 5.3 (and the observation
that Z™ is the only k™-Hecke friend of type (k...k) of itself). We are thus left to verify the first
sentence of the statement.
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The set P decomposes into A-orbits and each such orbit is mapped by m3oay to a single
A-orbit in X,,. Let Q C Py be such an orbit. By Lemma 2.3 there exists -1, € 2 with u of
the form (2.10). By Lemma 5.2, if we show that m3(axxy-1,) is a Hecke friend of Z™ of the
type prescribed in the statement, it will follow that the normalized counting measure on 2 is
pushed by (73).(ag)« to the normalized counting measure on the set of Hecke friends on Z™ of
this type.” This implies the same statement regarding vy,.

To this end, let z-1, € Py with u k-primitive of the form (2.10). We now calculate

m3(a(k)zy-14). Let v = (é;’ g:) be a matrix solving (2.12) so that

m3(a(k)xy-1y) = k™A Z™. (6.1)
It follows from the proofs of Lemmas 2.1 and 2.4 that a possible choice for v is the inverse of the
matrix 6 appearing in (2.11). A short computation shows that (using the formula for the inverse
of a 2 x 2 matrix) this inverse is
diag (k... k) 0 —diag(fi-...fn)
o= 0 Ln-m 0 : (6.2)
—diag(41...4,) O diag (e1...ep)

In other words, m3(a(k)z-1,) is the m-dimensional unimodular lattice

k=M diag (k.. k1, D)2
—— ——
which is a Hecke friend of Z™ of the desired type. O

6.3 Step 3

In this step we establish the convergence a(k).px Y, 0. Before turning to the proof, we need
notation and a lemma. The orbit Hxg breaks into periodic V-orbits which are the ms-fibers. In
order to state the next lemma we need to define the notions of k-torsion and k-primitive points
in such a fiber. For x € Hzo, we write z = (§ 7 )zo and set

-1
Tor,(Va) & { <g ?) (é k I") 2o €V :ve Matmxn(Z)}, (6.3)

. -1
Tor} "™ (V) def { (g (j).) (é K Iv) zo € Va:vlis k—primitive}. (6.4)

Note that although g is not well defined, the coset g SL;,(Z) is well defined and therefore Tory(Vx)
and Tor) ™ (V) are well defined as well.

LEMMA 6.2. For any positive integer k,
ayPe C | J Torf™™ (x5 (). (6.5)
IGXm
Proof. We first observe that the sets on both sides of (6.5) are A-invariant. Regarding ay Py, this
follows from Lemma 4.1(2). Regarding the set on the right, given A = (%1 502) € A and a point

(9 (IFV)ao € Tor?™ (731 (x)), where & = (99)ao and v k-primitive, then

g O\ (I k'v\ __ (61957t 0\ (T k'6ivey?
’\(0 I)(O I )xo_( o 1)\o I o,

which belongs to Tor?™ (75! (Az)) because (8;vdy1)! is k-primitive.

" Note that there follows from this a stronger statement than the one sought in Step 2 which is the reason for the
strengthening of Theorem 1.3 discussed in § 7.
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It now follows from Lemma 2.3 that it is enough to show that apz;-1, is in the right-hand
side of (6.5) for u as in (2.10). For such a choice of u we have seen in the course of the proof of
Lemma 6.1 that the matrix v solving (2.12) may be chosen to be as in (6.2). Thus (2.12) now
becomes

kfm/nA kfm/nB kfm/nA 0 I A*lB
akxk_l“:< 0o I W):COZ( 0o I) (O Tp) (6.6)

and indeed the concrete form of v (6.2) gives by a straightforward calculation that

kAT'B, = (‘ diag (f1 . f”)) : (6.7)

Om—nxm—n
so indeed (kAS'B,)! is k-primitive. 0
In particular, we record the following corollary for future reference.

COROLLARY 6.3. For any k > ko and any x € X,,, supp (a(k).py) N Torg, (73 (z)) = 0.

We now turn to the proof of Step 3. Let o be a weak™ accumulation point of {a(k).pr}72 - By
Lemmas 2.1 and 4.1, ¢ is a A-invariant measure supported in Hxg. By Step 2 we conclude that o
is a probability measure that projects under 73 to either my,, or d,, according to whether m > n
or m = n, respectively. By Corollary 4.11, there are only countably many ergodic A-invariant
probability measures supported in Hzg, and so let {o;}:°, be an enumeration of them. By the
ergodic decomposition we may represent o = Z;’io c;oq, where ¢; > 0 and Z;’io c =1.

Assume m = n. Let us denote 09 = my,,. With this notation we will conclude this case once
we show that ¢; = 0 for ¢ > 0. Fixing ¢ > 0 and using the terminology of Definition 4.10, o; is of
type (1)—(4). According to the type we will show that ¢; = 0.

It is impossible that o; is of type (2) because, since (73)«0 = 5, by Step 2, it would follow
from Corollary 4.11(2) that o; = my,, = 0¢. Similarly, Corollary 4.11 implies that if o; is of
type (3) or (4) then ¢; = 0. Finally, if ¢ is such that o; is of type (1) then by Corollary 6.3 we have
that the finite A-orbit on which o; is supported is disjoint, for large values of &, from the support
of a(k).pr. By Theorem 3.1 we deduce that ¢; = 0. Note that, similarly to the discussion at the
end of §6.1, the application of Theorem 3.1 was done with the following choices: G = A x V,
I' = A X Maty,«xn(Z), L = A, z being a point in the support of o; and W = Lie(V') = Mat, xn(R)
which indeed has no non-zero A-fixed vectors. This concludes the proof of Step 3 for the case
n=m.

Assume m > n. Let us denote o9 = mp,,, the only measure of type (4). With this notation
we will conclude this case once we show that ¢; = 0 for all 4 > 0. We do this by considering the
possible types. By Step 2, (73).0 = mx, , so we conclude from Corollary 4.11 that for any ¢
such that o; is of type (1) or (2) we have that ¢; = 0. Let ¢ > 0 be such that o; is of type (3).
Note that by Corollary 4.11, the intersection of the support of a measure of type (3) with any
m3-fiber 3 () is contained in Tory, (w5 ' (z)) for a fixed ko that does not depend on the choice
of z € X,,,. By Corollary 6.3 we conclude that for k& > ko the support of a(k).py is disjoint
from the periodic A - SL,,(R)-orbit on which o; is supported. It now follows from Theorem 3.1
that ¢; = 0. Theorem 3.1 is applied with the following choices: G = A - H, T' = A X Mat,,xn(Z),
L = A-SL,,(R), z any point in the support of o;, and W = Lie(V') = Mat, < (R). This concludes
the proof of Step 3.
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6.4 Step 4
In this step we conclude the proof of Theorem 1.3; that is, we establish the convergence

a(k)spk v my,, X 0. At some point close to the end of the proof we will need the following
lemma.®

LEMMA 6.4. In the case’ m = n,

- —1,,%
apPr = {((k‘llu ?) xQ, (é K Iu ) x()) tu s k—primitive},

where u* € Mat,,(Z) is an inverse of u modulo k.

Proof. The proof is a further inspection of the arguments in Lemmas 6.1 and 6.2, so we keep
it short. We need to show that axx;—1, = (é ki}“* )zo, and by acting with A we see that it is
enough to show this for u as in (2.10). For such u this follows from (6.6) and (6.7), taking into
account the concrete form of v given by (6.2). O

We now turn to the proof of Step 4. Let o be a weak® accumulation point of the sequence

{a(k)«pr}. By Steps 1 and 3 we know that (m).a(k)«pg i my,, and (m2)«a(k)« g ¥ 0. As
o is proper we deduce from the fact that @ is a probability measure that o is a probability
measure. This in turn implies that (m)«0 = my,, and (m2).0 = 6. Also, by Lemma 4.1(5), ¢
is Aa-invariant. Hence, the dynamical system (Uzg X Hxg, 7, Aa) is a joining of (Uxg, myr4,, A)
and (Hxo, 0, A). By Theorems 4.12 and 4.15, we deduce that if (m,n) # (2,2) then ¢ = my,, x 6
and the proof is concluded. We are thus left to deal with the case n =m = 2.

6.4.1 The case n = m = 2. As the projections my,, and my,, are A-ergodic we conclude
that (almost) any ergodic component of 7 is a joining of my,, and my,, as well. By Theorem 4.15
there are only countably many such ergodic components and we will be done once we prove the
following lemma in which we use the notation of (4.5).

LEMMA 6.5. Let p,q be coprime integers and let (z,y) € Uzg x Vxo. Then 6(Ly 4(z,y)) = 0.
Proof. By Corollary 3.4 we deduce that it is enough to prove that

@ Pr N Ly (2, y)|

[P
Here Corollary 3.4 is applied with the following choices: G = Ax X (U x V), I' = Aa X (U(Z) x
V(Z)), L = Ly, and z = (z,y). The existence of the Aa-invariant linear complement of Lie(L, )

follows from the semisimplicity of the group SLa(R) x SL2(R) and the fact that Lie(L,,) is an
invariant subspace of Matg(R) x Matg(R) under the representation (4.6).

For v € Maty(R) let us denote yy e (3Y)zo € Vo, and for u € GLy(Z/kZ) we write (using
the notation of Lemma 6.4)

— 0 as k— oo. (6.8)

def
Q(u) = (xk_luvyk—lu*)' (69)
Lemma 6.4 gives that ® is a bijection between GLo(Z/kZ) and

Py = {®(u) : u € GLy(Z/kZ)}. (6.10)

8 This lemma is needed only in the case m = n = 2.
 Compare this with (2.4).
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The left and right actions of GLa(Z/kZ) on itself induce (via ®) actions of it on Pj. Fixing
u=(2%) € GLy(Z/kZ), we will establish (6.8) by analyzing the orbit ®({geu : ¢ € (Z/kZ)*}),

where g = f (§9), which is of size ¢(k) (here ¢ is the Euler function), and proving that

|{¢ : ®(geu) is in the same L, ;-orbit of ®(u)}| koo
¢ (k)

Following the definition, we see that ®(u) and ®(g,u) are in the same L, s-orbit if and only
if the difference (gou,u*g;) — (u,u*) (thought of as an element of Maty(R) x Maty(R)) is in
Lie(Ly ) + Mato(kZ) x Mato(kZ). In other words, if we let j = detu and recall that u* =
(40, g =07(}9), and the definition of Ly 4 in (4.5), we see that ®(u) and ®(geu) are in
the same L, ,-orbit if and only if

0 (1—-40)b ¢t —1)j*d 0
P (0 gﬁ B 1;@) =gq (El B E*))‘;.*C 0) mod kZ. (6.12)
We claim that (6.12) implies £ = 1 mod kZ. For that purpose we split k = k1 ks with k; coprime to
p and ks coprime to ¢. Using the second column in (6.12), we get (/—1)b € k1Z and (£—1)a € k1 Z.
However, since a, b form the first row of an invertible matrix modulo k, we see that the greatest
common divisor of a, b, k1 is 1 and we conclude ¢ = 1 mod k;7Z. Using the first column of (6.12)
and invertibility of 7* modulo k9 in the same way, we get £* = 1mod ksZ. Together this shows

¢ =1mod kZ and so (6.11) (since ¢(k) — o0). This concludes the proof the lemma and thus the
proof of Theorem 1.3. O

0. (6.11)

7. A strengthening of Theorem 1.3

Before we turn to the closing section of this paper, we observe that the proof of Theorem 1.3
presented above actually establishes more than what is stated. So far we have looked at (various
images of ) the counting measure on P, and used its Aa- -invariance, but P splits into Aa-orbits
and we could restrict our attention to single orbits. Let

Lo ¥ (0= (0r,...,0,) € 2" : 4;]0;11, ged (€, k) = 11, (7.1)

and denote by [I] the image of I} in (Z/kZ)". We refer to the elements of [I}]| as k-primitive
elementary divisors tuples and sometimes, in an abuse of notation, we do not distinguish between

elements in [I;] and their integer representatives. It follows from Lemma 2.3 that a Aa-orbit in
Py is a set of the form

P def {(z=14, Tr-14) : the elementary divisor tuple of u equals fmod k}.

Let ﬁk 7 be the normalized counting measure on ﬁk[ so that p is an average of the ﬁk 7

THEOREM 7.1. If (m,n) # (2,2),(1,1). Then, for any choice of a sequence of k-primitive
elementary divisor tuples €}, € [I;] (as k — o0) we have that a(k)«py, 7 5 my,, x 6.

Proof. We use the Aa-invariance of g, A and follow Steps 1-4 as presented in §2.2. The proof

of Theorem 1.3 presented above carries over verbatim, replacing gy with g, 7. O
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It is interesting to note that the statement of Theorem 7.1 is false in the cases (m,n) =
(1,1),(2,2). Indeed, for (n,m) = (1,1) the measures ﬁk[k are Dirac masses. For (n,m) = (2,2)
we note that the argument presented above establishing Theorem 1.3 in this case used in §6.4.1,
in addition to the Aa-invariance, the invariance of p; under a GLo(Z/kZ)-action which is no
longer present when considering the ﬁk 7 In fact, if n = m = 2 and we choose for any k the

k-primitive elementary divisors tuple to be £ = (1,1) then the set supp(a(/@)*ﬁk[) = ?i(l{:)ﬁk[,
which is the Aa-orbit of ®(($9)) (® as in (6.9)), is contained in the fixed orbit Li 1 (zo,z0) C
Uzxg x Vg (notation being as in (4.5)). In particular, 'd(k)*ﬁk[ cannot be expected to converge
to my,, X myy,. This shows that the statement of Theorem 7.1 is simply false in this case.

8. Proof of a strengthening of Theorem 1.4

Below we state and prove a generalization of Theorem 1.4. Recall the notation of §1.2 and, in
particular, that n = 1 and so d = m+ 1. Theorem 7.1 takes on a rather concrete meaning: the set
[I%] from (7.1) is simply (Z/kZ)* and the elementary divisor tuple of a vector u is simply ged(u),
so that for ¢, € (Z/kZ)*, the measure iy, is simply the normalized counting measure on the
diagonal embedding of the collection {z}-1, : gcd(u) = ¢} in Uzg x Uzg. Theorem 7.1 states

that a(k)«fir,c, = mysz, X My, for any choice of ¢ < k coprime to k. In particular, it follows

that if pg ¢, def (2)« k., » then a(k).prr ., — Mp,,. We shall need the following corollary of
Theorem 7.1.

COROLLARY 8.1. Let F' C Uxg be a subset satisfying (i) my,(F) > 0, (ii) my,, (OF) = 0 (where
OF denotes the boundary of F' in Uxy), and let f f (1/my4, (F'))xr. For any sequence ¢y, with
1 < ¢ <k and ged(k, i) = 1, we have a(k)s fdpy N Mz, -

Proof. Given a test function ¢ € C.(Xy), we consider the function (f x ¢) on Uzy x Xy given
by (f x ¢)(z,y) = f(z)p(y). Although (f X ¢) is not continuous, assumption (ii) implies that

the points of discontinuity are of my,, X mpg,,-measure zero. Using this, the weak™ convergence
a(k)sfbk,c, = Myg, X Mgy, from Theorem 7.1 implies the convergence

/ (F % @) di(k)ofine, — (f % ) d(musy X Ms,)
XdXXd XdXXd

= / (pde:co‘
Xa

We conclude that indeed a(k).fdpy e, ¥ m Hao, as desired. O

In the course of proving Theorem 1.4 it is clearly harmless to assume that the set F is
contained in the face
{(u1,...,um,1) € RY: |u;| < 1} C OBe.

Recall that 7 is the normalized counting measure on the set
{[Av] s v € kEF,v = (u,k),gcd(u, k) = 1}.

We split this set (and 7y) according to the A-orbit of the various u: for 1 < ¢ < k with ged(c, k)
= 1, we denote by 7, . the normalized counting measure on {[A,] : v € kF,v = (u, k), ged(u) = c};
then 7 is a convex combination of the 7 .. We conclude that Theorem 1.4 is implied by the
following theorem.
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THEOREM 8.2. For any positive integer k, choose 1 < ¢ < k with ged(k,cx) = 1. Let F C {(uq,
ooy Um, 1) € R%: |u;| < 1} be a measurable set of positive measure with boundary in 0By, of

. . . w*
measure 0 with respect to the m-dimensional Lebesgue measure on 0By,. Then ny, ., — mg,  as
k — oo.

Proof. Given coprime integers c, k, we will use the abbreviation 2% . o {(u, k) € Z%: gcd(u) = c}.
We need to show that for any f € C.(Zy,),

: Z f([A]) = /Zm fdmg as k — oo. (8.1)

7d
12 O R veLi , nkF

Here and below we use the notation [A] to denote the projection of a lattice A € X,,, to Z,,. Fix
a function f € C.(Z,,), € > 0, and a subset F' C F as in Corollary 8.1. Below we think of X,,
(respectively, Z,,) as the space of lattices (respectively, SO, (R)-orbits of such) up to homothety
in the hyperplane R™ spanned by the first m coordinate axes in R%.

We identify {(ug,...,umn,1) € R?:0 < w; < 1} with Uzg C X, in the obvious manner; that is,
(u, 1) corresponds to . This way we may think of F' as a subset of X, or R? at our convenience.
It follows from the discussion in Remark 2.5(2) that if we denote by p : R? — R™ the projection
onto the first m coordinates, then the measure (m3).a(k) (Xpdpte,c,) on X, (When normalized
to be a probability measure) is the normalized counting measure supported on the collection

{p(Ay) € Xy 1 v € ZY . NEF}

(here we think of F' as a subset of By, and of kI as a subset of R?). Since we assume F has
positive measure, Corollary 8.1 tells us that these measures converge to my,, as k — oo, that
is,

1 w*
W Z 5}7(1\1;) — My, as k — oo. (82)
velf , nkF

k,cp.
The convergence in (8.2) is not too far from implying (8.1); we only need to deal with the
distortion that the orthogonal projection p brings into the picture. We will see that this distortion
is controllable by splitting F into finitely many sets F' C F whose diameters are sufficiently small,
say smaller than § > 0.

Choose a finite partition F = |_|f:1 F;, where the sets F; are measurable, have boundary of
Lebesgue measure zero (relative to 0By ), and have diameter less than or equal to 6. In order to
conclude the proof we will use (8.2) to show that once § is chosen small enough, for any large
enough k and for any 1 <1 </,

1
fimg, -1 % mAv])] <. (8.3)
Zm |szck n kE| UEZZ NkE;
\Cl v

Since € is arbitrary, this implies (8.1).
To this end, fix 1 < ¢ < £ and denote F' = F;. Choose a reference point vg € F and let S
be the inverse of the restriction of the projection p to the m-dimensional linear space {UQ}J‘.

Let ky, € SO4(R) be chosen as described in §1.2 (i.e. such that ky {vo}* = R™), and consider

the function ¢ € C.(X,,) defined by ¢(A) aef f([kvyS(A)]). Note that this definition depends on
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the choice of vy but is independent of the choice of &y, and also that [ X, pdmy, = S 5. fdmgz,.
Applying (8.2) to the function ¢, we conclude that

! S FkuSEAN) ~ [ fdmg,|=0. (8.4)

Zs  NEF| z
1 e | veLf , NkF "

Let Cone(F) e {tF :t > 0}. Let dg,,(+,-) denote a distance function on Z,, and assume for the

moment that it satisfies

sup dz,, ([Av], [kuyS(p(Ay))]) = 0 as diam(F) — 0. (8.5)
v€Z4NCone(F)

Using (8.5) and the uniform continuity of f, we see that once § > 0 is chosen small enough,
| f ([kve S (p(Av))]) — f([Av])| < €. Plugging this into (8.4) gives (8.3) as desired.

We are left to explain the validity of (8.5). We let dgy,, (r)(+, -) denote a right SL;, (R)-invariant
metric on SL,,(R). With it we induce metrics dx,, ,dz, on X, Z,, respectively by the formulas

d SLin(Z), hSLm(Z)) = inf d h),
Xm (g (Z) (2)) e SLn (R) (975 1)

dz,, ([z], [y]) = " kQéTSl(f) ® dx,, (k1z, kay)

for g,h € SL;,,(Z) and z,y € X,,. The validity of (8.5) now follows as

dZm ([Av]a [kvos(p(Av))]) de (kvAv7 kvo Spkv_lkvAv)

dSLd(R) (67 kvo Spkgl)

and as diam(F') — 0, if the matrix k, is chosen correctly,

<
<

kv, Spkyt|gm : R™ — R™

approaches the identity. O
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