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Abstract
Dietary pattern analysis is typically based on dimension reduction and summarises the diet with a small number of scores. We assess ‘joint and
individual variance explained’ (JIVE) as amethod for extracting dietary patterns from longitudinal data that highlights elements of the diet that are
associated over time. The Auckland Birthweight Collaborative Study, in which participants completed an FFQ at ages 3·5 (n 549), 7 (n 591) and
11 (n 617), is used as an example. Data from each time point are projected onto the directions of shared variability produced by JIVE to yield
dietary patterns and scores. We assess the ability of the scores to predict future BMI and blood pressure measurements of the participants and
make a comparison with principal component analysis (PCA) performed separately at each time point. The diet could be summarised with three
JIVE patterns. The patterns were interpretable, with the same interpretation across age groups: a vegetable andwhole grain pattern, a sweets and
meats pattern and a cereal v. sweet drinks pattern. The first two PCA-derived patterns were similar across age groups and similar to the first two
JIVE patterns. The interpretation of the third PCA pattern changed across age groups. Scores produced by the two techniques were similarly
effective in predicting future BMI and blood pressure.We conclude that when data from the same participants at multiple ages are available, JIVE
provides an advantage over PCA by extracting patterns with a common interpretation across age groups.

Key words: Dietary patterns: Principal components analysis: Joint and individual variance explained: Longitudinal data:
FFQ: Dimension reduction

A number of longitudinal studies involving the identification
and extraction of dietary patterns have taken place over the last
15 years, with the popularity of these studies increasing
following a 2005 paper by Mikkila et al.(1) Dietary patterns
characterise food consumption trends across a population,
and their associated scores provide a summary of an individual’s
diet. Patterns and scores can be obtained by various methods,
most notably reduced rank regression(2–11), or some form of prin-
cipal components analysis (PCA) or factor analysis(1,12–23). Other
methods such as cluster analysis(24,25), latent class analysis(26) and
scoring on a priori patterns(27,28) have also been used.

In this literature, populations considered included adults(2,4–6,
13,17,18,24,26,27) and children and adolescents(3,7,11,15,16,19,21,22,25,29,30).
A mix of FFQ(3,5,7,8,12,14,17,20,22,24,26), recalls(13) and food
diaries(2,4,6,9–11,18,27) was used. Some studies extracted different
dietary patterns at each time point(2,7,8,12,14–17,20–22,24,25,27), while

others used one time point to calculate the food-specific loadings
for each dietary pattern and then applied these across all time
points to calculate scores(3–6,9–11,13,18,19). One study(26) combined
the data from different time points into one pooled set
before extracting dietary patterns. Many of these studies
examine the predictability or ‘tracking’ of dietary pattern scores
and individual foods, either through correlations across pairs
of time periods(1,3,8,13,14,21,22), using generalised estimating
equations to get a measure of consistency across all time
periods(5,10,19), or examining whether individuals remain in the
same cluster or quartile of consumption(7,19,24,25,29). While meth-
odological differences make comparison across studies difficult,
Mikkila et al.(1) noted stronger tracking for individuals that were
greater than 15 years of age at the beginning of their study. The
Avon Longitudinal Study(23) found changes in dietary patterns
between 3- and 4-year-olds, and between 7- and 9-year-olds.
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In this present study, we evaluated the utility of joint and indi-
vidual variance explained (JIVE)(31) for deriving longitudinal
dietary patterns. JIVE is an extension of PCA for multiple datasets
that extracts dimensions maximising shared variability across the
datasets. JIVE shares the advantages of approaches that derive
dietary patterns separately at each age point, and approaches
that extract patterns from a single dataset and score the other
time points for these patterns. As in methods that extract patterns
separately for each time point, changes in the questionnaire
across time points are easily accommodated, as are changes in
the number of subjects due to incomplete follow-up. As in
methods where the patterns are derived from a single age, the
scores at each age have a common interpretation. A novel
feature of JIVE patterns is that by prioritising shared variance,
the patterns produced preferentially include aspects of the diet
that are predictable across time periods. This includes both foods
with high tracking coefficients and foods that are predictable
from consumption of different foods in other time periods.
This ability is particularly relevant for studies of childhoodwhere
children’s changing capabilities (reduced choking risk for older
children, use of knife and fork, increasing individual control of
food choices) naturally change the range of foods consumed.

We aimed to illustrate the JIVE methodology using the FFQ
responses from children at ages 3·5 and 7 from aNewZealand birth
cohort study(22), with the addition of data at age 11. We also exam-
ined the association of JIVE scores from younger ageswith BMI and
blood pressure at future time points, to assess whether aspects of
the diet captured had any association with health outcomes. We
envision JIVE will be used in situations where researchers would
like an exploratory analysis of the diet, rather than one targeted
to particular nutrients. PCA is also appropriate to these circum-
stances, and widely used, so it is computed for comparison.

Methods

PCA can be thought of as a low-dimensional reconstruction of
the original n by p data matrix D using a small number k of
orthogonal directions V and scores S.

D ¼ VSþ ε

For a specified k, V and S minimise the sum of squared
errors,

P

i;j
"2ij.

JIVE(31) expands this representation to multiple datasets with
shared variability. In our case, these are datasets at different time
points t ranging from 1 to T. The shared variability is represented
by k dimensional time point-specific direction sets V1 : : :VT,
with common scores S. Time point-specific variation for time
point t is represented by directions Ut (constrained to have
orthogonal columns and to be orthogonal to Vt) and time
point-specific scores Rt, where the dimension of Ut, lt, may vary
with time point. Thus, the dataset at time point t can be repre-
sented as

Dt ¼ VtSþ UtRt þ ε

The fitting procedure again minimises
P

i;j
"2ij, subject to

pre-specified k, l1 : : : lT.

While the joint score vector si for individual I represents a
summary of that individual in the shared variation space and
is useful for (e.g.) identifying groups of similar individuals,
it represents a compromise score over all time points and cannot
be computed without complete data over all time points.
We would like to be able to compute a score for all individuals
at each time point, for example, an individual with data at time
1 only. Thus, we worked with the projection of the data from
time point t, Dt, onto the shared variability directions Vt :
St=DtVt. As in PCA, the amount of variability in Dt represented
by this projection can be calculated, and the correlation of the
scores St with the original variables can be used to interpret
the directions, analogous to PCA loadings. Thus, although only
individuals with food data at all time points were used to deter-
mine the directions, scores on those directions were computed
for every individual with food data at time t, and all of these indi-
viduals were consideredwhen computing the proportion of vari-
ance explained and interpreting the derived patterns. The
correlations across time points for the scores from projecting
onto the i-th column of each Vt represent the strength of the
inter-time point associations being represented with the i-th
set of directions. In contrast with PCA and the global summary
scores S, the set of scores St are not perfectly uncorrelated.

To choose k and l1 : : : lt, we followed the permutation
procedure outlined in Lock et al.(31). However, when inter-
preting the patterns, we selected the number of patterns to
consider using the proportion of variance explained for the full
complement of individuals observed at each time point.

JIVE was developed for distinct data types, rather than time
points, that is, the variables in set i were completely different
from those in set j. This means any change in the diet survey
across time points is not a barrier to using JIVE, although in
the longitudinal setting we expect many shared variables.
Visualisations can highlight the changing role of particular
variables over time.

We computed the JIVE directions and examined their
interpretation for an FFQ completed as part of the Auckland
Birthweight Collaborative Study(22) at ages 3·5, 7 and 11. Study
participants were born between October 1995 and November
1997; approximately 50 % of participants were born small for
gestational age (≤ 10th percentile for sex and gestation) and
50 % appropriate for gestational age. Follow-up at ages 7 and
11 was restricted to children of mothers of European descent,
due to inadequate sample sizes for other groups, so only the
European descent group was considered here. Ethical approval
for each phase of this study was obtained from the Northern
Regional Ethics Committee. Parents of participating children
gave written informed consent, and 11-year-old children gave
assent at the assessment. There were 549 participants at age
3·5, 591 at age 7 and 617 at age 11. The number of FFQ items
was, respectively, 88, 97 and 109, with eighty-two items consis-
tently in the FFQ. Table 1 shows the number of individuals with
FFQ data at each age and the overlap between participants at
different ages. The questionnaire items for each age are available
in online Supplementary Table S1.

FFQ items were recorded on a 0–7 scale ranging from
‘never’ to ‘2 or more times per day’. A version of the FFQ for
infants (6–24 months) was validated against a 4-day food record
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and also showed good short-term repeatability(32). The question-
naire was adapted to include foods eaten by older children, with
reference to the New Zealand 2002 National Children’s Nutrition
Survey(33). Response variables were standardised within each
age group prior to analysis. We compared with conventional
PCA scores computed at each of these ages; note that the current
analysis differs from previous analyses of the Auckland
Birthweight Collaborative data(22) in that no rotation was
performed, and a wider selection of survey items was included.
We required JIVE and PCA to use the same number of compo-
nents for comparability. We then compared the interpretation of
the PCA and projected JIVE scores, and their ability to predict
health measurements at future time points. The health outcomes
assessed were BMI Z-score, based on age- and sex-specific stan-
dards(34) and systolic blood pressure (SBP) and diastolic blood
pressure (DBP). The current value of the relevant health metric
was used as a covariate (e.g. age 7 BMI Z-score was predicted by
age 3·5 BMI Z-score plus dietary pattern scores). For both SBP
and DBP, the Z-score for height at the earlier age, and sex, were
also used as covariates, because they have been shown to influ-
ence blood pressure in children(35). The utility of the dietary
patterns was assessed by a likelihood ratio test comparing the
model with the covariates only, and the covariates plus dietary
pattern scores.

Models where the diet significantly impacted the response
variable were then assessed in more detail, for both the JIVE
and PCA patterns. The significance of the individual pattern
scores in a linear regression model was examined. All
analyses are performed in R version 4.0.2(36) and associated pack-
ages(37–40); P values< 0·05 are considered significant throughout.

Results

The proportion of variance explained by each JIVE or PCA
pattern is shown in Fig. 1. PCA, by construction, maximises
the variance explained, but projection onto the JIVE directions
explains a similar amount of variability. An ‘elbow’ criteria
suggest 1–3 patterns across the different ages andmethods; three
patterns were selected to maximise the amount of variability
represented.

The correlations between the original FFQ items and the
scores on the age-specific directions for each pattern, for both
JIVE and PCA, are shown in Fig. 2. A food is shown if, for either
technique, the absolute correlation between that food and the
age-specific score is larger than 0·35 for at least one age group.
Where there was a change in the questionnaire, a food appears
only in the relevant shades. For instance, only the age 11 ques-
tionnaire had an item about avocado consumption.

The first two derived patterns are similar across JIVE and PCA.
The first pattern, ‘vegetables andwhole grain’, has positive corre-
lations, for all ages, with vegetables, whole grains, fish and nuts,
and a negative correlation with white bread. The second pattern,
‘sweets and meats’, has positive correlations with a variety of
sweet beverages and snack foods, as well as chops/roast,
hamburgers, bacon/ham and mixed dishes with meat.

The third pattern is different between the two techniques. For
JIVE, the pattern has two poles, representing a trade-off between
cereal, milk on cereal, margarine and selected vegetables at one
end and sweet drinks and lollies at the other. The third PCA
pattern does not have a common interpretation across the ages.
Cereal, milk on cereal and negative associations with berries and
soft drinks were most highly associated with the third principal
component score for 3·5-year-olds; margarine and a variety of
vegetables had the highest association for 7-year-olds; and
carrots, apples and a negative association with fish canned in
oil were the strongest associations for 11-year-olds.

The discordant PCA patterns are reflected in the correlations
of the pattern scores across ages, as shown in Fig. 3. The scores
for the third PCA pattern are not highly associated across ages; in
fact, the third score is negatively correlated between age 3·5 and
age 11. In contrast, the JIVE scores have high association across
all ages, by construction. The trade-off for this feature is the
modest correlation between the three JIVE scores within each
age group. The within-age score correlations are, by construc-
tion, zero for PCA.

The specific foods associated with a JIVE pattern can change
across the age groups. For example, the third pattern promi-
nently includes sweet drinks. The most important sweet drink
for 3·5- and 7-year-olds in this pattern is juice, but this switches
to soft drink for 11-year-olds. The shared variability represented
by this component suggests the consumption of soft drink at age
11 is to some extent predictable by juice consumption at earlier
ages. (Pattern 2, which loads heavily on soft drink for all ages,
indicates that soft drink and cordial consumption at earlier ages
were also associated with soft drink consumption at later ages.)

The two types of scores have almost identical ability to
predict future health metrics, as measured by R2 (shown in
Table 2). The likelihood ratio test shows that the dietary pattern
scores are useful predictors for BMI Z-score (regardless of the
age pair considered), for the prediction of age 11 blood pressure
with age 3·5 scores and for the prediction of age 7 SBP.

Themodels where significant effects for dietary patterns were
found are given in more detail in Table 3. The food scores are
standardised so that the fitted coefficients represent the esti-
mated effect of a 1 SD change. For the models with a continuous
response, a higher score on JIVE pattern 1 (vegetables andwhole
grains) was significantly associated with a better (lower)
measurement for BMI in all cases, and blood pressure at age
11 predictedwith age 3·5 data. The results for PCA pattern 1were
similar, though did not reach statistical significance for BMI
age 7, BMI age 11 predicted with age 7 data and diastolic blood
pressure age 11 predicted with age 3·5 data. JIVE pattern 2
(sweets and meats) had a detrimental effect on the response that
is significant for the BMImodels and SBP. Again, the second PCA
score had a similar pattern, although significant for age 11
diastolic blood pressure and not significant for age 11 SBP.

Table 1. The number of individuals completing the FFQ at each age
(diagonal entries), and shared individuals across surveys

Age 3·5 Age 7 Age 11

Shared with age 3·5 549
Shared with age 7 478 591
Shared with age 11 480 547 617
Shared across all ages 466
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Fig. 1. Proportion of total variance explained by the scores on the JIVE directions and PCA scores. JIVE, joint and individual variance explained; PCA principal
component analysis.
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Fig. 2. Correlations between pattern scores and original variables. Correlations for different ages are stacked. Foodswith an absolute correlation of > 0·35 for either JIVE
or PCA, at any age, are shown. When not all shades are shown for a particular item, it indicates that the item was only assessed as a subset of the ages. JIVE, joint and
individual variance explained; PCA principal component analysis.
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JIVE pattern 3 (positively associated with cereal, negatively
with sweet drinks) is not significant in any of the linear models.
Higher scores for PCA pattern 3 for age 3·5 (positively associated
with cereal, negatively with berries and soft drinks) were asso-
ciated with significantly lower BMI at both ages 7 and 11.

The largest coefficient when predicting BMI Z-score is −0·17,
for JIVE pattern 1 in the model predicting age 11 BMI from age
3·5 data. In other words, scoring 1 SD higher on the ‘healthy’ food
pattern at age 3·5 corresponds, on average, to a 0·17 lower BMI
Z-score at age 11.

Discussion

The JIVE projections resulted in scores that are more interpret-
able across age groups than principal component scores. For
instance, if we compare a model using age 3·5 predictors to
one using age 7 predictions, a statement like ‘pattern 3 has a posi-
tive coefficient in both models’ is meaningful, because pattern 3
represents something similar in both age groups. This is not
necessarily true for principal component scores derived sepa-
rately for each dataset; for our data, the first two component
scores had a similar interpretation across ages, but the third prin-
cipal component represented disparate sets of food groups for
the three ages. The third JIVE component also highlighted cereal
and associated milk consumption as a food that is predictable
across ages, although it represents a smaller proportion of total
variability at ages 7 and 11.

Varimax rotation is commonly used in association with
PCA to improve interpretability within age group; it could either
improve or worsen association across age groups, depending on
the dataset. A previous analysis of the Auckland Birthweight
Collaborative data for ages 3·5 and 7(22) used PCA with varimax
rotation; the patterns derived show differences from the

unrotated PCA patterns derived here. In particular, rotation
grouped cereal and associated milk consumption with vegeta-
bles in what the previous authors call the ‘healthy’ pattern.
Some meat items were grouped with a ‘traditional’ pattern,
leaving the pattern they call ‘junk’ more clearly associated with
sweets and snack food than the ‘sweets and meats’ pattern we
have described with the unrotated analysis. The interpretation
of the rotated PCA patterns was more similar across ages, but
scores across ages were overall less correlated than those
observed in the unrotated patterns (correlation between age
3·5 and age 7 scores was 0·36, 0·39 and 0·32 for the rotated
patterns, and 0·60, 0·51 and 0·29 for the unrotated patterns).

A potential limitation of JIVE is that the scores for the distinct
patterns are not constrained to be perfectly uncorrelated.
In practice, the highest correlation observed was 0·23, between
JIVE patterns 1 and 2 for the age 3·5 data. This modest correlation
did not create problems with collinearity in the prediction
models, and both patterns were found to be significantly associ-
ated with BMI.

We have fit relatively simple models to show that the use of
JIVE scores rather than PCA scores does not obscure associations
between the diet and outcome variables. However, either type of
score, used in isolation, is susceptible to representing the effects
of potentially confounded variables such as activity level.

A further limitation of our study is that we did not compare to
the common dimension reduction technique reduced rank
regression. Reduced rank regression may have better concord-
ance across ages because each pattern extraction is supervised
by common variables, typically densities of various nutrients
and macronutrients. Common supervisory variables include
dietary energy density, dietary fibre density, saturated fat
intake, the proportion of total energy from fat and glycaemic
index(4,5,7–12). This type of approach is not relevant for the
Auckland Birthweight Collaborative Study data, as the FFQ is
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Table 2. Summary of linear regression models predicting health outcomes with food patterns at earlier ages

Outcome Score type

Age 3·5 predictors Age 7 predictors

Rsq P* n Rsq P n

Age 7 BMI† JIVE 0·63 0·015 478
PCA 0·63 0·001 478

Age 11 BMI† JIVE 0·46 0·000 480 0·73 0·009 547
PCA 0·47 0·000 480 0·73 0·023 547

Age 7 DBP‡ JIVE 0·159 0·823 445
PCA 0·160 0·729 445

Age 11 DBP‡ JIVE 0·100 0·048 437 0·170 0·214 529
PCA 0·099 0·056 437 0·165 0·707 529

Age 7 SBP‡ JIVE 0·317 0·011 443
PCA 0·314 0·027 443

Age 11 SBP‡ JIVE 0·173 0·011 435 0·241 0·082 524
PCA 0·173 0·011 435 0·241 0·086 524

BMI, body mass index; JIVE, joint and individual variance explained; PCA, principal component analysis; DBP, diastolic blood pressure; SBP, systolic blood pressure.
* The P value given is for the likelihood ratio test comparing the models with and without the food scores. Values <0·05 are considered significant.
† BMI models include BMI at the earlier age, and three food scores computed using either JIVE or PCA.
‡ Blood pressure models include sex, the same blood pressure measurement and height at the earlier age and three food scores.

Table 3. Model coefficients for linear models where the food scores (V1–3) had a significant impact for either JIVE or PCA food scores

Response Predictors

JIVE model PCA model

Coefficient* SE P Coefficient SE P

Age 7 BMI-Z Intercept 0·19 0·03 0·000 0·19 0·03 0·000
Age 3·5 V1 –0·08 0·03 0·006 –0·05 0·03 0·069
Age 3·5 V2 0·06 0·03 0·029 0·07 0·03 0·023
Age 3·5 V3 –0·03 0·03 0·295 –0·08 0·03 0·004
Age 3·5 BMI-Z 1·05 0·04 0·000 1·05 0·04 0·000

Age 11 BMI-Z Intercept 0·16 0·04 0·000 0·16 0·04 0·000
Age 3·5 V1 –0·17 0·04 0·000 –0·11 0·04 0·003
Age 3·5 V2 0·11 0·04 0·007 0·11 0·04 0·006
Age 3·5 V3 –0·07 0·04 0·102 –0·15 0·04 0·000
Age 3·5 BMI-Z 1·01 0·05 0·000 1·01 0·05 0·000

Age 11 BMI-Z Intercept 0·01 0·03 0·838 0·01 0·03 0·852
Age 7 V1 –0·06 0·03 0·019 –0·05 0·03 0·064
Age 7 V2 0·06 0·03 0·013 0·06 0·03 0·035
Age 7 V3 0·01 0·03 0·664 0·03 0·03 0·184
Age 7 BMI-Z 0·96 0·03 0·000 0·96 0·03 0·000

Age 11 DBP mmHg (Intercept) 44·22 2·60 0·000 68·56 4·88 0·000
Age 3·5 V1 –0·77 0·31 0·013 –0·84 0·39 0·034
Age 3·5 V2 0·52 0·30 0·081 0·88 0·41 0·031
Age 3·5 V3 –0·36 0·30 0·236 –0·59 0·39 0·132
Age 3·5 DBP 0·26 0·05 0·000 0·35 0·05 0·000
Male sex 1·62 0·58 0·005 1·20 0·79 0·128
Age 3·5 Height-Z 0·31 0·28 0·261 1·39 0·38 0·000

Age 7 SBP mmHg (Intercept) 59·72 3·71 0·000 59·66 3·72 0·000
Age 3·5 V1 –0·56 0·31 0·074 –0·20 0·30 0·504
Age 3·5 V2 0·92 0·30 0·002 0·86 0·30 0·005
Age 3·5 V3 –0·09 0·31 0·767 –0·25 0·29 0·395
Age 3·5 SBP 0·41 0·04 0·000 0·42 0·04 0·000
Male sex 1·79 0·60 0·003 1·77 0·60 0·003
Age 3·5 Height-Z 1·48 0·28 0·000 1·46 0·28 0·000

Age 11 SBP mmHg (Intercept) 68·29 4·88 0·000 44·16 2·60 0·000
Age 3·5 V1 –1·26 0·42 0·003 –0·53 0·29 0·072
Age 3·5 V2 0·81 0·40 0·044 0·48 0·3 0·106
Age 3·5 V3 –0·51 0·41 0·215 –0·40 0·29 0·169
Age 3·5 SBP 0·35 0·05 0·000 0·26 0·05 0·000
Male sex 1·25 0·79 0·114 1·57 0·58 0·007
Age 3·5 Height-Z 1·41 0·38 0·000 0·30 0·28 0·28

JIVE, joint and individual variance explained; PCA, principal component analysis; BMI-Z, Z-score for body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure.
* Food scores were standardised so that the coefficient represents the effect of a 1 SD change; responses and other covariates are on their original scales.
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not validated for nutrient intake. Beyond this practical
issue, selecting supervisory variables imposes limitations on
what type of common structures can be found. By focussing
on shared variability, JIVE-derived patterns characterise aspects
of the diet that persist across ages, whatever those aspectsmay be.

Finally, the JIVE directions were determined using only
individuals who completed FFQ at all three time points
(although scores were computed for all individuals). The
recently developed technique generalised integrative PCA(41)

theoretically would allow the selected directions to be
influenced by individuals missing FFQ data at one or more time
points; however, currently it lacks a robust software
implementation.

Despite these limitations, we conclude that JIVE scores
offer important practical advantages, and the possibility of
discovering novel associations between the diets at different
ages. JIVE score computation easily accommodates changes in
the questionnaire used, rather than requiring an identical set of
variables for each age.

We also believe JIVE could be useful in the validation of FFQ.
In this process, a subset of individuals completes both an FFQ
and food diary at the same time point, and the concordance
between the two response sets is summarised. Applying JIVE,
with the two instruments analogous to two ‘time points,’ would
help summarise what broad diet patterns are captured by both
instruments, and which are captured by only one. JIVE is
designed to represent linear relationships, so in any situation
relating FFQ to food diaries, one might consider transforming
the food diary quantities so that there is a linear correspondence
with the FFQ scale. For instance, for our FFQ, the scale category
midpoints correspond to 0, 0·5, 2, 4, 12, 22, 28 and 56 servings/
month; taking the square root of servings gives a near-linear
correspondence with the 0–7 scale. Visualisations such as
Fig. 2, where most food groups appear in all three assessments,
would require that food diary items are grouped and named so
that there is reasonable correspondence across instruments.
It may also be tempting to apply JIVE opportunistically if data
from different methodologies (e.g. food diary and FFQ) were
available at different time points of a longitudinal study;
however, interpretation would be difficult without a detailed
understanding of how instrument differences contributed to
any lack of concordance.

Finally, we note that the JIVE scores have the potential to
represent age-related changes in how particular habits or prefer-
ences express themselves. For instance, 11-year-olds had a
higher weighting for soft drinks in the ‘sweet drinks’ aspect of
JIVE pattern 3; younger children had a higher weighting for juice.
Just as reduced rank regression attempts to find dietary patterns
related to a specific outcome using a biomarker to supervise
pattern discovery, our use of JIVE could be seen as using the
FFQ data from ages 7 and 11 to supervise the discovery of
patterns in the age 3·5 data. Thus, JIVE can be used to identify
dietary habits that are established at a young age. In cohorts with
historic diet information, JIVE scores could also be used to char-
acterise long-term habits and examine their association with the
emergence of chronic disease. We believe this knowledge will
assist in the design of early interventions to establish healthy
eating behaviours.
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