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Abstract. In the present paper we prove that every 2-local derivation on a semi-
finite von Neumann algebra is a derivation.
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1. Introduction. The present paper is devoted to 2-local derivations on von
Neumann algebras. Recall that a 2-local derivation is defined as follows: Given an
algebra A, a map � : A → A (not linear in general) is called a 2-local derivation if for
every x, y ∈ A, there exists a derivation Dx,y : A → A such that �(x) = Dx,y(x) and
�(y) = Dx,y(y).

In 1997, Šemrl [7] introduced the notion of 2-local derivation and described
2-local derivations on the algebra B(H) of all bounded linear operators on the infinite-
dimensional separable Hilbert space H. A similar description for the finite-dimensional
case appeared later in [5]. In the paper by Lin and Wong [6], 2-local derivations have
been described on matrix algebras over finite-dimensional division rings.

In [2] the authors suggested a new technique and have generalized the above-
mentioned results of [7] and [5] for arbitrary Hilbert spaces, namely they considered
2-local derivations on the algebra B(H) of all linear-bounded operators on an arbitrary
(no separability is assumed) Hilbert space H and proved that every 2-local derivation
on B(H) is a derivation.

In [1] we also suggested another technique and generalized the above-mentioned
results of [7], [5] and [2] for arbitrary von Neumann algebras of type I and proved that
every 2-local derivation on these algebras is a derivation. In [3] (Theorem 3.4) a similar
result was proved for finite von Neumann algebras.

In the present paper we extended the above results and give a short proof of the
theorem for arbitrary semi-finite von Neumann algebras.

2. Preliminaries. Let M be a von Neumann algebra.
Definition. A linear map D : M → M is called a derivation if D(xy) = D(x)y +

xD(y) for any two elements x, y ∈ M.
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A map � : M → M is called a 2-local derivation if for any two elements x, y ∈ M
there exists a derivation Dx,y : M → M such that �(x) = Dx,y(x) and �(y) = Dx,y(y).

It is known that any derivation D on a von Neumann algebra M is an inner
derivation, that is there exists an element a ∈ M such that

D(x) = ax − xa, x ∈ M.

Therefore, for a von Neumann algebra M the above definition is equivalent to the
following one: A map � : M → M is called a 2-local derivation if for any two
elements x, y ∈ M there exists an element a ∈ M such that �(x) = ax − xa and
�(y) = ay − ya.

Let M be a von Neumann algebra, � : M → M be a 2-local derivation. It is easy
to see that � is homogeneous. Indeed, for each x ∈ M, and for λ ∈ � there exists a
derivation Dx,λx such that �(x) = Dx,λx(x) and �(λx) = Dx,λx(λx). Then,

�(λx) = Dx,λx(λx) = λDx,λx(x) = λ � (x).

Hence, � is homogenous. Further, for each x ∈ M, there exists a derivation Dx,x2 such
that �(x) = Dx,x2 (x) and �(x2) = Dx,x2 (x2). Then,

�(x2) = Dx,x2 (x2) = Dx,x2 (x)x + xDx,x2 (x) = �(x)x + x � (x).

A linear map satisfying the above identity is called a Jordan derivation. It is proved in
[4] that any Jordan derivation on a semi-prime algebra is a derivation. Since every von
Neumann algebra M is semi-prime (i.e. aMa = {0} implies that a = {0}), in order to
prove that a 2-local derivation � : M → M is a derivation it is sufficient to show that
the map � : M → M is additive.

3. 2-local derivations on semi-finite von Neumann algebras. LetM be a semi-finite
von Neumann algebra and let τ be a faithful normal semi-finite trace on M. Denote
by mτ the definition ideal of τ , i.e the set of all elements a ∈ M such that τ (|a|) < ∞.
Then mτ is a ∗-algebra, and moreover mτ is a two-sided ideal of M (see [8], Definition
2.17).

It is clear that any derivation D on M maps the ideal mτ into itself. Indeed, since
D is inner, i.e. D(x) = ax − xa, x ∈ M for an appropriate a ∈ M, we have D(x) =
ax − xa ∈ mτ for all x ∈ mτ . Therefore, any 2-local derivation on M also maps mτ into
itself.

THEOREM. Let M be a semi-finite von Neumann algebra, and let � : M → M be a
2-local derivation. Then � is a derivation.

Proof. Let � : M → M be a 2-local derivation and let τ be a faithful normal semi-
finite trace on M. For each x ∈ M and y ∈ mτ there exists a derivation Dx,y on M
such that �(x) = Dx,y(x), �(y) = Dx,y(y). Since every derivation on M is inner, there
exists an element a ∈ M such that

[a, xy] = Dx,y(xy) = Dx,y(x)y + xDx,y(y) = �(x)y + x�(y),

i.e.

[a, xy] = �(x)y + x�(y).
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We have

|τ (axy)| < ∞.

Since mτ is an ideal and y ∈ mτ , the elements axy, xy, xya and �(y) also belong to mτ

and hence we have

τ (axy) = τ (a(xy)) = τ ((xy)a) = τ (xya).

Thus,

0 = τ (axy − xya) = τ ([a, xy]) = τ (�(x)y + x�(y)),

i.e.

τ (�(x)y) = −τ (x�(y)).

For arbitrary u, v ∈ M and w ∈ mτ set x = u + v, y = w. Then �(w) ∈ mτ and

τ (�(u + v)w) = −τ ((u + v)�(w))

= −τ (u�(w)) − τ (v�(w)) = τ (�(u)w) + τ (�(v)w)

= τ ((�(u) + �(v))w),

and so

τ ((�(u + v) − �(u) + �(v))w) = 0,

for all u, v ∈ M and w ∈ mτ . Denote b = �(u + v) − �(u) + �(v). Then,

τ (bw) = 0 ∀w ∈ mτ (1).

Now take a monotone increasing net {eα}α of projections in mτ such that eα ↑ 1 in M.
Then {eαb∗}α ⊂ mτ . Hence, (1) implies

τ (beαb∗) = 0 ∀α.

At the same time beαb∗ ↑ bb∗ in M. Since the trace τ is normal, we have

τ (beαb∗) ↑ τ (bb∗),

i.e. τ (bb∗) = 0. The trace τ is faithful, so this implies that bb∗ = 0, i.e. b = 0. Therefore,

�(u + v) = �(u) + �(v), u, v ∈ M,

i.e. � is an additive map onM. As it was mentioned in ‘Preliminaries’ this implies that �
is a derivation on M. The proof is complete. �
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