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The characterisation and the modelling of air concentration distributions in self-aerated
free-surface flows has been subject to sustained research interest since the 1970s. Recently,
a novel two-state formulation of the structure of a self-aerated flow was proposed by
Kramer & Valero (J. Fluid Mech., vol. 966, 2023, A37), which physically explains the
air concentration through the weak interaction of two canonical flow momentum layers,
comprising a turbulent boundary layer and a turbulent wavy layer (TWL). The TWL was
modelled using a Gaussian error function, assuming that the most dominant contribution
are wave troughs. Here, it is shown that air bubbles form an integral part of the TWL, and
its formulation is expanded by adopting a superposition principle of entrapped air (waves)
and entrained air (bubbles). Combining the superposition principle with the two-state
formulation, an expression for the depth-averaged (mean) air concentration is derived,
which allows us to quantify the contribution of different physical mechanisms to the
mean air concentration. Overall, the presented concepts help to uncover new flow physics,
thereby contributing fundamentally to our understanding of self-aerated flows.

Key words: gas/liquid flow, channel flow

1. Introduction

Self-aeration is a fascinating flow phenomenon that is frequently observed in
high-Froude-number open-channel flows (figure 1). Such flows are characterised by strong
turbulence and neither surface tension nor gravity are able to maintain surface cohesion
(Brocchini & Peregrine 2022), causing entrainment of air bubbles into the flow column.
These bubbles subsequently break down into a wide range of bubble sizes (Lamarre &
Melville 1991; Deane & Stokes 2002; Deike, Melville & Popinet 2016; Chan, Johnson
& Moin 2021), and eventually penetrate towards the channel bottom through turbulent
diffusion. It is known that entrained air can significantly alter flow properties, thereby
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Figure 1. Self-aeration in high-Froude-number flows: (a) the TWL of a flow over a microrough channel bed at
the Water Research Laboratory, UNSW Sydney, Australia; specific water flow rate q = 0.188 m2 s−1; chute
angle θ = 10.8◦; streamwise distance from invert x = 6.3 to 6.5 m; image courtesy of Armaghan Severi,
adapted with permission; (b) schematic of the TWL of a self-aerated flow down a smooth chute, including
a differentiation between entrapped, entrained and total conveyed air.

leading to flow bulking, drag reduction, cavitation protection and enhanced gas transfer
(Straub & Anderson 1958; Falvey 1990; Gulliver, Thene & Rindels 1990; Kramer et al.
2021).

As such, the characterisation and the modelling of air concentration distributions
has been subject to sustained research interest over the last decades. Different groups
of researchers have conceptualised the air concentration using single-layer (Rao &
Gangadharaiah 1971; Wood 1991; Chanson & Toombes 2001; Valero & Bung 2016; Zhang
& Chanson 2017) or double-layer approaches (Straub & Anderson 1958; Killen 1968; Wei
& Deng 2022; Wei et al. 2022). Based on visual observations, various physical processes
have been identified in self-aerated flows, comprising generation of free-surface waves,
surface disruption, air entrainment, turbulent diffusion of air bubbles and ejection of
droplets. It is argued that single-layer approaches are unable to represent these different
flow processes, while good data-driven agreement between single-layer models and
measurements has been achieved, which is, however, at the expense of empirically fitted
coefficients. Recently, Kramer & Valero (2023) presented a physically based two-state
convolution formulation for the air concentration that is built upon a turbulent boundary
layer (TBL) and a turbulent wavy layer (TWL).

It is important to note that none of the previous single-layer or double-layer air
concentration conceptualisations have taken into account the contribution of entrapped
and entrained air, as depicted in figure 1(b), which is introduced in the following. In
a seminal series of experiments, Killen (1968) investigated surface characteristics of
self-aerated flows by deploying a common phase-detection probe as well as a larger-sized
conduction probe that dipped in and out of the surface roughness/waves, hereafter
referred to as a dipping probe. Wilhelms & Gulliver (2005) reanalysed the data of
Killen (1968) and pointed out that the dipping probe measured entrapped air, transported
between wave crests and troughs, whereas the common phase-detection probe measured a
combination of entrapped and entrained air, termed total conveyed air. Although Wilhelms
& Gulliver (2005) articulated the need for two measurements, one for entrapped air and
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Turbulent free-surface in self-aerated flows

one for total conveyed air, no other researchers have deployed a dipping probe since,
showing the uniqueness of Killen’s (1968) data set.

The key novelty of the present work is the introduction of a superposition principle,
which explicitly accounts for entrapped air (waves) and entrained air (bubbles), allowing us
to quantify the importance of different physical mechanisms to the mean air concentration.
In the following, the two-state formulation of Kramer & Valero (2023) is briefly
summarised (§ 2.1). Thereafter, the superposition principle for the air concentration
of the TWL is proposed, demonstrating that entrapped air and entrained air follow a
Gaussian error function and a normal distribution, respectively (§ 2.2). The superposition
principle is then combined with the two-state convolution in § 2.3, providing the most
complete and physically consistent description of the air concentration distribution to
date. A bed-normal integration of this expanded formulation allows us to differentiate
between three different physical mechanisms that contribute to the mean air concentration,
comprising entrapped air within the TWL, entrained air within the TWL and entrained air
within the TBL (§ 2.3). The different parameters of the superposition principle as well as
the application of the new formulation are assessed against Killen’s (1968) data set in § 3,
followed by a discussion on model applicability and other limitations (§ 4).

2. Methods

2.1. Two-state convolution
This section provides a brief summary of the governing equations of the two-state
convolution model, while more details are presented in Kramer & Valero (2023). The air
concentration of the TBL (c̄TBL) is reflected through a solution of the advection–diffusion
equation for air in water, whereas the air concentration of the TWL (c̄TWL), encompassing
bubbles and waves, was found to follow a Gaussian error function (Kramer & Valero 2023)

c̄TBL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c̄δ/2

(
y

δ − y

)β

, y ≤ δ/2,

c̄δ/2 exp
(

4β

δ

(
y − δ

2

))
, y > δ/2,

(2.1)

c̄TWL = 1
2

(
1 + erf

(
y − y50√

2H

))
, (2.2)

where c̄δ/2 is the air concentration at half the boundary layer thickness (δ), y is the
bed-normal coordinate, β = v̄rSc/κu∗ is the Rouse number, v̄r is the bed-normal bubble
rise velocity, κ is the van Kármán constant, u∗ is the friction velocity and Sc is the
turbulent Schmidt number, defined as the ratio of eddy viscosity and turbulent mass
diffusivity. Further, H is a characteristic length scale that is proportional to the thickness
of the TWL, erf is the Gaussian error function and y50 is the mixture flow depth where
the total conveyed air concentration is c̄ = 0.5; note that other mixture flow depths are
represented in the same manner, e.g. y90 = y(c̄ = 0.9). The two-state model assumes a
fluctuating interface that separates the TBL and the TWL, and a convolution of the two
states with a Gaussian interface probability leads to the following expression for the mean
air concentration (Krug, Philip & Marusic 2017; Kramer & Valero 2023)

c̄ = c̄TBL(1 − Γ ) + c̄TWLΓ, (2.3)
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with

Γ ( y; y�, σ�) = 1
2

(
1 + erf

(
y − y�√

2σ�

))
, (2.4)

where y� is the time-averaged interface position and σ� is its standard deviation. It is
noted that the two-state formulation (2.3) has been successfully validated against more
than 500 air concentration data sets from the literature, hinting at universal applicability.
For more information on the development of (2.1) to (2.4), as well as on the definition and
determination of associated physical model parameters, the reader is referred to Kramer &
Valero (2023).

2.2. Superposition principle (TWL)
Herein, it is hypothesised that the air concentration of the TWL results from a
superposition of waves and entrained air bubbles, which was similarly proposed by
Wilhelms & Gulliver (2005) for the mean air concentration. To formulate this principle,
the focus is set on a flow situation where aeration is confined to the wavy layer, similar to
figure 1. The entrapped air concentration of the TWL can be interpreted as the probability
of encountering entrapped air at a certain location within the flow. In a time-averaged
sense, this probability can be expressed as p(c̄trap) = Vtrap/Vtot, where Vtrap = volume
of entrapped air and Vtot = Vtrap + Vent + VW = total volume of the mixture, including
the volume of entrained air (Vent) and the volume of water (VW ). The probability of
encountering an entrained air bubble within a wave is p(c̄∗

ent | c̄trap) = Vent/(Vent + VW),
which is a conditional probability, given that a wave/water phase is present. Considering
the two complementary events c̄trap and (1 − c̄trap), the expression for the total conveyed
air concentration of the TWL reads

c̄TWL = c̄trap + (1 − c̄trap)c̄∗
ent. (2.5)

It is recognised that

(1 − c̄trap)c̄∗
ent = Vent + VW

Vtot

Vent

Vent + VW
= Vent

Vtot
= c̄ent, (2.6)

where c̄ent is the entrained air concentration, defined as the volume of entrained air
bubbles related to the total mixture volume. Combining (2.5) and (2.6) leads to the final
superposition equation for the TWL (figure 2)

c̄TWL = c̄trap + c̄ent. (2.7)

It is noted that the total conveyed air concentration c̄TWL is described by (2.2),
c.f. figure 2(a). Valero & Bung (2016) discussed that the entrapped air concentration c̄trap
follows an analytical solution of the air–water surface height distribution, which is (also)
reflected by a Gaussian error function (see figure 2b)

c̄trap = 1
2

(
1 + erf

(
y − y50trap√

2Htrap

))
, (2.8)

where y50trap corresponds to the mean water level, and Htrap is the root-mean-square wave
height. Rearranging (2.7), an analytical solution for the entrained air concentration can be
written as

c̄ent = c̄TWL − c̄trap = 1
2

(
erf
(

y − y50√
2H

)
− erf

(
y − y50trap√

2Htrap

))
. (2.9)
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Figure 2. Representation of Killen’s (1968) measurements in a self-aerated flow with q = 0.78 m2 s−1,
θ = 30◦ and x = 7.4 m; (meas, measured): (a) total conveyed air concentration, measured with a common
phase-detection probe; (b) entrapped air concentration, measured with a dipping probe; (c) entrained air
concentration, determined through the superposition principle.
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Figure 3. Representation of Killen’s (1968) measurements in a self-aerated flow with q = 0.39 m2 s−1,

θ = 52.5◦, x = 3.7 m: (a) superposition principle; (b) two-state air concentration convolution.

Figure 2(c) shows that the entrained air concentration corresponds to the difference of
two cumulative Gaussians (2.9), which in turn reflects a Gaussian distribution. Further
parameters of interest are the peak entrained air concentration c̄max and its corresponding
position yc̄max , which were added to figure 2(c) for completeness. It is emphasised that
these two parameters are not necessarily required, as the profile of entrained air (TWL) is
mathematically defined by (2.9).

2.3. Combining both approaches
In § 2.2, the superposition principle was formulated for flow situations where aeration is
confined to the wavy layer (pure TWL, compare figures 1 and 2). In practice, air bubbles
are often diffused deeper into the flow column, one example being shown in figure 3,
where it is seen that the superposition principle still holds for the TWL (figure 3a). In
order to explicitly account for the contribution of entrapped and entrained air within the
TWL, the two-state convolution (2.3) is combined with the superposition principle (2.7)

c̄ = (
c̄trap + c̄ent

)
Γ + c̄TBL(1 − Γ ), (2.10)
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which describes the complete air concentration profile, see figure 3(b). Further, (2.10)
can be integrated between the channel invert and y90, yielding an expression for the
depth-averaged (mean) air concentration

〈c̄〉 = 1
y90

∫ y90

y=0
c̄ dy (2.11)

= 1
y90

∫ y90

y=0
c̄trapΓ dy︸ ︷︷ ︸

〈c̄〉TWLtrap

+ 1
y90

∫ y90

y=0
c̄entΓ dy︸ ︷︷ ︸

〈c̄〉TWLent

+ 1
y90

∫ y90

y=0
c̄TBL(1 − Γ ) dy︸ ︷︷ ︸
〈c̄〉TBL

. (2.12)

Equation (2.10) represents the most complete and physically consistent description of
the air concentration distribution in self-aerated flows to date. Its integrated form (2.12)
allows us to differentiate between three different physical mechanisms contributing to the
mean air concentration, comprising: (i) entrapment of air due to free-surface deformations;
(ii) entrainment of air due to turbulent forces exceeding gravity and surface tension forces;
and (iii) turbulent diffusion of air bubbles into the TBL, represented through 〈c̄〉TWLtrap ,
〈c̄〉TWLent and 〈c̄〉TBL, respectively.

3. Results

The application of the superposition principle requires two different measurements, one
for entrapped air and one for total conveyed air. Commonly, the total conveyed air has been
measured using intrusive phase-detection probes, e.g. Straub & Anderson (1958), Chanson
& Toombes (2001), Bung (2009) and Severi (2018), whereas entrapped air has rarely been
measured, one exception being the smooth chute data from Killen (1968, 20 profiles), to
which the expanded formulation of the two-state model is applied. This reanalysis of all
20 profiles is presented in Appendix A, and more details of the original measurements are
provided in table 1. Here, the local Froude-number is defined as Fr = q/(gd3

eq)
1/2, with

g being the gravitational acceleration and deq = ∫ y90
y=0(1 − c̄) dy the equivalent clear water

flow depth.
The two free parameters H and Htrap of the superposition principle were obtained

through least squares fitting. Here, H was obtained by minimising the sum of squared
differences between measurements and modelled air concentrations within the upper flow
region, while the full profile was used for determination of Htrap, as depicted in figure 3(a).
The flow depths y50 and y50trap could be directly extracted from Killen’s (1968) data,
and were therefore regarded as fixed. Other free and fixed parameters of the two-state
convolution (β, y�, σ�, c̄δ/2 and δ) had already been determined by Kramer & Valero
(2023), and are therefore not discussed hereafter. In the following, the results of the
reanalysis of Killen’s (1968) measurements are presented.

3.1. Physical parameters of the TWL
Figure 4(a) shows the length scale of the of the TWL (H) as well as the root-mean-square
wave height (Htrap), both normalised with y90 and plotted against the mean air
concentration. Similar to the data of Kramer & Valero (2023), there was a linear
dependence between H and 〈c̄〉. The present analysis reveals that the length scale
of the TWL (H) and the root-mean-square wave height (Htrap) showed some similar
trends (figure 4a), which implies that H can provide a rough indication for Htrap,
while it is acknowledged that H may not capture the full complexity of the air–water
interface geometry. Further, the empirical three-sigma rule was applied to show that
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Turbulent free-surface in self-aerated flows

Reference chute type profile q 〈c̄〉 Fr θ ks
(−) (−) (−) (m2 s−1) (−) (−) (◦) (mm)

Killen (1968) smooth 1 to 5 0.39 0.20 to 0.33 9.4 to 11.8 30 0.71
Killen (1968) smooth 6 to 9 0.78 0.15 to 0.25 10.3 to 12.2 30 0.71
Killen (1968) smooth 10 to 17 0.39 0.19 to 0.55 14.5 to 21.1 52.5 0.71
Killen (1968) smooth 18 to 20 0.20 0.35 to 0.42 6.8 to 8.5 30 0.71

Table 1. Experimental flow conditions of Killen (1968); all reanalysed profiles extracted from Wilhelms &
Gulliver (1994, tables B1 to B4); note that the profile number corresponds to Appendix A.

ks is roughness height; chute length = 15.25 m; chute width = 0.46 m
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Figure 4. Physical parameters of the TWL for the data of Killen (1968): (a) length scale H and
root-mean-square wave height Htrap versus mean air concentration; (b) three-sigma rule applied to evaluate
H; (c) characteristic depths y50 and y50trap versus mean air concentration.

H corresponded to the difference between the characteristic flow depths y84 and y50
(figure 4b), which was also applicable to Htrap (not shown). It is worthwhile to mention
that roughness effects as well as the streamwise dependence of model parameters are
implicitly accounted for in 〈c̄〉.

As discussed in Kramer & Valero (2023), the normalised flow depth y50 was linearly
related to the mean air concentration (figure 4c). In contrast, the mean water depth y50trap
was found to be less dependent on 〈c̄〉, and y50trap/y90 became constant for 〈c̄〉 > 0.4
(figure 4c). The difference between y50 and y50trap was indicative for the downwards shift
of the Gaussian error function for entrapped air, compare figure 3(a).

3.2. Mean air concentration decomposition
Figure 5(a) confirms that predicted mean air concentrations (2.12) were in good
agreement with measured mean air concentrations, the latter directly evaluated from
phase-detection intrusive measurements using (2.11). Note that (2.12) was numerically
integrated, incorporating the analytical solutions for the c̄TBL (2.1), c̄trap (2.8), c̄ent (2.9),
as well as Γ (2.4).

Equation (2.12) allows us to differentiate between three different physical mechanisms
contributing to the mean air concentration. It was found that 〈c̄〉TBL and 〈c̄〉TWLent
increased with increasing 〈c̄〉, whereas the entrapped air concentration of the TWL was
approximately constant, at 〈c̄〉TWLtrap ≈ 0.1 (figure 5b; profiles ordered by 〈c̄〉), which
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Figure 5. Mean air concentrations derived from Killen’s (1968) data: (a) measured mean air concentrations
versus (2.12); (b) contribution of different physical mechanisms to the mean air concentration as per (2.12).

hints at the fact that the geometry of the (mean) air–water interface of the TWL varied
only slightly in Killen’s (1968) experiments. Note that a constant entrapped mean air
concentration was previously reported by Wilhelms & Gulliver (2005), which is further
corroborated by recent computations of the free-surface roughness wavelength distribution
in supercritical flows (Valero & Bung 2018, figure 12). More generally, the deformation of
the free-surface in shallow turbulent flows, and therefore the entrapped air concentration,
is known to be driven by various processes, including the interaction of turbulent coherent
structures with the water surface, resonant wave growth and effects of bed topography
(Valero & Bung 2016; Muraro et al. 2021; Brocchini & Peregrine 2022). While effects
of these different processes on entrapped and entrained air concentrations have not been
studied in the past, the current decomposition of the mean air concentration provides
a versatile framework that allows us to assess the contribution of individual physical
mechanisms.

3.3. Streamwise self-aeration development and equilibrium state
In figure 5(b), the profiles of Killen’s (1968) four measurement series (table 1) were
ordered by increasing 〈c̄〉, which is appropriate to exemplify general trends of 〈c̄〉TWLtrap ,
〈c̄〉TWLent and 〈c̄〉TBL with respect to 〈c̄〉. To provide more insights on 〈c̄〉 and its controlling
parameters, it is important to point out different distinct regions in self-aerated flows,
including the non-aerated developing flow region, the aerated gradually varied flow (GVF)
region and the aerated uniform flow (UF) region (figure 1b), which have been described
in the literature, e.g. Wood (1991) and Chanson (1996), amongst others. In the GVF
region (figure 1b), the mean air concentration 〈c̄〉 depends on the streamwise location with
respect to the inception point of air entrainment (Li, figure 1b), as well as on the slope θ

and (similarly) on the Froude-number. In contrast, the mean air concentration in the UF
region, termed equilibrium mean air concentration 〈c̄〉∞ (figure 1b), is known to be solely
a function of θ (or Fr) (Hager 1991; Matos 1995).

Figure 6(a) compares equilibrium air concentrations from Straub & Anderson (1958)
with the present reanalysis, showing that Killen’s (1968) measurements were taken in
the GVF region. Following Wei & Deng (2022), Killen’s (1968) mean air concentrations
are normalised with their equilibrium value, approximated as 〈c̄〉∞ = 0.75 sin θ0.75

(Hager 1991), and plotted against the dimensionless streamwise coordinate (x − Li)/Li
(figure 6b,c). This normalisation shows a good collapse of the four different measurement
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Figure 6. Equilibrium air concentration and streamwise self-aeration development: (a) equilibrium air
concentrations 〈c̄〉∞ and 〈c̄〉TBL∞ versus Froude-number for the data of Straub & Anderson (1958), compared
with non-equilibrium concentrations from Killen (1968); (b,c) evolution of depth-averaged (mean) air
concentrations in Killen’s (1968) high-Froude-number flows.

series, thereby demonstrating how the two-state superposition model can be used to finely
differentiate between different physical processes in the streamwise decomposition of 〈c̄〉.
The evolution of 〈c̄〉TBL displays asymptotic behaviour towards equilibrium and is well
described by an analytical solution of the continuity equation for air in water (Appendix B)

〈c̄〉TBL = 〈c̄〉TBL∞
(

1 − exp
(

−ur cos θ

q
(x − Li)

))
, (3.1)

where 〈c̄〉TBL∞ is the equilibrium mean air concentration of the TBL, and ur is the
depth-averaged bubble rise velocity. Here, (3.1) was evaluated for Killen’s (1968) data
on the 52.5◦ slope, and good agreement with measurements was achieved using ur =
0.1 m s−1 and 〈c̄〉TBL∞ = 0.53〈c̄〉∞ (figure 6b). The mean air concentration 〈c̄〉 similarly
approaches equilibrium, and an additional comparison with data from Straub & Anderson
(1958) reveals that the length of the GVF region is approximately four to six times Li
(figure 6b). Further, figure 6(c) shows that the trends in 〈c̄〉TWLtrap and 〈c̄〉TWLent are opposite
for (x − Li)/Li � 2, which is consistent with experimental observations of free-surface
roughness/waves, but no entrained air, upstream of the inception point of free-surface
aeration (Felder, Severi & Kramer 2022). In the GVF region, around (x − Li)/Li � 2, the
contributions of 〈c̄〉TWLtrap and 〈c̄〉TWLent become approximately constant, which suggests
that equilibrium for the TWL is achieved farther upstream than for the TBL. Additional
research is required to confirm these findings.

4. Discussion: model applicability and limitations

In § 2.2, the superposition principle (2.7) was formulated for flow situations where aeration
is confined to the wavy layer of a supercritical free-surface flow, i.e. a pure TWL, and it
was combined with the two-state convolution (2.10) to account for flows where the air
bubble diffusion layer protrudes to the channel bottom, see § 2.3. Therefore, the bottom
air concentration c̄0, defined as the air concentration in the vicinity of the solid invert
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Figure 7. Applicability of the proposed equations for smooth chute flows: variation of c̄0 versus 〈c̄〉.

(Hager 1991; Kramer et al. 2021), is a natural choice to exemplify the application range of
proposed equations. Figure 7 shows a plot of c̄0 versus 〈c̄〉, illustrating that (2.7) is valid for
〈c̄〉 � 0.25, while (2.10) is valid for 〈c̄〉 � 0.25. It is noteworthy mentioning that the total
conveyed air concentration is fully described by the two-state convolution (2.3) introduced
by Kramer & Valero (2023), while the superposition principle provides additional physical
insights into the structure of the TWL, given that additional measurements of entrapped
air are made.

The model parameters of the extended two-state superposition principle (2.10) are the
Rouse number (β), the boundary layer thickness (δ), the air concentration at half the
boundary layer thickness (c̄δ/2), the transition/interface parameters y� and σ�, mixture flow
depths y50 and y50trap , as well as the length scale of the TWL (H) and the root-mean-square
wave height (Htrap). Of these parameters, y50, y50trap , c̄δ/2 and δ were directly extracted
from measurements, whereas β, y�, σ�, H and Htrap were obtained through fitting. It
is acknowledged that the predictive capability for some parameters is currently limited,
which is, however, deemed acceptable, as the aim of the present model is to establish a
physically based description of the air concentration distribution, with physical parameters
responding to the flow. Further details on H,Htrap, y50 and y50trap are presented in figure 4,
while the interface parameters and the Rouse number range between β = 0.05 to 1.2,
y�/δ = 0.6 to 0.9 and σ�/δ = 0.1 to 0.2 (Kramer & Valero 2023).

As mentioned before, the application of the superposition principle requires two
separate measurements, one for entrapped air and one for total conveyed air. Killen (1968)
used a common intrusive phase-detection probe for the measurement of total conveyed
air, while a larger-sized dipping probe was used for the measurement of entrapped air.
It is emphasised that these measurements are unique, and no other researchers have
deployed a comparable set-up since. Future measurement of entrapped air, either through
a measurement set-up similar to that of Killen (1968) or via non-intrusive measurement
techniques, such as acoustic displacement meters (Cui, Felder & Kramer 2022) or laser
time-of-flight or triangulation sensors, are of high relevance to increase our fundamental
physical understanding of air–water flow processes, which is anticipated to lead to an
improvement/revision of some existing modelling approaches, e.g. for air–water mass
transfer in supercritical flows (Bung & Valero 2018; Kramer 2020).
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Turbulent free-surface in self-aerated flows

Lastly, it is stressed that the two-state superposition model has been developed for
statistically steady self-aerated flows on steep slopes in prismatic rectangular channels.
However, the model can readily be adapted to characterise air concentration distributions
of other statistically steady self-aerated flows in prismatic geometries, e.g. hydraulic
jumps. The application to unsteady aerated flows, such as breaking waves, is more involved
and requires the hundredfold repetition of experiments, followed by an application of
ensemble-averaging techniques, see Blenkinsopp & Chaplin (2007) and Whutrich, Shi
& Chanson (2022).

5. Conclusion

In this work, a novel superposition principle for entrapped and entrained air within
the TWL of a supercritical open-channel flow is presented. The corresponding air
concentration distributions for entrapped air and total conveyed air both follow a Gaussian
error function, while entrained air is characterised by a Gaussian normal distribution.
The free parameters of the mathematical formulation are the root-mean-square wave
height and the length scale of the TWL, which are shown to be of similar magnitude
and dependent on the mean air concentration. Subsequently, the superposition principle
is combined with the two-state convolution of Kramer & Valero (2023), representing
the most complete and physical description of the air concentration distribution to date.
A bed-normal integration of this combined equation allows us to differentiate between
three different physical mechanisms that contribute to the mean air concentration,
comprising entrapment of air due to free-surface deformations, entrainment of air due
to turbulent forces and turbulent diffusion of air bubbles into the TBL. The subsequent
analysis of the streamwise development of these mechanisms suggests that the equilibrium
for the TWL is achieved farther upstream than for the TBL. While further research is
required to confirm this finding, the presented application nicely demonstrates how the
two-state superposition model can be used to uncover new flow physics in self-aerated
flows. It is acknowledged that only a limited data set was analysed herein, which is because
the quantification of entrapped air requires specific flow measurement instrumentation, i.e.
a dipping probe.

Overall, it is anticipated that the presented theory holds for a wide range of
high-Froude-number self-aerated flows, encompassing the range tested by Straub &
Anderson (1958, 5 � Fr � 32). A meaningful extension of this work would comprise
a thorough development/testing of new sensors for the non-intrusive measurement of
entrapped air, as well as the development of advanced phase-detection signal processing
techniques that allow us to discriminate between entrapped and entrained air. These
developments are to be followed by detailed investigations on the functional dependence
between model parameters and flow/geometric properties, including bottom-surface
roughness, friction velocity, flow depth, as well as other statistical measures of bulk flow
and turbulence. A better understanding of the underlying physics of self-aerated flows
will enable the formulation and implementation of more physically consistent numerical
models for air entrainment and transport.
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Appendix A. Reanalysis of Killen’s (1968) measurements

This appendix presents the application of the combined superposition two-state
formulation to 20 concentration profiles of Killen’s (1968) data set, with corresponding
flow conditions indicated in table 1. In figure 8, each measured profile with 〈c̄〉 � 0.25
is represented by two subpanels. In the first subpanel, identified by i, the superposition
principle is plotted with its corresponding (2.8), (2.9), (2.7), together with the profile
number, chute angle (θ ), specific discharge (q) and streamwise distance (x in metres) from
the upstream crest. Each second subpanel (identified by ii) contains plots of the two-state
formulation (2.1), (2.7), (2.10), including the mean air concentration. For 〈c̄〉 � 0.25, the
air concentration distribution is characterised by the superposition principle alone, and
only the first subpanel is plotted (index dropped). The numbering of the profiles increases
with streamwise distance for each test series, as per table 1, and the background of every
first profile of the four series is shaded in grey.

Appendix B. Streamwise evolution of 〈c̄〉TBL

To develop an equation for the streamwise evolution of 〈c̄〉TBL, the continuity equation for
entrained air within the TBL is written (Wood 1985)

d(qaTBL)

dx
= ve − 〈c̄〉TBLur cos θ, (B1)

where qaTBL is the specific air flow rate of the TBL per unit width, ve is the entrainment
velocity of air into the TBL, and ur cos θ represents detrainment of air, with ur being a
depth-averaged rise velocity of air bubbles. It is noted that previous researchers used the
total air flow rate qa instead of qaTBL , which, however, is thought to be incorrect, as the
volume of entrapped air, for example in the developing non-aerated region, is not balanced
by rising air bubbles. Similar to Wood (1985), it is now assumed qaTBL/q ≈ 〈c̄〉TBL; note
that this assumption represents a simplification, and more elaborate relationships for
qaTBL/q may be used, see Wood (1991) and Chanson (1996), which, however, would not
lead to an explicit solution. Substitution of qaTBL/q ≈ 〈c̄〉TBL into (B1) leads to

q
d〈c̄〉TBL

dx
= ve − 〈c̄〉TBLur cos θ. (B2)

In the UF region (figure 1), streamwise gradients vanish, implying that (B2) simplifies
to

0 = ve∞ − 〈c̄〉TBL∞ur∞ cos θ, (B3)
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Figure 8. For caption see next page.
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Figure 8. Twenty concentration profiles of Killen’s (1968) data set, with corresponding flow conditions
indicated in table 1.

where ve∞, 〈c̄〉TBL∞ and ur∞ are the entrainment velocity, mean air concentration, and
bubble rise velocity in the UF region. Equation (B3) is now subtracted from (B2), further
assuming ve ≈ ve∞ and ur ≈ ur∞

q
d〈c̄〉TBL

dx
= ur cos θ (〈c̄〉TBL∞ − 〈c̄〉TBL). (B4)

Separating variables

1
〈c̄〉TBL∞ − 〈c̄〉TBL

d〈c̄〉TBL = ur cos θ

q
dx, (B5)

and integrating between the inception point of air entrainment (x = Li) and an arbitrary
downstream location∫ 〈c̄〉TBL

0

1
〈c̄〉TBL∞ − 〈c̄〉TBL

d〈c̄〉TBL = ur cos θ

q

∫ x

x=Li

dx, (B6)

yields the following solution

ln
( 〈c̄〉TBL∞

〈c̄〉TBL∞ − 〈c̄〉TBL

)
= ur cos θ

q
(x − Li), (B7)

where the lower limit of the integral on the left-hand side of (B6) corresponds to the
entrained air concentration at the inception point, which per definition 〈c̄〉TBL(x = Li) = 0.
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Equation (B7) can be rearranged/simplified to obtain the following analytical expression
for the streamwise development of 〈c̄〉TBL

〈c̄〉TBL = 〈c̄〉TBL∞
(

1 − exp
(

−ur cos θ

q
(x − Li)

))
. (B8)

This equation provides a simple method to characterise the increase of the mean air
concentration of the TBL as function of the equilibrium air concentration (〈c̄〉TBL∞),
depth-averaged bubble rise velocity (ur), slope (θ ), specific water flow rate (q) and the
streamwise distance from the inception point of air entrainment (x − Li). Substituting
q = 〈ū〉i di, with 〈ū〉i and di being the mean water velocity and the water depth at
the inception point, Wilhelms & Gulliver’s (2005, eq. 4) empirical relationship can be
recovered

〈c̄〉TBL = 〈c̄〉TBL∞
(

1 − exp
(

−ur cos θ

〈ū〉i

x − Li

di

))
= 〈c̄〉TBL∞

(
1 − exp

(
−α

x − Li

di

))
,

(B9)

thereby revealing that their coefficient α = (ur cos θ)/〈ū〉i corresponds to a dimensionless
bubble rise velocity. In order to solve equations (B8) or (B9), the unknowns ur and
〈c̄〉TBL∞ need to be determined. One can perform some air-water flow measurements or,
alternatively, use a best-fit approach.
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