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Previous experimental studies on turbulent square duct flow have focused mainly on
high Reynolds numbers for which a turbulence-induced eight-vortex secondary flow
pattern exists in the cross-sectional plane. More recently, direct numerical simulations
(DNS) have revealed that the flow field at Reynolds numbers close to transition can
be very different; the flow in this ‘marginally turbulent’ regime alternating between
two states characterised by four vortices. In this study, we experimentally investigate
the onset criteria for transition to turbulence in square ducts. In so doing, we highlight
the potential importance of Coriolis effects on this process for low-Ekman-number
flows. We also present experimental data on the mean flow properties and turbulence
statistics in both marginally and fully turbulent flow at relatively low Reynolds
numbers using laser Doppler velocimetry. Results for both flow categories show good
agreement with DNS. The switching of the flow field between two flow states at
marginally turbulent Reynolds numbers is confirmed by bimodal probability density
functions of streamwise velocity at certain distances from the wall as well as joint
probability density functions of streamwise and wall normal velocities which feature
two peaks highlighting the two states.
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1. Introduction

Following the findings of Nikuradse (1926) on the existence of secondary currents
in square duct turbulent flow, further experimental studies (Hoagland 1960; Brundrett
& Baines 1964; Launder & Ying 1972; Melling & Whitelaw 1976) have been
conducted to obtain a better understanding of the phenomenon, which came to
be known as ‘Prandtl’s secondary flow of the second kind’. These studies, which
focused mainly on turbulent flow at relatively high Reynolds numbers (Re > 35 000;
Re = Ubh/ν where Ub, h and ν represent the bulk velocity, duct half height and
kinematic viscosity, respectively) have shown that secondary flow, though weak
in magnitude, has a considerable impact on the primary flow. Developments in
computational fluid dynamics have made possible the direct numerical simulation
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(DNS) of such flows to complement experimental results and provide more insight
into the turbulence structure. However computational restrictions currently limit DNS
to low Reynolds numbers (Re< 5000), hence comparisons between experiments and
simulations have mostly been qualitative. At such Reynolds numbers, the turbulent
flow field has been found to behave differently from what is observed experimentally
at much higher Reynolds numbers.

One of the earliest DNS of square duct turbulent flow was conducted by Gavrilakis
(1992) at Re= 2205. His results show good qualitative agreement with experimental
findings with regards to bulging of the contour of mean streamwise velocity towards
the duct corners and an eight-vortex secondary flow pattern. However, the wall shear
stress (τw) was found to be non-uniformly distributed across the duct due to the
secondary flow field. Specifically, three peaks were observed on each wall; one
at the midpoint and the other two close to the corners. Another key finding from
the simulation, which is a consequence of these wall shear stress gradients, was
that the streamwise velocity profile along the wall bisector exhibited an overshoot
from the well-known logarithmic law (u+ = 2.5 ln y+ + 5.5) in the overlap layer
when normalised by the average (across the duct perimeter) rather than local friction
velocity, uτ =√τw/ρ, where ρ is the density. Other researchers who have conducted
DNS of square duct turbulent flow and obtained similar results include Huser &
Biringen (1993) and Joung, Choi & Choi (2007).

A pertinent research question which, until recently, has received little attention in
the literature is the determination of the mechanism for transition to turbulence in
square duct flow and the flow field characteristics at the edge of turbulence. Like
pipe flow, square duct flow is linearly stable at all Reynolds numbers (Tatsumi &
Yoshimura 1990). However, occurrence of exact coherent structures such as travelling
waves is believed to signal the beginning of chaos. Travelling wave solutions have
been discovered by Wedin, Bottaro & Nagata (2009), Okino et al. (2010) and
Uhlmann, Kawahara & Pinelli (2010) at Re= 598.2, 332 and 471 respectively.

Numerical simulations reveal that the limiting value of Reynolds number for
the onset of self-sustaining turbulence in periodic square-duct flow ranges between
Re = 865 (Reτ = 65) and Re = 1077 (Reτ = 80), where Reτ is the Reynolds number
based on friction velocity and duct half-height (Biau & Bottaro 2009; Uhlmann
et al. 2007). The DNS results of Uhlmann et al. (2007) are particularly fascinating.
So-called marginally turbulent flow was found to be characterised by two flow
states each of which contained a four-vortex secondary flow field rather than the
conventional pattern of eight vortices. The vortex pairs, which were associated
with a pair of opposite walls, alternated between two different orientations, the
eight-vortex secondary flow pattern being a composite of these two as reproduced
in figure 1. This switching of the flow field between two states in the marginally
turbulent regime has not previously been observed in experiments. This different
secondary flow pattern was attributed to buffer layer coherent structures (streaks),
whose preferential positioning over the duct walls matched those of the vortices.

In two follow-up papers, changes to the flow field as fully turbulent flow is
approached were investigated (Sekimoto et al. 2009; Pinelli et al. 2010). The
distribution of wall shear stress was found to be correlated to the number and
positioning of buffer layer streaks (which increased with Reynolds number), the
high-speed streaks always being preferentially located in the corner region, leading
to local maxima in the wall shear stress distribution. On the other hand, low-speed
streaks were associated with the occurrence of local minima. This explains the two
peaked wall shear stress distribution observed in DNS of marginally turbulent flows.
Again, there is lack of experimental data for comparison.
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(a) (b) (c)

FIGURE 1. (Colour online) The two flow states of marginally turbulent flow (a,b) and
the conventional eight-vortex pattern (c). Adapted from figure 3 of Uhlmann et al. (2007).
Contour lines show the primary mean flow 〈U〉 and vectors show the secondary mean flow
〈V〉, 〈W〉 for Re=1205: (a) averaging interval 771h/Ub; (b) a different interval with length
482h/Ub; (c) long-time integration including both previous intervals (1639h/Ub). The wall
bisector is indicated by dashed blue lines.
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FIGURE 2. Experimental set-up. (a) Schematic of the flow loop (not to scale). (b) Axes
system employed; y is the wall-normal direction measured from the nearest wall. The
streamwise/axial direction, x, is into the page.

It is the aim of this study, therefore, to provide experimental data on turbulent
flow in a square duct at relatively low Reynolds numbers in order to investigate these
marginally turbulent states and provide validation data for DNS.

2. Experimental set-up
The experimental rig used for this study is a modified version of that employed

by Escudier & Smith (2001). The working section (as shown in figure 2a) consists
of eight square duct modules made of stainless steel, each of length 1.2 m and
cross-sectional dimensions of 80 mm × 80 mm (2h× 2h), followed by a transparent
section 150 mm in length, constructed from Perspex and another stainless steel
module, 1.2 m long, bringing the total length to 10.95 m. With this arrangement,
there is a distance of about 240h before the transparent section, where laser
Doppler velocimetry (LDV) measurements were taken, which is enough for both
fully developed laminar and turbulent flow at the Reynolds numbers studied.

A progressive cavity Mono pump fed by the working fluid stored in a stainless steel
tank drives the flow. The pump and tank are connected to the working section using
a flexible corrugated pipe, 5 m in length, which serves as a pulsation damper. This is
followed by a short section that provides a gradual transition from a circular to square
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cross-section, which includes a honeycomb flow straightener and an additional fine
mesh to remove any disturbances from the pump and inlet. The fluid is recirculated
through the rig via a return loop consisting of polyvinyl chloride pipes. The mass
flow rate as well as fluid temperature and density were measured using an Endress
and Hauser Promass I Coriolis flow meter installed in the return loop.

Velocity measurements were taken using a two-dimensional (2D) Dantec fibreflow
LDV system operated in forward scatter mode. This system consisted of a 60 × 10
probe, 55 × 12 beam expander and an argon-ion laser source which supplied lights
of wavelengths 515.5 nm (green) and 488 nm (blue) for resolving the velocity
components in the streamwise and wall-normal directions (respectively x and y as
defined in figure 2b). The front lens of the laser probe had a focal length of 160 mm
and a beam separation distance of 51.5 mm, resulting in a measuring volume of
diameter 24 µm and length 150 µm in air. With this configuration, the typical data
rates were around 100 Hz in non-coincidence mode and 20 Hz in coincidence mode.
At each wall-normal location, data was collected for typically 30 min in the laminar
and fully turbulent regimes and for up to 1 h in the marginally turbulent state. The
region below 8 mm from the duct wall was not accessible to the laser beams in the
wall-normal plane; hence, data on wall-normal velocity components in that area could
not be collected. Signal processing was carried out using a Dantec Burst Spectrum
analyser (model F50) while data acquisition and processing was done using the
Dantec BSA flow software (version 2.12.00.15). The fluids used were either water
(ν≈10−6 m2 s−1) or 50 % glycerol/water solution (ν≈6×10−6 m2 s−1) depending on
the Reynolds number of interest. The local wall shear stress was determined by taking
measurements of the velocity profile in the viscous sublayer, obtaining the gradient
of the resulting linear plot and applying the expression: τw =µ(d〈U〉/dy), where 〈U〉
is the mean streamwise velocity. The local friction velocity (uτ ) was subsequently
estimated from this value of wall shear stress. Unlike in hot-wire anemometry,
this technique is free from the so-called wall effect since LDV is non-intrusive.
The very small measuring volume minimises any potential errors due to velocity
gradient broadening. A detailed discussion on wall shear stress determination using
the near-wall velocity gradient method is given by Hutchins & Choi (2002).

3. Transition to turbulence
3.1. Experimental studies

It is well known that a turbulent flow field can be split into a mean and fluctuating
component. Steady laminar flow is characterised by no fluctuations, hence an increase
in intensity of the fluctuating velocity component is a good measure for detecting
the onset of transition to turbulence in ducts. Figure 3(a,b) shows the variation of
mean streamwise velocities, 〈U〉, normalised by the bulk velocity, Ub, and the root
mean square of the fluctuations, urms, with Reynolds number at the duct centreline
(y/h= 1.0). The data have been obtained using water.

In figure 3(a), a drop off in the values of 〈U〉/Ub from the laminar flow analytical
solution (White 2006, p. 113) can be observed for Re < 1000. This deviation from
the analytical solution is surprising as the velocity fluctuations remain very low (about
2 %), indicating that the flow is laminar (see figure 3(b); the fluctuations, which ideally
should be zero, can be attributed to the measurement noise of the LDV system). We
believe this deviation of the observed 〈U〉/Ub from the analytical solution can be
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FIGURE 3. (Colour online) Onset criteria for square duct turbulent flow (Ek≈ 1, y/h= 1).
(a) Variation of 〈U〉/Ub with Reynolds number. (b) Variation of urms/〈U〉 with Reynolds
number. ——, laminar flow analytical solution at y/h = 1; ♦ (red), DNS of Gavrilakis
(1992); – · – · – (red), numerical simulation of laminar flow at Ek= 1.

ascribed to Coriolis effects due to the Earth’s rotation as has been observed previously
in pipe flows by Draad & Nieuwstadt (1998). They showed that the effect of rotation
on a fully developed laminar flow can be estimated using the Ekman number, a ratio
of viscous to Coriolis forces:

Ek= ν

2ΩD2 sin α
, (3.1)

where Ω is the angular velocity of the Earth (7.272× 10−5 s−1), D is the duct width
(0.08 m) and α the angle between the duct axis and the Earth’s rotation axis (≈69◦).
In our case, we obtain Ek≈ 1 for water, hence Coriolis effects cannot be ignored in
the laminar regime for this fluid. The Coriolis force brings about a distortion in the
laminar flow velocity profile, which should normally be parabolic and symmetrical
about the wall bisector, by introducing acceleration components in the wall-normal
directions.

Transition can be said to take place at Re≈ 1050 as evidenced by a significant drop
in the value of 〈U〉/Ub from those of laminar flow. At this point, turbulence bursts are
introduced into the laminar flow, hence the apparently large fluctuation levels recorded
in figure 3(b). As the Reynolds number is increased, urms/〈U〉 settles down to about
5 %, the turbulence having become self-sustaining, and 〈U〉/Ub gradually approaches
the fully turbulent value obtained from the DNS of Gavrilakis (1992). In turbulent
flow, inertial forces dominate and Coriolis effect becomes negligible.

To reduce the effect of Coriolis force in the laminar regime, we make use of a
more viscous liquid (50 % glycerol/water solution) resulting in Ek ≈ 7. This fluid is
employed for all subsequent experiments. Figure 4(a,b) show the variation of 〈U〉/Ub
and urms/〈U〉 with Reynolds number. The experimental data for 〈U〉/Ub at y/h= 1 can
be observed to agree well with the laminar flow analytical solution until Re ≈ 800
where there is a drop off once again due to the Coriolis effect. This is in agreement
with the findings of Escudier et al. (2005) who obtained laminar velocity profiles in
pipe flow which were slightly asymmetric for Re as low as 540 for Ek≈ 5. Transition
to turbulence can be observed to take place at Re≈ 1250 as indicated by an increase
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FIGURE 4. (Colour online) Onset criteria for square duct turbulent flow (Ek ≈ 7).
(a) Variation of 〈U〉/Ub with Reynolds number. (b) Variation of urms/〈U〉 with Reynolds
number. Open symbols, y/h = 1; closed symbols, y/h = 0.3; @, trip rod introduced
upstream; E (green), no trip rod upstream; ——, laminar flow analytical solution at
y/h= 1; · · · · · ·, laminar flow analytical solution at y/h= 0.3; ♦ (red), DNS of Gavrilakis
(1992); – · – · – (red), numerical simulation of laminar flow at Ek= 7.

in velocity fluctuation levels as well as a significant drop in 〈U〉/Ub from the laminar
flow analytical solution. The difference in transition Reynolds number between water
and 50 % glycerol/water solution can be attributed to their dissimilar laminar base
profiles prior to transition.

To determine the lowest Reynolds number for the onset of sustained turbulence,
we introduce a trip rod upstream (about 238h from the measurement section). In
this instance transition can be observed to take place at Re ≈ 940. This value of
Re is within the range given by Uhlmann et al. (2007) and Biau & Bottaro (2009):
Re = 1077 and 865, respectively. It is however higher than those where previous
studies have shown the emergence of travelling wave solutions, which are known to
be precursors to fully developed turbulence. At y/h = 0.3, the streamwise velocity,
normalised by the bulk velocity can be observed to be roughly constant in the laminar
regime. It however drops off during transition before approaching the fully turbulent
value given by Gavrilakis (1992) which, coincidentally, is close to the laminar flow
value. The velocity fluctuations at y/h = 0.3 after transition are much higher than
those at the duct centre and attain that of fully turbulent flow more slowly (see
figure 4b). This lends credence to the idea that the important structures that govern
the dynamics of transition in square duct flow are primarily located in (and around)
the buffer layer.

3.2. Numerical simulation of square duct laminar flow under the influence of
Coriolis force

Following the approach of Draad & Nieuwstadt (1998), we carry out a numerical
simulation of fully developed laminar square duct flow, including the effect of the
Earth’s rotation in order to confirm our hypothesis that these effects cannot be
neglected. The governing Navier–Stokes equations for the flow are as follows:

DUi

Dt
= fi − 1

ρ

∂p
∂xi
+ ν ∂

2Ui

∂x2
j
, (3.2)
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where Ui and fi denote the velocity field and Coriolis force per unit mass, respectively,
and p is the pressure term accounting for centrifugal forces. Considering the axis
system of figure 2(b), and a unidirectional flow vector [U(x, y, z), 0, 0], The Coriolis
force per unit mass is given by f =−2Ω×U, where Ω is the Earth’s angular velocity
vector given by

Ω =Ω
 cos αL cos αN

sin αL
−cosαL sin αN

 , (3.3)

αL and αN being the latitude (53◦ in our case) and the angle between the direction of
true north and the duct axis (100◦), respectively. Hence,fx

fy
fz

=−2ΩU(x, y, z)

 0
−cosαL sin αN
−sinαL

 . (3.4)

We solve the Navier–Stokes equations using the commercial software, ANSYS Fluent,
for a domain: D×D× 110D with 50× 50× 2160 grid points (uniform in the cross-
sectional plane, but non-uniform in the streamwise direction such that the ratio of the
largest/first to the smallest/last cell is 7.5), using a pressure-based coupled solver. This
software makes use of the finite volume approach. Spatial discretisation of pressure,
gradient and momentum were carried out using the least-squares cell-based, standard
and second-order upwind schemes, respectively.

Numerical simulation results at y/h= 1 for Ek= 1 and 7 are shown as dot-dashed
lines in figures 3(a) and 4(a) respectively. The results show good agreement with
the experimental data. The deviation of 〈U〉/Ub from the laminar flow analytical
solution can be observed to increase with Reynolds number. This is due to an
increase in laminar velocity profile asymmetry, the level of distortion being higher for
Ek = 1. Given the previous results of Draad & Nieuwstadt (1998) and the excellent
agreement between experiment and simulation here for two different Ekman numbers,
we conclude that Coriolis forces can be significant in fully developed laminar square
duct flow, especially for water. As a consequence, all of the data which follows is
for 50 % glycerol/water solution (Ek≈ 7).

4. Characteristics of low-Reynolds-number turbulent flows
4.1. Mean streamwise velocity measurements

Figure 5(a) shows the profile of streamwise velocity normalised by the bulk velocity,
along the wall bisector, for both marginally turbulent (Re= 1203,Reτ = 81) and fully
turbulent (Re = 2230, Reτ = 161) flow. The DNS results of Gavrilakis (1992) at a
Reynolds number of 2205 (Reτ = 162) and Uhlmann et al. (2007) at a Reynolds
number of 1205 (Reτ = 84) as well as the laminar flow analytical solution (White
2006) are also presented for the purpose of comparison. The flow was found to
be symmetric, hence only the data from the lower half of the duct along the
vertical bisector is presented, y being the distance from the bottom wall as shown in
figure 2(b).

The experimental results show good agreement with DNS. It is interesting to note
that the velocity gradient at the wall at Re= 1203 is very similar to that of laminar
flow. However, beyond y/h≈ 0.3, the mean flow becomes markedly different from the
laminar case. The values of 〈U〉/Ub at the duct centre are 1.40 and 1.31 for marginally
and fully turbulent flow, respectively.
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FIGURE 5. (Colour online) Axial velocity profiles along the wall bisector. (a) In outer
units. (b) In wall units. E, experiment at Re = 1203 (Reτ = 81); A, experiment at
Re= 2230 (Reτ = 161); · · · · · ·, DNS of Uhlmann et al. (2007) at Re= 1205; —— (red),
DNS of Gavrilakis (1992) at Re= 2205 (Reτ = 162); ——, laminar flow analytical solution
(White 2006). – – – –, u+ = 2.5 ln y+ + 5.5; – · – · –, (blue), u+ = y+.

In figure 5(b), the same data is plotted in wall units, indicated by the superscript
+, where the velocities have been normalised by local friction velocity (uτ ). Again,
data at Reτ = 161 show excellent agreement with the DNS of Gavrilakis (1992). A
large overshoot from the logarithmic law can be observed in the data for Reτ = 81,
confirming that the wall shear stress distribution is characterised by a local minimum
rather than maximum at the duct midpoint in marginally turbulent flows, as shown by
Pinelli et al. (2010).

4.2. Instantaneous velocity measurements
The probability density functions (p.d.f.s) of instantaneous streamwise velocity, U,
normalised by either local mean, 〈U〉 or bulk velocity, Ub, for both marginally and
fully turbulent flow are presented in figure 6. At Re= 1207 (figure 6a), switching of
the flow field between two states is confirmed by the p.d.f. at y/h= 0.3 being bimodal.
The point y/h = 0.3 has been chosen as it is where the largest difference between
the two flow states can be observed in the DNS data of Uhlmann et al. (2007). The
data were collected over a period of 12 843h/Ub (3600 s), sufficiently long to capture
many switches between states. The p.d.f. could be viewed as a combination of two
p.d.f.s, one for each flow state; but separating the two is not a trivial task as there
is a significant overlap. It can be partially achieved by plotting a p.d.f. of modal
velocities (dotted line in figure 6a). Each modal velocity is taken from a sample of
data of the order of 43h/Ub. The resulting p.d.f. shows the bimodal form created
by the two flow states more clearly, although there is still overlap. The values of
U/〈U〉 at the peaks correspond very well to those extracted from the time averages
of Uhlmann et al. (2007) as shown by the dashed vertical lines in figure 6(a).

A bimodal p.d.f. also occurs at y/h = 0.2 but beyond y/h = 0.4, this dual-peak
feature fades away at higher distances from the wall as the two flow states become
increasingly similar (see figure 6b). In contrast, the p.d.f. for fully turbulent flow at
Re= 2234 and y/h= 0.3 (figure 6c) is unimodal, indicating that the flow exists in only
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FIGURE 6. (Colour online) Probability density functions of U/Ub: (a) Re = 1207 and
y/h= 0.3; dotted line is the p.d.f. of modal velocities and dashed lines correspond to short
time averages for each state from the DNS data of Uhlmann et al. (2007); (b) Re= 1203:
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(c) y/h= 0.3:E, Re= 1097;@, Re= 1125; ♦, Re= 1207; ×, Re= 1290; +, Re= 1370;
1, Re= 1596; ∗, Re= 2234.
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FIGURE 7. (Colour online) Joint p.d.f. at y/h= 0.3 and Re= 1290. Data were collected
over a period of 7004h/Ub.

one state. In this study, bimodal p.d.f.s at y/h= 0.3 were observed between Re= 1097
and Re= 1370 as shown in figure 6(c). The two peaks are mostly of different heights,
indicating that the flow spends more time in one state than in the other, the largest
peak gradually shifting from left to right as the Reynolds number is increased (see
figure 6c).

The joint p.d.f. of streamwise and wall-normal velocities at Re = 1290 for data
collected over a period of 7004h/Ub is shown in figure 7. A dual peak can be clearly
seen, corresponding to two flow states, A and B. In state A, streamwise velocities
lower than the long-term mean (indicated as a dotted line) are highly probable to occur
alongside wall-normal velocities which are higher than the long term mean (shown
as a solid black line). In state B, streamwise velocities higher than the long-term
average have a higher probability of occurring together with essentially zero wall-
normal velocities at this measurement location. This behaviour is consistent with the
findings of Uhlmann et al. (2007) with regard to the streak-vortex arrangement for
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FIGURE 8. (Colour online) (a) Axial velocity skewness along the wall bisector:
E experiment at Re= 1203;A, experiment at Re= 2230; ——, DNS of Gavrilakis (1992)
at Re= 2205. (b) Streamwise velocity autocorrelation at y/h= 0.3: – – – (red), Re= 1207;
—— (blue), Re= 2234; 1t is the time lag.

any given pair of opposite walls during marginally turbulent flow. The flow alternating
between periods of high turbulence activity, characterised by a low-velocity streak at
the wall bisector flanked by vortices (corresponding to state A), and more quiescent
periods where there are no streaks and the flow is essentially unidirectional at the
measurement location (state B).

Variation of streamwise velocity skewness with distance from the duct wall is shown
in figure 8(a). The data for Re = 2230 show excellent agreement with the DNS of
Gavrilakis (1992), having positive values very close to the wall and becoming negative
beyond y/h≈ 0.075. For Re= 1203, the velocities are more positively skewed in the
near-wall region up to y/h≈ 0.7, this is due to the presence of the two flow states at
the marginally turbulent Reynolds number as shown by the p.d.f.s in figure 6. Beyond
y/h≈ 0.7, similar values of skewness are observed in both flows.

Streamwise velocity autocorrelation functions (Ruu) for both marginally and fully
turbulent flows at y/h= 0.3 are shown in figure 8(b). The marginally turbulent flow
is correlated over a larger time period reinforcing the evidence that the flow remains
in a particular state for a significant period of time. The integral time scales have been
computed by integrating the autocorrelation functions up to the first zero crossing. The
integral time scale for marginally turbulent flow (2.24h/Ub) is significantly larger than
fully turbulent flow (0.89h/Ub). Given this evidence for the persistence of each of
the two states it is a valid approximation to use Taylor’s hypothesis of frozen flow
to convert our time-series data into a pseudo-spatial streamwise dimension using an
appropriate convection velocity (Taylor 1938; Dennis & Nickels 2008). It is reasonable
to use the bulk velocity as an approximate convection velocity and as such the non-
dimensional streamwise extent becomes, 1x=1tUb/h. Therefore figure 8(b) can be
viewed as a statistical measure of the increased streamwise correlation in marginally
turbulent flow. We hypothesise that this is as a result of each of the two states having
a significant streamwise distance, and hence there is a spatial switching between the
two states along the length of the duct. This is distinct from the temporal switching
observed in the axially minimal flow unit in the DNS of Uhlmann et al. (2007).
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FIGURE 9. Turbulence intensities along the wall bisector: (a) as a function of y/h; (b) as
a function of y+; E, experiment at Reτ = 81; A, experiment at Reτ = 161; ——, DNS
of Gavrilakis (1992) at Reτ = 162. Open and closed symbols represent streamwise and
wall-normal turbulence intensities, respectively.

4.3. Turbulence intensity and Reynolds stress measurements
The streamwise and wall-normal turbulence intensities at Reτ = 81 (Re = 1203) and
Reτ = 161 (Re= 2230) as a function of distance from the duct wall along the bisector,
in outer units, are shown in figure 9(a). It can be observed that urms/Ub for fully
turbulent flow shows good agreement with the DNS of Gavrilakis (1992), attaining
a peak at y/h≈ 0.1. This peak value is however slightly higher than the DNS result.
In the marginally turbulent case, there appears to be a shift in the location of the
maximum value of urms/Ub away from the wall to y/h≈ 0.3. Close to the duct wall,
the streamwise velocity fluctuations are lower than in fully turbulent flow but become
larger as the peak value is approached and remains so across the remaining portion of
the duct, creating an impression that the turbulence level is higher. Figure 9(b) shows
the same data plotted as a function of distance along the bisector in wall units. In this
case, the streamwise turbulence intensities, u+rms are very similar in both flows, with
u+rms at Reτ = 81 becoming lower than the fully turbulent values beyond y+ of 63.

The wall-normal turbulence intensities, which are significantly smaller, are almost
constant across the duct and no distinct maxima can be identified. The wall-normal
turbulence intensities at Reτ = 161 show good agreement with DNS data, they are
however a little higher than the simulation values towards the duct centre and larger
than those at Reτ = 81. The results indicate that near the centre of the duct, the
turbulence is nearly isotropic, as shown by the closeness of u+rms and v+rms values at
high y+.

Figure 10 shows the variation of Reynolds shear stress along the wall bisector. The
data have been normalised by the square of the bulk velocity. Since only the value
of local friction velocity (uτ ) at the wall midpoint is available in this experiment,
normalising by u2

τ will not provide a true picture of Reynolds shear stress distribution.
The data for Re=2230 is in good agreement with DNS. At Re=1203, Reynolds shear
stress can be observed to be lower for y/h< 0.4. There is also a shift in location of
the maximum away from the duct wall. As the duct centre is approached, Reynolds
shear stress drops to zero for both flows as it must due to symmetry.
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FIGURE 10. (Colour online) Variation of Reynolds shear stress along the wall bisector:
E (red) experiment at Re= 1203;A, experiment at Re= 2230; ——, DNS of Gavrilakis
(1992) at Re= 2205.

5. Conclusion
The behaviour of turbulent flow in a square duct at relatively low Reynolds numbers

has been studied. The results for both marginally turbulent flow at Reτ = 81 and fully
turbulent flow at Reτ = 161 show good agreement with the DNS data of Uhlmann
et al. (2007) and Gavrilakis (1992), respectively. It has been shown that the onset of
turbulence can be significantly affected by Coriolis effects due to the Earth’s rotation.
This is as a result of differences in the laminar base flow velocity profiles at different
values of Ekman number prior to transition. A limiting Reynolds number of about
940 for transition was observed at Ek≈ 7. This value is within the range obtained in
previous numerical studies.

In marginally turbulent flow a mean flow very similar to laminar flow has been
observed in the vicinity of the duct wall, as well as a large overshoot from the
logarithmic law nearer the centre. Switching between two flow states, originally
predicted by the DNS of Uhlmann et al. (2007), is confirmed by bimodal p.d.f.s
of streamwise velocity at certain distances from the duct wall and a joint p.d.f. of
streamwise and wall-normal velocity which features two peaks corresponding to each
of the two states: one essentially unidirectional (v+ ≈ 0) at the measurement location
and the other containing a significant secondary flow component (V/〈U〉 ≈ 0.03).

It has been shown that marginally turbulent flow is more correlated than a fully
turbulent flow as indicated by its longer integral time scale. Similar levels of u+rms have
been observed in both flows at different y+. The Reynolds stresses in the near-wall
region are however lower in the former but become very similar to those of fully
turbulent flow as the duct centre is approached.
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