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PERIODIC BOEHMIANS II

DENNIS NEMZER

A space of periodic generalised functions, called boehmians, is investigated. The
space of boehmians contains all periodic distributions. It is known that not every
hyperfunction is a boehmian. We show that the converse is also true. We present
some theorems which give sufficient conditions for a sequence of complex numbers
to be the Fourier coefficients of a boehmian. Sufficient conditions (in terms of the
Fourier coefficients) are obtained for a sequence of boehmians to converge. As an
application, a Dirichlet problem is discussed.

1. INTRODUCTION

Generalised functions on the unit circle have been successfully classified by the
behaviour of their Fourier coefficients (see [1, 2, 3, 4, 8]). For example, a sequence
of complex numbers {Cn}^*, is the Fourier coefficients of a Schwartz distribution if
the (n's grow no faster than a polynomial in n. A sequence {CnJ-ffoo is the Fourier
coefficients of a hyperfunction if lim |£n| $J 1. Also, every sequence of complex
numbers is the Fourier coefficients of a Mikusinski operator. In this note we will consider
a class of periodic generalised functions called Boehmians ([5, 6, 7]). Classifying the
space of Boehmians by the behaviour of their Fourier coefficients appears to be more
complicated than with other spaces of generalised functions (for example, distributions,
hyperfunctions, Mikusinski operators). The Fourier coefficients of a Boehmian must
adhere to some growth restrictions (see Theorem B). However, as we shall show in
Theorem 3.1, a subsequence of the Fourier coefficients may be unrestricted.

The following results about the Fourier coefficients of a Boehmian are known (see
[6])-

THEOREM A. Let w be a real-valued even function defined on the integers Z
oo

such that 0 = u>(0) < w(n + m) < u>(n) + w(m) for all n, m € Z and £ w(n)/n2 <
n=l

oo. Suppose {Cn}̂ foo JS a sequence ol complex numbers such that £n = O(ew(n)) as
\n\ —> oo; then { d } ? ^ is ^ne Fourier coefficients of a. Boehmian.

THEOREM B. Let u>: Z —» R be an increasing function for n — 0, 1, 2, . . . and
oo

^2 u(n)/n2 = oo. Suppose {Cn}!^ is a sequence of complex numbers such that there
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272 D. Nemzer [2]

exist positive A, M, and e such that \(n\ > Aeew(n> for all n ^ M. Then {£„}*«, is
not the Fourier coefficients of a Boehmian.

If we let w(n) = n/ln n for n = 2,3, ... and w(n) = 0 otherwise then, by Theorem
B, {̂ (fOJ-̂ foo is not the Fourier coefficients of a Boehmain. But lim ^(n)!1'™ = 1 and
hence {w(n)}!f00 is the Fourier coefficients of a hyperfunction ([4]). Thus the space
of Boehmians does not embrace the space of hyperfunctions. It can be shown that
if the sequence {Cn}̂ ?oo is the Fourier coefficients of a Boehmian x that satisfies the
hypothesis of Theorem A (for some function u>), then lim \(n\ ' " ^ 1 and hence x is a
hyperfunction. Thus, the only known Boehmians are hyperfunctions.

In [6] the author poses the question "is the space of Boehmians contained in the
space of hyperfunctions?" We shall give an example that will show the answer to this
question is no.

In Section 2 we construct the space of Boehmians and state some known results
([6]). In Section 3 we present a theorem (Theorem 3.1) which improves upon Theorem
A and also gives rise to an example of a Boehmian which is not a hyperfunction. Then
conditions are given on the Fourier coefficients of a sequence {xn}i° of Boehmians that
ensure the convergence of the sequence (see Theorem 3.2). In Section 4 an application
to a Dirichlet problem is discussed.

2. PRELIMINARIES

C(T) (LJ(r)) is the collection of all continuous (integrable) complex-valued func-
tions on the unit circle F.

The convolution of / and g in C(T) is denoted by juxtaposition. Thus,

A sequence of continuous real-valued functions, {£n}i°> is called a delta sequence
if the following conditions are satisfied:

(i) For each n, 1/2TT / ^ 8n(t)dt = 1.
(ii) For each n and all t, 6n(t) ^ 0.
(iii) Given a neighbourhood V of 1, there exists a positive integer N such

that for all n ^ N, the support of Sn is contained in V.

The collection of delta sequences will be denoted by A.

DEFINITION 2.1: Let A C CN(T) x A (CN(T) is the set of sequences of elements
of C(T)) be defined by

e a c h * and e a c n TO> fkSm = fm6k}.

https://doi.org/10.1017/S0004972700029713 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029713


[3] Periodic boehmians 273

Two elements ( { / n } , {^n}) and {{gn}, {<?n}) of A are said to be equivalent if for all k
and m, /jt<rm = gm&k • A straightforward calculation shows that this is an equivalence
relation on A. The equivalence classes are called periodic Boehmians.

DEFINITION 2.2: The space of periodic Boehmians, denoted by /?, is defined by

P = {[{/n}/{*n}]: ({/n}, {Sn}) ̂  A}. For convenience a typical element of p will be

written as x = fn/Sn-

The space of Schwartz distributions ([8]) can be viewed as a subspace of /? by
identifying u with u*6n/6n, where {6n} G C » H A and u*Sn denotes the convolution
of u and 6n as distributions.

The Fourier coefficients of an LX{T) function are defined in the usual way. That
is, if feL^T), then

^ f 1""*. for k = 0. ± 1 . ± 2 , ....

DEFINITION 2.3: Let x = fn/Sn G /3. For Jb = 0, ± 1 , ±2, . . . define Ci(z) =

Ck(fn)/Ck(f>n), where for fixed k, n is the smallest index such that Ck(Sn) ^ 0.

DEFINITION 2.4: A sequence {xn}i° of Boehmians is said to be A-convergent
to x, denoted by A — limxn = x, if there exists a delta sequence {Sn}^0 such that
(xn — x)Sn G C(T) for all n and (xn — x)Sn —* 0 uniformly as n —> oo.

In [5] Mikusinski proved that f3 endowed with A-convergence is a complete topo-
logical vector space in which the topology is induced by an invariant metric.

The proofs of the next two theorems may be found in [6].

THEOREM 2 . 5 . . Let x, xn € /?, for n = 1, 2, . . . . If A - l imxn = x, tAen for

each k, limCjt(zn) = C*(x).
n

THEOREM 2 . 6 . For each x G/3, x = A - l i m J2 Ck{x)eikt.
n k=-n

3. T H E MAIN RESULT

THEOREM 3 . 1 . Let u be a real-valued even function defined on the integers Z
oo

such that 0 = w(0) ^ w(n + m) ^ w(n)+w(m) for all n, m G Z and 53 <^{n)/n2 < oo.
n=l

Suppose that the set of positive integers is partitioned into two disjoint sets {^n}i
oo

{5n}f with 5Z l/*n < oo. If {^n}~oo is a sequence of complex numbers such that
n=l

C±,n = O(ew('n)) as n —» oo, fiien {Cn}~oo is the sequence of Fourier coefficients for
some Boehmian.

PROOF: For n = 1, 2, . . . let <pn(t) = tn/2ir for |t| ^ ir/tn and zero otherwise.
Let lpn for n = 1, 2, . . . be the 27r-periodic extension of tpn. For n = 1, 2, . . . let
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oo oo
6n — Yl 'Pi (where the product is convolution). Since ^2 l/*n < oo, it can be proven

j=n n=l

(see [5]) that {£n}i° is a delta sequence. Since, for each * and all n, Ckijfn) =

ctk,n sin(fc7r/tn) (where a*,,, is a constant), we see that Ctk(Sn) = C-tk(Sn) — 0

for all * ^ n . Now, there exists a delta sequence {<rn}J° such that, for each n,

Ck{(Tn) = O(e-W*<*>) as |*| - • oo, where u*(k) = u(k) + /̂pfcj (see proof of Theorem

4.2 in [6]). Let {rl>n}i° be the delta sequence defined by i/}n — Snfn for n = 1, 2,

Define / n ( t ) = £ (,-e** for n = 1, 2 , . . . . Then for each k and all n, (fni>k)[t) =
j

n

E GjCj(.'ll'k)e%*t• Since, for each *, CjCj(i>k) = 0(j 2) as \j\ —* oo, for each k the
j=-n

sequence of continuous functions {/nV"*}?0 converges uniformly as n —» oo. Hence,
A — l i m / n = A — lim(/ny>*/V'*) = x G /? (see [5]). By Theorem 2.5, for each m,

n

Cm{x) — lim Cm(fn) — Cm and hence the theorem follows. U
n

REMARKS. (i) The above theorem shows that /3 is not contained in the set of hyper-
functions. Indeed, if {Cn}f?oo *s chosen appropriately (that is, lim |£n| ' n > 1) and x is
the Boehmian having Fourier coefficients {C»}??oo > then x is not a hyperfunction ([4]).

(ii) Theorem 3.1 may also be used to construct a Boehmian that is not a Beurling
distribution ([2]).

The next theorem gives a partial converse to Theorem 2.5.

THEOREM 3 . 2 . Suppose {sn}J° is a sequence of Boehmians such that

(i) tiiere exist a constant M and a Boehmian y such that |Ci(x,,)| ^
M \Ck(y)\ for all n and all Jb;

(ii) for each k Ck{xn) —» Ck as n —> oo.

Then {C*}^oo l s ^ne Fourier coefficients of a Boehmian x . Moreover, A — lim xn = x .

PROOF: By conditions (i) and (ii) we have that

(3.1) \Ck\^M\Ck(y)\ for all*.

We may assume that for some delta sequence {6n}i°> y&n £ C°° f° r all n. For if
{<rn}J° is a delta sequence such that ycrn £ C(T) for all n , let {V1™}?0 D e a n infinitely
differentiable delta sequence and take 6n = <rnipn for n = 1, 2, Thus

(3.2) for each n, Ck(y6n) = O(k~2) as |Jk| -> oo.

Let fn(t) = f^ Cjeijt for n = 0, 1, 2, . . . . Then for all n and m, (fn6m)(t) =
j=-n

n

E 0Cj(^m)e*J< and from (3.1) and (3.2) we see that for each m, oijCj{Sm) — O(j~2)
j=-n
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as | j | —> oo. Thus, for each m the sequence of continuous functions {/n^m}o° converges
uniformly as n —* oo. Hence, A — l i m / n = A — ]im(fn6m/6m) = x £ (3 (see [5]). It

n

now follows from Theorem 2.5 that for each k, Ck(x) = limCjb(/n) = Cfc-
n

To complete the proof of the theorem it suffices to show that if

(3.3) lim Cjb(xn) = 0 for all k, and
n

(3.4) \Ck{xn)\ ^ M \Ck{y)\ for all n and Jfe,

then A — lim xn = 0.
Now, there exists a delta sequence {Sn}j° such that ySm 6 C°° for all m and

hence

(3.5) for each m, Cj{y6m) = O(j~2) as \j\ -• oo.

Thus, by (3.4) and (3.5), for each m and all n, Cj(xn6m) = O(j~2) as | j | —> oo.
Thus, for each n and all m {C^SBntfm)}",*, is the Fourier coefficients of a continuous

oo

function. Moreover, for each m, and all n (xn8m)(t) = ^2 Cj-(a;n£m)e*;'*.
— oo

Now, fix m. Given an e > 0, it follows from (3.5) that there exists an N such that

(3.6) £ M \Cj(y6m)\ < e/2.
\j\>N

By (3.3), there exists a T such that

(3.7) for each n > T, \Cj{Sm)\ |C,(xn)| < el {AN + 2) for j = 0, ±1, ±2, . . . , ±N.

It follows from (3.6) and (3.7) that for each n>T, \(xn6m)(i)\ < e for all t. That
is, for each m, xn6m —* 0 uniformly as n —> oo. Hence A — limzn = 0 (see [5]) and
the theorem is established. D

COROLLARY 3 . 3 . If {Cn}̂ oo JS a sequence of complex numbers such that (n =
O(Cn(x)) as \n\ —•> oo for some x E (3, then {Cn}f*oo iS *^e Fourier coefficients of a.

n

Boehmian y. Moreover, y = A — lim ^3 Cje*3t •

PROOF: The proof follows immediately by applying Theorem 3.2 to the sequence

{/n}o° of Boehmians, where fn(t) = f) 0 e ' ; t for n = 0, 1, 2 D
j=-n
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A DIRICHLET PROBLEM FOR THE DISK

The Dirichlet problem (in polar coordinates) for the disk is to find a function u(r, 0)
such that

r?u r r + rur + uee =0, 0 < r < 1, —oo < 6 < oo
(4.1) .. -

and tt(l, 6) = g{0), —oo < 6 < oo (where'g is a given periodic function).

The solution u of the above Dirichlet problem may be interpreted physically as the
steady-state temperature at the point (r, 9) in the disk when the boundary temperature
is given by g(S).

In order to formulate a more general Dirichlet problem we need some preliminaries.

DEFINITION 4.1: Let I = (a, b) be an interval. A Boehmian-valued func-
tion F: I —* (3 is said to have a derivative equal to F'{\) (A G/) if for any
J n £ J such that An ^ A for n = 1, 2, . . . and An —* A as n —> oo we have
A - l i m ( F ( A n ) - F ( A ) ) / ( A n - A ) = F'(X). In general, F<">(A) = (^""^(A)) ' for
n = 2, 3, . . . .

The proof of the next theorem follows directly from Theorem 2.5.

THEOREM 4 . 2 . For each k and all n, Ck(F^(X)) = dn/d\n(Ck o F)(\) for aM

A.

The nth order differentiation Boehmian is given by sn = 6j /6j for n = 1, 2, . . .

(where {Sj}f 6 C£ D A). A straightforward exercise shows that if / is an n-times

continuously differentiable function then snf = f ^ .

We now consider the following Dirichlet problem.

Given an x € 0, find a Boehmian-valued function F: (0, 1) —» (3 such that

(4.2) r2F" + rF1 + s2F = 0 for 0 < r < 1 and A - lim F{r) = x.
T—l~

THEOREM 4 . 3 . (Existence). For each x6/3 there exists a solution to (4.2).

PROOF: Let F(r) = A - lim f) C,-(x)rl'V* = £ C^xJrl'V*. 0 < r < 1. By
n }=-n -oo

Corollary 3.3, the above limit exists and F(r) £ /3 for all r.

Let 0 < r < 1 and {rn}°° be a sequence in (0, 1) such that rn —> r as n —> oo

and rn j= r for all n. Now

= E o
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For each m ̂  0 and all n

/F(rn)-F(rr
m \ rn - r

Also, for each m ̂  0

' n
Jt=O

So, by Theorem 3.2 and Corollary 3.3, A - lim(F(rn) - F(r))/(rn - r) =
£ C^aOlik1'1"1^*. Hence,

(4.3) F'(r) = J2 CM Ijlrl'"-^^, 0 < r < 1.

Similarly,

(4.4) F"(r) = £ C,-(x) IJKIJI - l)rl'"-2e«*, 0 < r < 1.

By using (4.3), (4.4), and Theorem 2.6 we obtain r2F" +rF' +s2F = 0 for 0 < r < 1.
In order to complete the proof we need to show that A — lim F(r) = x. For each

r-»i-

Jb and all 0 < r < 1, \Ck{F(r))\ = |Ct(x)rl*l| < \Ck{x)\. Also, for all Jfe, Ck(F(r)) =
Ck(x)r^ —» Cjt(x) as r —» 1~. Therefore, by applying Theorem 3.2, the proof is
complete. U

REMARK. If x € C(T) C f3, then (as seen in the proof of Theorem 4.3) the solution
u(r> 0) = Yi Ck{x)r\k\eike of (4.2) is the classical solution of the Dirichlet problem

— OO

(4.1).
A function F: (a, b) -+ 0 will be called weakly bounded if for each k the set

{(Cjt o F){\) : A G (a, b)} is bounded.

THEOREM 4 . 4 . (Uniqueness). For each x 6 /? there exists at inost one weaMy
bounded solution to (4.2).

PROOF: Suppose that r2F"+rF'+s2F = 0, 0 < r < 1, and A - lim F(r) = 0.
r-»l~

By applying Theorem 4.2 to the above we obtain for k = ±1, ±2, . . . , (C* o F)(r) =
Akr

k + Bkr~k and (C0of)(r) = Ao + Bolnr, 0 < r < 1, (where Ak and Bk are
constants). Since F is weakly bounded (Ck°F)(r) = Akr

k for Jb = 0, ±1, ±2, —
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Therefore, by applying Theorem 2.5 and the condition A — km F(r) = 0, we obtain
r—>1~

that Ak = 0 for k = 0, ± 1 , ±2, . . . . Hence, F(r) = 0 for 0 < r < 1. D

Let H = {x € P : urn |Cfc(x)|1/fc ^ 1}. Since H can be identified with a subset of
the space of hyperfunctions ([4]), elements of H are called hyperboehmians.

The next regularity theorem is easily proved and hence its proof is omitted.

THEOREM 4 . 5 . For each x £ H there is a unique weakly bounded solution F
to (4.2). Moreover, il u{r, 6) = F{r), 0 < r < 1, - c o < 0 < oo, then

(i) u is an infinitely differentiable function.
(ii) r2Urr + rur + ugg = 0, 0 < r < 1 and —oo < 6 < oo, and

A — lim u(r, 0) = x.
r—»1~

oo
REMARK. It is not difficult to show that u(r, 6) - £ Ck(x)r^eike (x € /?) represents

— OO

a harmonic function for 0 < r < 1 and — oo < 8 < oo if and only if x is a hyper-
oo

boehmian. Indeed, if x € P \ H then the solution X) Ck(x)r^eike to (4.2) is not even
— oo

a function of 0.
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