CORRIGENDUM

Avoiding early closing:

'Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems' – CORRIGENDUM

RAFAEL DE LA LLAVE and ALISTAIR WINDSOR

doi:10.1017/S014338570900039X, Published by Cambridge University Press, 17 July 2009.

1. Introduction

This paper serves as a corrigendum to our paper [dlLW09]. In particular, in the proof of Theorem 6.3 we claimed the following.

CLAIM. Let f be a topologically transitive Anosov diffeomorphism of a compact manifold M. For all $\epsilon > 0$ there exists $L \ge 1$ such that for every $n \in \mathbb{N}$ and $x \in M$ there exists a periodic point $p \in M$ satisfying:

(1) for all 0 < i < n,

$$d_M(f^i x, f^i p) < \epsilon;$$

and

(2) p has minimal period $n + \ell$ with $0 < \ell < L$.

Unfortunately, as B. Kalinin and V. Sadovskaya discovered, the proof sketched contained gaps. Using specification as was suggested in our paper leads to a weaker result than we claimed. In this paper we prove a uniform version of closing.

THEOREM. Let f be a topologically transitive C^1 Anosov diffeomorphism of a compact connected manifold M. Given $\epsilon > 0$ there exists $D \ge 1$ and N > 0 such that for all $x \in M$ and $n \in \mathbb{N}$ there exists a periodic point $p \in M$ with minimal period $m \in \mathbb{N}$ and $d \in \mathbb{N}$ such that:

(1) for all $0 \le i \le n-1$

$$d_M(f^ix, f^ip) < \epsilon$$
;

and

(2) $n \le d \cdot m \le n + N \text{ and } 1 \le d \le D.$

This result is strong enough to complete the proof of Theorem 6.3.

2. Results

To prove our result for Anosov diffeomorphisms, we will first prove a similar statement for subshifts of finite type. Since every Anosov diffeomorphism is a factor of a subshift, this will allow us to establish the desired result.

Recall that a subshift of finite type can be described by a transition matrix A. Symbol j may follow symbol i in a word in Σ_A if $A_{i,j}=1$. A finite sequence (a_1,\ldots,a_n) is said to be admissible if $A_{a_i,a_{i+1}}=1$ for $0 \le i \le n-1$. We say that a finite sequence (a_1,\ldots,a_n) is periodic if it is admissible and $A_{a_n,a_1}=1$ so that the sequence can be extended periodically to a point $a \in \Sigma_A$ of period n.

The following result is similar to one of Fine and Wilf in [FW65].

LEMMA 1. Let (Σ_A, σ) be a subshift of finite type. Let (a_1, \ldots, a_n) be a periodic sequence of period m_1 . Let $(a_1, \ldots, a_n, \ldots, a_{n+L})$ be an extension of (a_1, \ldots, a_n) that is periodic with period m_2 .

If $m_1 + m_2 \le n$, then (a_1, \ldots, a_n) and (a_1, \ldots, a_{n+L}) are both periodic of period $gcd(m_1, m_2)$.

Proof. Write $d := \gcd(m_1, m_2) = k_1 m_1 + k_2 m_2$ with $k_1, k_2 \in \mathbb{Z}$. Consider the following variation on the proof of Bézout's theorem that uses only numbers in the range $1, \ldots, n$. If $k_1 > 0$, then define $k_+ = k_1$, $m_+ = m_1$, $k_- = -k_2$ and $m_- = m_2$. If $k_2 > 0$, then define $k_+ = k_2$, $m_+ = m_2$, $k_- = -k_1$ and $k_- = m_2$.

Let $1 \le i \le n - d$ be arbitrary and initialize k = i.

- (1) Add m_+ to k successively until either of the following holds:
 - (a) adding a further m_{+} would give k above n; or
 - (b) all k_+ of the m_+ have been used.
- (2) Subtract m_{-} from the new k successively until either of the following holds:
 - (a) subtracting a further m_{-} would give k below 1; or
 - (b) all k_- of the m_- have been used.
- (3) If $k \neq i + d$, then return to step (1).

Notice that if $k + m_+ \ge n + 1$ and $k - m_- \le 0$, then $m_1 + m_2 \ge n + 1$, which is a contradiction. Thus the above procedure cannot terminate at an intermediate stage, and the algorithm must proceed to give k = i + d.

Since each of these steps involves one of the two periods and all of the numbers are among $1, \ldots, n$, this shows that $a_i = a_{i+d}$ for $1 \le i \le n-d$, i.e. the original sequence (x_1, \ldots, x_n) is d-periodic. Since d divides m_2 and $m_2 < n$, we can conclude that the extended sequence (a_1, \ldots, a_{n+L}) is also d-periodic.

Remark. The hypothesis that $m_1 + m_2 \le n$ is necessary. If we take the sequence

of length 10 with period 5 and extend it by (1, 0, 0, 1), we obtain the sequence

$$(0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1)$$

of length 14 that has period 7. Obviously, the original sequence is not constant even though 5 and 7 are relatively prime.

THEOREM 1. Let (Σ_A, σ) be a mixing subshift of finite type. Let L be such that $A^L > 2$. Let $n \ge L$. Let (a_1, \ldots, a_n) be a periodic sequence. Then one of the following holds:

- (1) (a_1, \ldots, a_n) has minimal period n or n/2; or
- (2) there exists an extension (a_1, \ldots, a_{n+L}) of (a_1, \ldots, a_n) such that (a_1, \ldots, a_{n+L}) is periodic with minimal period n + L or (n + L)/2.

Proof. If (a_1, \ldots, a_n) has minimal period m_1 being either n or n/2, then we are done; therefore we may suppose that $m_1 \le n/3$. Let (a_1, \ldots, a_{n+L}) be an arbitrary periodic extension of (a_1, \ldots, a_n) . If (a_1, \ldots, a_{n+L}) has minimal period m_2 being either n+L or (n+L)/2, then we are done; therefore we may suppose that $m_2 \le (n+L)/3$.

In this case, since $L \le n$ we must have $m_1 + m_2 \le n$. Hence, by Lemma 1, we can show that the extended sequence (a_1, \ldots, a_{n+L}) has period m_1 . There is a unique extension of (a_1, \ldots, a_n) that makes (a_1, \ldots, a_{n+L}) have period m_1 , but there are at least two ways of completing (a_1, \ldots, a_{n+L}) . Using this other completion, we get that (a_1, \ldots, a_{n+L}) does not have period m_1 . If we denote its minimal period by m_2 , we see that we must have $m_1 + m_2 > n$. This means that m_2 must be at least (n + L)/2.

Now we can state our main theorem.

THEOREM 2. Let f be a topologically transitive C^1 Anosov diffeomorphism of a compact connected manifold M. Given $\epsilon > 0$, there exist $D \ge 1$ and N > 0 such that for all $x \in M$ and $n \in \mathbb{N}$ there exist a periodic point $p \in M$ with minimal period $m \in \mathbb{N}$ and $d \in \mathbb{N}$ such that:

(1) *for all* $0 \le i \le n - 1$,

$$d_M(f^i x, f^i p) < \epsilon;$$

and

(2)
$$n \le d \cdot m \le n + N \text{ and } 1 \le d \le D.$$

Proof. Let $\epsilon > 0$ be arbitrary. There exists a Markov partition \mathfrak{M} of M by 'rectangles' of diameter less than ϵ (see [**Bow70b**]). Let (Σ_A, σ) be the associated subshift of finite type with transition matrix A and alphabet \mathscr{A} . Every transitive Anosov diffeomorphism of a connected manifold is topologically mixing, so there exists $L \in \mathbb{N}$ such that A^L is a positive matrix. Immediately, we have $A^{2L} \geq 2$. By [**Bow70a**, Proposition 10], there exists $k \in \mathbb{N}$ such that the canonical projection $\pi : \Sigma_A \to M$ satisfies $\#\pi^{-1}(x) \leq k$ for all $x \in M$.

Consider one of the possible lifts of the point $x \in M$, $(\ldots, x_0, x_1, \ldots, x_{n-1}, \ldots)$. Consider the finite sequence (x_0, \ldots, x_{n-1}) . We can extend this by 2L states to get a new finite sequence $(y_0, \ldots, y_{n-1+2L})$ that is periodic; we choose to extend by 2L rather than simply L so that 2L < n + 2L. Now we can apply our symbolic extension lemma to obtain either a point q of period n + 2L with minimal period at least (n + 2L)/2 or a point q of period n + 4L with minimal period (n + 4L)/2. Let m be the minimal period of the point q. The orbit of the periodic point q consists of m distinct points. Projecting the

for 0 < i < n - 1.

orbit under π gives at least m/k distinct points. Hence the minimal period of the projected point $p = \pi(q)$ is at least m/k.

Taking N = 4L and D = 2k, we see that we obtain a periodic point p of period $n \le n' \le n + N$ with minimal period at least n'/D.

Since we extended the original (x_0, \ldots, x_{n-1}) , we have that p and x belong to the same rectangle for the first n iterations of f. This means that

$$d_M(f^ix, f^ip) < \epsilon$$

3. Completing the proof of Theorem 6.3

Theorem 6.3 states that if the distortion of f along every periodic orbit is bounded, then the distortion of any iterate of f is uniformly bounded. The idea was that any orbit segment is close to a segment of a periodic orbit whose period is not very different from the length of the orbit segment. This led to the inequalities (54) in [dlLW09]:

$$K_{g,E^s}(f^n, p) \le K_{g,E^s}(f^{n+\ell}, p)K_{g,E^s}(f^{-\ell}, p)$$

 $\le C_{\text{per}}K_{g,E^s}(f^{-\ell}).$ (54)

Here we used $K_{g,E^s}(f^{n+\ell}, p) \le C_{per}$, since we were supposing that $n+\ell$ was the minimal period of the periodic point p. We are unable to show that this is the case; however, using our previous lemma, we can find a periodic point p with minimal period m such that for some $d \in \mathbb{N}$ with $1 \le d \le D$ we have $m \cdot d = n + \ell$ for $0 \le \ell \le N$. Now we have

$$K_{g,E^s}(f^{n+\ell}, p) = K_{g,E^s}(f^{m \cdot d}, p)$$

$$= K_{g,E^s}(f^m, p)^d$$

$$\leq K_{g,E^s}(f^m, p)^D$$

$$\leq C_{\text{per}}^D.$$

This then leads immediately to the following replacement for (54):

$$K_{g,E^{s}}(f^{n}, p) \leq K_{g,E^{s}}(f^{n+\ell}, p)K_{g,E^{s}}(f^{-\ell}, p)$$

$$\leq C_{\text{per}}^{D}K_{g,E^{s}}(f^{-\ell}).$$
 (54')

With estimate (54'), the remainder of the proof of [dlLW09, Theorem 6.3] carries through as stated. The only change is in the value of the constant obtained.

Acknowledgement. R. de la Llave was supported by NSF grant DMS-0901389.

REFERENCES

[Bow70a] R. Bowen. Markov partitions and minimal sets for axiom A diffeomorphisms. *Amer. J. Math.* 92 (1970), 907–918.

[Bow70b] R. Bowen. Markov partitions for axiom A diffeomorphisms. Amer. J. Math. 92 (1970), 725–747.
 [dlLW09] R. de la Llave and A. Windsor. Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems. Ergod. Th. & Dynam. Sys. 30(4) (2009), 1055–1100. Published online by Cambridge University Press 17 July 2009, doi: 10.1017/S014338570900039X.

[FW65] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. *Proc. Amer. Math. Soc.* 16 (1965), 109–114.