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UNIFORM DENSITIES ON HYPERBOLIC

RIEMANN SURFACES

MITSURU NAKAI

We are interested in the question how the spaces of solutions of

elliptic equations vary according to the variations of underlying regions

and coefficients of the equation. We will discuss this question for the

case of equations Δu — Pu considered on noncompact Riemann surfaces

R. Typically we ask the properties of mappings τx\ (R,P) —> dimPX(R)

from the space Φ of pairs (R, P) of noncompact Riemann surfaces R and

densities P on R, i.e. P(z)dxdy are 2-forms on R such that P(z)dxdy φ. 0

and P(z) > 0 are Holder continuous with respect to local parameters

z = x + iy, into cardinals, where PX(R) are the linear spaces of solu-

tions of Δu = Pu on R with certain boundedness properties X. The

possibilities for X that we consider are B meaning the boundedness, D

the ίiniteness of Dirichlet integrals D(u) = \gY2Ldu(z)\2dxdy, E the ίinite-
JR

ness of energy integrals EF(u) = (I grad u(z) f + u\z)P(z))dxdy and their
JR

combinations BD and BE. Particularly interesting are the subspaces of

degenerate character of Φ:

Oz = τϊKΰ) = {(R,P)eΦ; PX(R) = {0}}.

If we denote by OG the subspace of Φ consisting of those pairs (R,P)

such that R are harmonically parabolic, i.e. there do not exist harmonic

Green's function on R, then we have the following strict inclusion rela-

tions established by many authors listed in the references at the end of

this paper:

(1) OG < OB < OD = OBD < OE = OBE .
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2 M. NAKAI

An important question in this context is: Which one of R and P is more

decisive for the degeneracies (R,P) e OB — Oβ9 OD — OBy and OE — ODΊ

By the nature of the question R must be postulated to be hyperbolic,

i.e. nonparabolic. The purpose of this paper is to show that it is P

that determines the degeneracies of the pair (R,P), i.e. we will prove

THE MAIN THEOREM. On an arbitrarily fixed hyperbolic Riemann

surface R there always exist densities PB, PD, and PE such that the

pairs (R, PB), (R, PD), and (R, PE) belong to OB — OG, OD — OB, and

OE — OD, respectively.

To prove the theorem we will study the equation Δu = Pu with

densities P uniformly distributed on the hyperbolic Riemann surface R

in the following sense. Let (dr(z),dθ(z)) be the polar coordinate differ-

entials on R with center z0, i.e. dr(z) is the differential of the global

function r(z) = e~G^Zo) on R and dθ(z) = —*dG(z,z0), where G(z, z0) is

the harmonic Green's function on R with pole z0. If P(z)dxdy is an

arbitrary density on R, then

= P(z)dxdy > Q

> Q

r(z)dr(z)Λdθ(z) ~

is a global function on R less the Green's singular set S, i.e. the set of

isolated points in R where | grad G( , z0) \ = 0. If there exists a continu-

ous function φ > 0 defined on the interval [0,1) such that P(z) = φ(r(z))

on R, then we say that the density P is rotation free. More generally

if there exists a constant c > 1 such that

c-ιφ(r(z)) < P(z) < cφ(r(z))

on R except for a compact subset of R, then we say that P is almost

rotation free. We also call such a density (rotation free or almost ro-

tation free) as a uniform density and denote it by Pψ indicating the

dependence on φ. Set

6(0= [\l-τ)φ(τ)dτ;
JO

d(φ) = (1 — max (τ, σ))φ(τ)φ(σ)dτdσ
JoJo

e(φ) = φ{τ)dτ .
Jo
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We will show that b(φ) < oo (d(φ) < oo, e(φ) < oo, resp.) is equivalent to
that PφB(R)(PφD(R), PΨE(R), resp.) is canonically isomorphic to HB(R)
(HD(R), HD(R), resp.), where HX(R) denotes the class of harmonic func-
tions on R with the boundedness property X = B or D> and also that
b(φ) = oo(d(φ) = oo, e(φ) = oo, resp.) is equivalent to PΨB(R) = {0} (PΨD(R)
-{0}, P^(72) = {0}, resp.), i.e. (R,P9) e OB(OD, OE, resp.). Therefore the
required densities P^, PDJ and P^ in our main theorem can be chosen, for
example, among densities Pa ~ Pψa with φa(τ) = (1 — τ)~a for α e (—oo, oo)

((R,Pa)eOB-OG (αe[2,oo));

(R,Pβ)eOD-OB (αe[§,2));
( 2 )

In nos. 1-3, a mean formula on level lines of Green's function is
discussed for a certain class of functions. In particular the circle mean
formula of Green's function will prove to be useful. We relate vector
space structures of subspaces of P(R) to those of subspaces of H(R) by
what we call canonical isomorphisms in no. 4. The determination of
classes PφX(R) in terms of x(φ)(X — B,D,E; x = b,d,e) will be carried
over for rotation free densities first in nos. 5-9, which are also the main
body of this paper, and then for almost rotation free ones in nos. 10-14.

Harmonic Green's Function

1. The hyperbolicity of a Riemann surface R is characterized by
the existence of the harmonic Green's function G{z, ζ) = GR(z, ζ) with
pole ζ situated at any point of R. (We use the same letters z9 ζ, etc.
to denote the generic point of R and also a local parameter around the
point.) It is the smallest positive solution of R of the Poisson equation
JG( , ζ ) = — 2πδζ with the Dirac measure £ζ whose unit mass is dis-
tributed at ζ. By the aid of Green's function we consider the polar
coordinate differentials (dr(z), dθ(z)) w i t h c e n t e r z o e R g i v e n b y

\
(3) \ r(z)

(dθ(z)= -

The differential dr(z) is the differential of the global function
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( 4 ) r(z) = e~G^^

on R whose range of values is the interval [0,1). The set S = {zeR;

dr(z) Λ dθ(z) = 0} is referred to as the singular set, which is an isolated

subset of R. We denote by Ωp the set {z e R r(z) < p} and by Cp the

level lines {zeR; r(z) = p] for each pe(0,1). The set Ωp is a subregion

of R and its relative boundary dΩp = Cp. If p is sufficiently small, then

Ωp is relatively compact, and if p is sufficiently close to 0, then Ώp is

homeomorphic to the closed unit disk. The differential dθ(z) considered

on Cp is a positive regular measure with total mass 2π(cf. e.g. [23]):

( 5) ί dθ(z) = 2π .
JCp

An open arc γ is said to be a regular Green line issuing from zQ if

ô 6 γ, f ΓΊ S = ^, d (̂̂ ) = 0 along ^, and supz€r riz) = 1. The Brelot-Cho-
quet theorem [3] says that Cp is pierced almost everywhere by regular
Green lines issuing from zo(cf. [23]). This is the basis for the justifi-
cation of the following iterated integration:

ί φ(z)r(z)dr(z) A dθ(z)

( 6 ) = ί φ(z)r(z)dr(z) A dθ(z)
J u rrer

where Γ is the set of regular Green lines issuing from z0 and φ is a

function on R.

Consider a 2-form P(z)dxdy on R. We say that it is nonnegative if

P(z) > 0 for every local parameter z — x + ίy. Consequently P(z)dxdy

> Q(z)dxdy can be defined by the nonnegativeness of (P(z) — Q(z))dxdy.

If P(z) is Holder continuous for every z = x + iy, then we say that

the 2-form P{z)dxdy is Holder continuous. In this case the potential

ί G( ,ζ)P(ζ)dξdη(ζ = ξ + iη) is of class C2 and

( 7) Δz\ G(z,ζ)P(ζ)dξdv = -2πP(z)
J R

if G(z,ζ)\P(ζ)\dξdη < co for one and hence by the Harnack inequality
J R

for every 2e#(cf. e.g. Miranda [10]). The Dirichlet integral D(u) =
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DR(u) over R of a function u with weak differential du is \ du Λ

I grad u(z) fdxdy < oo. If P(z)dxdy is Holder continuous, then
Ji2

( 8) Z) ( ί G ( , ζ)P(ζ)dξdη) = 2π ί G{z, QP(z)P(ζ)dxdydξdη <
\J.β / J RxR

if the right hand side has a definite meaning (cf. e.g. Constantinescu-

Cornea [4]).

2. An exhaustion {Rn}£ of R is a sequence of regular subregions

β w such that Rn c # w + 1 and IJΓ # w = β. We denote by H(F) the class

of harmonic functions on an open subset F of R. Let zQe Roa RQ (Z Ωp.

Consider a function wp>n = wne H(ΩP Π Rn — RQ) Π C(ΏP Π Rn — RQ) for

each n > 1 such that ww |aβ 0 = 0, w n | ^ Π 3Rn = 1, and *dwn\dΩp Γi Rn = 0.

We set ^ w = 0 on i?0 and wn = 1 on Ωp — Rn. Then {wn}Γ is decreasing

and converges to a function wp = w on β̂ , and

( 9 ) liml>fl,(w, - w,,n) = 0.
7l-*oo

The Kuramochi theorem [7] (cf. Kusunoki-Mori [8] [13], [23]) says that

(10) wp(z) = 0 .

This is equivalent to that the double Ωp of Ωp along Cp is parabolic.

Here we append a very simple proof of (10). Let Gn(z9zQ) be the Green's

function on Rn and set Gn(z, zQ) = 0 on R — Rn. Take a p0e(0,p) such

that βPo is relatively compact. Consider functions

^n\Z)

mm (G(z,z0), — log p0)

on Ωp(n = 1,2, •)• Observe that En converges to 1 uniformly on each

compact subset of Ώp as n —> co and

By the Green formula

DΩp(wn) =

= I *d^ w = - I En*dτυn

JdRo J d(ΩpθRn-Ro)

= -DΩ(En,wn)
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and therefore, by the Schwarz inequality, DΩp(wn) < DΩp(En), proving

(10).

As an application of (10) we shall prove the following useful identity:

— u(z)dθ(z) = u(z0) -J

(ID 2 ? Γ " χ f " ' β

— m log ̂  + — log —ί— Δu(z)dxdy
2π J χ>, r(a)

for any nonnegative function w e (^(β, — fo, , zm})9 where zl9 , zm are

a finite number m > 0 of points in 5,, such that Δu > 0, %(#) + log\z — zk\

has a ^-extension to f̂c(A: = 1, ,ra), and u is bounded on β, — V or

Dβ/)_F(u) < co, where V is a relatively compact open neighborhood of

{Zi> >3m} with F c β^. To prove (11) let gn(z) be the Green's function

on Ωp Π Rn with pole z0 such that ^ > 1 and V c J?w. The standard

application of the Green formula to gn and ^ on Ωp Π /2n less small

disks at zk(k = 1, ,m) and the limiting process, making disks at zk

shrink to zk9 yield

— gn(z)Δu(z)dxdy .
Zπ J ΩpDRn

Since ^ n and —*dgn converge to G( ,z0) + log^o = — logr + logp and

dθ on Ώp and C, respectively, on letting n -» co we deduce (11) if we

can show

limf u(z)(-*dgn(z)) = 0 .
n-*oo J ΩpP[dRn

Take exhaustion {Rn}^ with Ro = flPo and corresponding w,,n = wn.

Clearly ^ ( 1 — wn) > 9n on Ώp Γϊ Rn — ΩPQ and thus pQ*dwn > —*dgn. If

co,

I u(z)(—*dgn(z)) < pΛ u(z)*dwn(z)
\J ΩpΓ)dRn J ΩpΓ\dRn

< DΩp^Rn-Ωp (U,Wn) + I \u(z)*dWn(z)\ .

If k = sup^ _F 1̂ 1 < 00, then
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I u{z)(-*dgn(z)) < pΛ u(z)*dwn(z)
J ΩpOdRn J Ωpf]dRn

< kpλ *dwn(z)

wn(z)*dwn(z) = kp0DΩ ^Rn{wn) .
)d(ΩpΓ)Rn)

In either case the required conclusion now follows from (10).

3. As direct consequences of (11) we first obtain the circle mean

formula of Green's function ([18]) which will be convenient for our later

calculations:

(12) f G(z, ζ)dθ(ζ) = -2π max (log p, log r(ζ)) .
J Cp

Another consequence we need is

(13) f u\z)dθ{z) < 2 log PLDOpi_BpJLu)
JCpχ-Cp% Pi

for any 1 > pι > p2 > 0 and any u e HD(ΩP) Π C2(ΩP), where we denote

by HD(F)(HBD(F)) the class of harmonic (bounded harmonic) functions

on an open subset F of R with finite Dirichlet integrals over F. Since

we can find a sequence {un} in HBD(ΩP) Π C2(ΏP) for any ueHD(Ωp) Π

C2(ΩP) such that {un} converges to u, {DΩp(un — u)} converges to 0, and

un — ((—n) V u) Λ n, where Λ and V are lattice operations in H(ΩP)

(cf. e.g. [23]), we may suppose ueHBD(Ωp). Then u2 is admissible for

the validity of (11) and Δu2 = 2|grad^|2. Therefore

— ί M2(z)dθ(z) = u2(z0) + — ί log —^-21 grad u(z) fdxdy .
2π Jcr 2πJ Ωτ r(z)

The difference of these identities for τ = px and p2 yields (13).

Canonical Isomorphisms

4. A nonnegative Holder continuous 2-form P(z)dxdy which is not

identically zero on a Riemann surface R will be referred to as a density

on R. Given a density P(z)dxdy on R, we can consider the self-adjoint

elliptic partial differential equation

(14) Δu{z) = P(z)u(z)
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invariantly defined on R. We denote by P(F) the linear space of C2

solutions of (14) on an open set F of R. The presheaf φ = {P(F) F c R}

defines a harmonic structure on R in the sense of Brelot [2]. A super-

harmonic (subharmonic) function with respect to ψ will be referred to

as a supersolution (subsolution) of (14). For local properties of §β and

related structures we refer to e.g. Royden [21] [12], etc. Our main

concern is the global properties of P(R). We denote by P+(R) the sub-

space of nonnegative solutions in P(R). The linear subspace of P(R)

generated by P+(R) will be denoted by P\R). The notations H+ and H'

are understood in the same sense. The Myrberg theorem [11] says that

dim P\R) > 1 for every noncompact R. This is the reason we do not

consider the null class OP in the scheme (1). We will always assume

that R is noncompact. We will make constant use of the following (cf.

e.g. [23]).

(15) HX(R) = H'X(R) (X = B,BD,D)

i.e. any function in the class HX(R) can be represented as a difference

of two nonnegative functions in HX(R) (X = B, BD, D), and similarly

(Royden [21], Glasner-Katz [5], [12])

(16) PX(R) = P;X(R) (X = B, BD, D, BE, E),

i.e. any solution of (14) with the property X can be represented as a

difference of two nonnegative solutions of (14) with the property X(X =

B,BD,D,BE,E).

A linear mapping τ of a subspace of P\R) into H'(R) is said to be

canonical if τu — u is a difference of two potentials, i.e. nonnegative

superharmonic functions whose greatest harmonic minorants are zero. The

intuitive meaning of this is that τu and u have the same ideal boundary

values. If there exists a nontrivial canonical mapping, then R must be

hyperbolic, and there is a unique maximal canonical mapping TP. By

the Riesz decomposition of positive superharmonic functions and (7),

T — TP is seen to have the representation

(17) TPu = u + -A-f G( , ζ)u(ζ)P(ζ)dξdη (ζ = ξ + iη).

We denote by S)(TP) the domain of the operator ΓP. Clearly a u e Pf{R)

belongs to 2XΓP) if and only if ί G(z,ζ)\u(ζ)\P(ζ)dξdη < oo for some and
J R
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hence, by the Harnack inequality, for all z e R. Take an exhaustion
{Rn}ΐ of R and denote by Gn(z,ζ) the Green's function on Rn. Consider
auxiliary operators

TP,nu = Tnu = u + -Lf Gn( ,

which maps P(βn) Π C(Rn) bijectively to H(Rn) Π C(Rn) and supΛn|Γnw| =
supΛn|w|, which follows from Twifc|9βn — u\dRn. Clearly

Tu = lim Tnw

uniformly on each compact subset of R for any u e S)(TP) ΓΊ P'CR). There-

fore we see at once that mj)B\Tu\ < supΛ|w|. If TPu — 0, then the sub-

harmonic function 2π\u\ is dominated by the potential G( , ζ)\u(ζ)\P(ζ)dξdη
J R

and therefore u — 0. Thus TP is injective and for this reason we call
TP the canonical isomorphism. Clearly TP is a positive operator, i.e.
u > 0 implies 2V% > 0, and in fact TPu > u > 0. In this case sup^ Γ^
= sup^ u. We remark that

(18) PB(R), PD(R), PE(R) c

and

(19) TP(PB(R)) C HB(JB), TP(PD(R)) c ffZ)(β), TP(PE(R)) c

To prove these take a ueP+(R) and an exhaustion {i?n} of i2. Since

2τr Jie«

belongs to H+(Rn) and increasing with n, by the Lebesgue-Fatou theorem,

lim Ύnu{z) = viz) + J ^

If w is bounded, then the left converges to a function TueH+(R) and
bounded, i.e. Tu e HB(R) and u e ®(Γ). If D(u) < oo, then by the Dirichlet
principle, DRn(Tnu) < D(u)9 and since J? is hyperbolic, l im,^ Tnu(z) < oo
and DiTu) < oo (cf. [23]). Therefore %eS(Γ) and TueHD(R). In view
of (16) we deduce (18) and (19).

To determine when T = TP is surjective in (19) is a very difficult
question to settle. We only have partial results for the class PB and its
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subclasses PBD and PBE (cf. Roy den [21], Glasner-Katz [5], Glasner-

Nakai [6], Maeda [9] [12], [16], [17]). However for the special case of

uniform densities we will have the complete answer in this paper. We

denote by Tx = T§ the restriction of TP on PX(R) (X = B,D,E,BD,BE).

Let Q(z)dxdy be another density on R. The mapping TfP from PX(R)

onto QX(R) (X = B,D,E) such that T§ = TξoT£p, if exists, is also

referred to as a canonical isomorphism of PX(R) onto QX(R). If T§

PX(R) > H'(R)

QX(R)

and Γf are surjective, then clearly TfjP exists (X — B,D,E). If P and

Q differ only on a compact subset of R, then T^P exists for every

X = B,D,E. This follows from the fact that

Lf2VPU w +

2ττ

is a bijective mapping from P\R) to Q'(#) and TQ>P\PX(R) = Γf?P (cf.

[16]), where i?0 is a relatively compact subset of R such that (P(z) —

Q(z))dxdy = 0 on R — Ro, and Gp(z,ζ) is the Green's function of the

equation (14), i.e. the smallest positive solusion of the Poisson equation

(A — P)u — —2πδζ, whose existence is always assured by the Myrberg

theorem [11] (cf. [23]). To determine the existence of TfP is also a

difficult question (cf. [16]). For later use we only state the following

simple observation: If TfP)P exists for every c > 0 and

(20) k-ψ <Q <kP

for some constant k > 1 on R except for a compact subset of R, then

T^P exists (X = B,D,E). That the sole condition (20) is sufficient for

the existence of Tf?P is shown by Roy den [21]. The same is also true

for the existence of T | P by the energy principle. It is likely* that

only (20) implies the existence of TQ^P, but since the above assertion is

sufficient for our later purpose, we prove it here under the additional

conditions on P. We denote by Uz the common ranges of TfP for all

c > 0 and by Yx the range of T%. Set Ux = Ux Π H+ and Vx = Vx Π H\

'!:) That this is certainly the case is shown in the present author's recent paper:
Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.
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By (15) we only have to show that Ux = Vx. Let heUx and Tf~ipv = h
with v e k-ψ+X(R). Let un e Q+(Rn) Π C(Rn) such that

Since we can assume that the exceptional compact set in (20) is empty,
we deduce

0 < un < v

on Rn and {un} is decreasingly convergent to a ueQ+(R). Since

f G(z,ζ)u(ζ)Q(ζ)dξdv < k>[ G(z,ζ)v(ζ)k-Ψ(ζ)dξdη < ĉ
J R J R

and TQy7lun = Tk-ip^nv converges to h as n—> oo, we conclude, by the
Lebesgue convergence theorem, that

TQu = h, 0 < u < v .

If Z = S, then M e Q+^(β). If X = D, then by (8)

D(v) = D(h) + — ί G{z,ζ)v(z)v{ζ)k-ιP(z)k-ιP(ζ)dxdydξdη < oo

and therefore

J3(w) - Z)(Λ) + — ί G{z,ζ)u(z)u{ζ)Q{z)Qiζ)dxdydξdη
2πJR χR

< k'Div) < oo

and ue Q+D(R). Finally suppose X = E. By the above we deduce

E%u) = D(u) + ί u\z)Q(z)dxdy
JR

< k*D(v) + ί v\z)kP{z)dxdy < k4Ek~ip(v) < oo
J R

and hence ueQ+E(R). We have seen that Uχ(zVχ. The inclusion
Ux H) Vx can be shown in the similar fashion.

Rotation Free Densities

5. A density P(z)dxdy on a hyperbolic Riemann surface R will be
referred to as being rotation free with respect to the point z0 if there
exists a function ψ on the unit interval [0,1) such that
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(21) P(z)dxdz = Pψ{z)dxdy = φ(r(z))r(z)dr(z) A dθ{z).

The function ψ is automatically nonnegative and (locally) Holder con-
tinuous. To the density Pφ we associate the following quantities:

(b(φ) = \\l-τ)φ(τ)dτ;
Jo

(22) d{φ) = (1 — max (τ, σ))φ(τ)φ(σ)dτdσ

e(φ) = ί φ(τ)dτ .
Jo

These are finite or infinite nonnegative numbers. Observe that e(φ) < oo
implies d(φ) < oo, and d(φ) < oo in turn implies b(φ) < oo.

6. First we study the class PφB(R). We will denote by OB the class
of pairs (R,P) of Riemann surfaces R and densities P on R such that
dim PB(R) = 0. In general the linear space L = Tp(PB(R)) isomorphic
to PB(R) is a subspace of HB(R)\ {0} c L c HB(R). For rotation free
densities we now show that only extreme cases occur, i.e. either L = {0}
or HB(R):

PROPOSITION. The following three conditions are equivalent by pairs
for rotation free densities Pφ on hyperbolic Riemann surfaces R:

(a) b{φ) < oo
(β) PΨB(R) is canonίcally isomorphic to HB(R)
(γ) (R,Pφ)eOB.

Proof. Assume (a) and fix an arbitrary heH+B(R). Let {Rn}? be
an exhaustion of R and Gn(z,ζ) be the harmonic Green's function on Rn.
ΎakeuneP^(Rn) Π C(Rn) such that un\dRn = h. Then {un} is decreasing
and converges to a ueP+B(R). Observe that

h(z0) = TPψ,nun(z0) = un(z0) + J ^ ί Gn(z0,ζ)un(ζ)Pφ(ζ)dξdv
Δ J ^

Λ

The integrand is dominated by G(z0> ζ)h(ζ)φ(r(ζ))r(ζ)dr(ζ) Λ dθ{ζ). Here
we remark that, by (11),

(23) f h(z)dθ(z) =
J(7r
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This is true not only for heHB(R) but also for heHD(R). Since

τlogτ" 1 < (1 — τ) on (0,1), we deduce

f G(zo,ζ)h(ζ)φ(r(ζ))r(ζ)dr(ζ) A dθ(ζ)
J R

h(ζ)dβ(ζήlθg τ-ι.φ{τ)τdτ

[2πh(z,)(l - τ)ψ{τ)dτ = 2πh(zo)b(φ) < °°
o

Therefore the Lebesgue convergence theorem can be applied to deduce

h(zQ) = u(z0) + J - f G(zo,Qu(QP9(Qdξdη = TPψu(z0).

Since TPψ^nu < TPψίnun = h, we have TPφu < h and hence TPφu = h, i.e.

TPφ is surjective and we obtain (β). The implication from (β) to (γ) is

trivially true.

Suppose that (γ) is true. By (16) there exists a nonzero ueP+B(R).

From (11) it follows that

(24) ί u(z)dθ(z) > 2πu(z0) .
J Cp

This is also true for ue P+D(R). This comes from the fact that Δu —

Pψu > 0. On the other hand, since logτ"1 > (1 — τ) on (0,1),

h(z0) = TPφu(z0)

= u(zQ) + A T G(«o,CMζ)p(r(ζ))r(C)cίr(C) Λ dθ(ζ)
2π J R

= u(zo)+ f
o \ 2π J cτ

> u(z0) (1 — τ)φ(τ)τdτ .
Jo

The nonnegative nonzero solution cannot vanish and thus u(z0) > 0.

Therefore

(1 — τ)φ(τ)τdτ < oo
Jo

and this in turn implies b(φ) < oo. Q.E.D.

7. From the class PφB(R) we turn to the class PφE(R) of solutions
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with finite Pφ-energy integrals Efy(u) = (\gradu(z)\2 + u2(z)P (z))dxdy.

We use the notation OE for the class of pairs (R, P) of Riemann surfaces

R and densities P on R such that dim PE(R) = 0. The meaning of OBE

should be clear. We know that OE = OBE (cf. Ozawa [20], Glasner-Katz

[5]). The linear space L = Tf(PE(R)) isomorphic to PE(R) is a subspace

of HD(R): {0} c L c HD(R). For rotation free densities we also show

that either L = {0} or HD(R).

PROPOSITION. The following four conditions are equivalent by pairs

for rotation free densities Pφ on hyperbolic Riemann surfaces R:

(a) e(φ) < oo

(β) PφE(R) is canonίcally isomorphic to HD(R)

(γ) PφBE(R) is canonίcally isomorphic to HBD(R)

(δ) (R, Pψ) e OE = OBE.

Proof. Assume (a) and fix an arbitrary heH+D(R). Take un as in

the proof of Proposition 6. Observe that

Efr(h) = DR(h) + ί h\z)Pψ{z)dxdy
J B

== DR(h) + ί h2(z)φ(r(z))dr(z) A dθ{z)
JB

= DR{h) + ίVί h2(z)dθ(z))φ(τ)τdτ .

Έy (13), supr6(o5l) h\z)dθ(z) = k < oo, and therefore
J Cτ

ER

φ(h) < D(h) + k\ φ(τ)dτ < D(h) + ke(φ) < oo .
Jo

Since Ep

Rι is the variation whose Euler-Lagrange equation is Δu = P u,

oo .

Therefore the decreasing sequence {un} converges to a u e P+E(R). Since

fe(φ) < oo implies b(φ) < oo, by the same proof as in no. 6, we see that

TPφu = h and (β) follows. By (19), Tjξ maps PφBE(R) injectively to

HBD{R). For an arbitrary heH+BD(R) there exists a ueP;E(R) such

that TPφu = h if (β) is true. But 0 < u < h implies that u e P+B(R) and

therefore ueP;B(R) f] P;E(B) = P;BE(R)9 i.e. (β) implies (γ). The im-

plication from (γ) to (δ) is trivial.

https://doi.org/10.1017/S0027763000015695 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015695


HYPERBOLIC RIEMANN SURFACES 15

If (δ) is true, then, by (16), there exists u e PΨBE(R) such that u > 0

on R. By (11), ί u\z)dθ(z) > u\zQ) and
J cτ

oo > Efr(u) > ί u\z)Pψ(z)dxdy
J R

u\z)dθ{z)\ψ{τ)τdτ > u\z,)[lψ{τ)τdτ ,
J JO

Γ
0 \ J Cτ

i.e. ψ(τ)τdτ < oo and this implies e(φ) < oo. Q.E.D.
Jo

8. For the study of PΨD(R), a little more sophisticated consider-
ations than those in nos. 3 and 4 are in order. We consider the mean
operator *:u—>.u* defined by

(25) uHz) = - L f u(ζ)dθ(ζ)
ΔTC J Cγ(z)

whose domain <&% = @*(R) is the class of measurable function u on R
such that

ί \u(ζ)\dθiζ) < ex)
J Cp

for every p e (0,1). The function u* is rotation free in the sense that
u*\Cp is a constant for each pe(0,1). We associate the function

on (0,1) with u*. Then

<26) u*(z) = w

Among properties of * we state the following which will be needed for
the study of PφD(R). Let u e P^D(R). Then u e @* and

(27) D(u*) < D(u)

<28) Δu*{z) = Pφ(z)u*(z)

(29) inf u*(z) > 0 (for UΞ£0);
zeR

(30) sup u*(z) < oo .
zeR

Let h = T°ueH+D(R). Then u<h and, by (23),
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16 M. NAKAI

0<u*(z) = — [ u(z)dθ(z)
2π J On,,

< J _ f Kz)M(z) = h(z0),
Δπ J cnz)

i.e. ue@* and (30) is valid. We apply (11) to u to deduce

A- ί u(z)dθ(z) = u(z0) + - L f log4
r(ζ)

Λ

2TΓ J cτ

Therefore we have

Γr(z)
u*(z) = u(z0) + ^**(r)(logr(^) — log τ)ψ{τ)τdτ .

Jo

First of all, by the above integral representation of u*, the boundedness
of u* (or %**) implies the continuity of u* in J?. Then u* is of class
C1 with respect to r(z) > 0 and

(31) ^ ζ ^ - - - ! - ΠV*(τ)p(τ)τcZτ .
3r(s) r(z)Jor(z)

Clearly du*(z)/dθ(z) = 0. These show that ^* is of class C2 with respect
to r(z) > 0 and

(32) ^ ! M - - - L - Γ

If we choose a branch of 0(2) = dθ(z) at zeR which is not in the

Green's singular set S and if we take reiθ = r(z)eίHz) as a local parameter

at z, then du*/dθ = 0 and, by (31) and (32), we have

Δu*rdrdθ = (-^u* + λ JL^* + _1_ JLu*\rdrdθ
\dr2 r dr r2 dθ2 I

= u*φ(r)rdrdθ,

i.e. we conclude that (28) is valid on β - S and hence on i? since S is
removable for solutions with finite Dirichlet integrals on R — S. Again
by (31),
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LL
Op p J0£r(z)<p\

Δu(z)dθ(z))τdτ
I

f u(zMr(z))dθ(z))r(z)dr(z)

2πp Jo\jcτ

1 Γ
— Δu(z)dxdy.

Take <Z?n(2)Jconsidered in no. 2. By the Green formula

ί En(z)*du(z)=[ En{z)Δu(z)dxdy + DΩ(En9u).
JCp jΩp

Observe that *du — (du/dp)pdθ on Cp, and thus

ί En(z)Δu(z)dxdy<(DΩp(En)D(u)y"+([ El(z)pdθ(z){ l^-X
J ΩP \J cp JCp\ dp J

On letting n—> oo, we have

< pdθ .
\ dp I 2πp JCp\ dp I

On integrating both sides with respect to dθ on Cp9 we obtain

JCp\ dp I JCp\\ dp I p2 \ dθ I I

Again the integration of both sides with respect to dp on (0,1) yields

D(u*) < Diu), proving (27). Finally, if inf^ u* = 0, then there exists an

increasing sequence {rk} converging to 1 such that u*\Crk < 1/k. Take

% > n in (9) in no. 2 and let c = max^ou* and cf = max^w*. Then

ί**(«) < — + 0 + &W1/k n

k

on Ω1/k ΓΊ Rn — i20> ^ n d on letting %-* oo, we conclude, by (10), that

I

~ k

on Ω1/k — Ro. Again by making k—> oo, we obtain u*(z) < c on R — Ro

and hence on β. This means that u* takes its maximum at some point

of Rf a contradiction, and (29) follows.

9. We can now complete the study of PφD(R). We will denote by

OD the class of pairs (R,P) of Riemann surfaces R and densities P on
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R such that dim PD(R) = 0. The meaning of the class OBD should be

clear. We know that OD = OBD ([14], [6]). The linear space L = T%(PD(R))

isomorphic to PD(R) is a subspace of HD(R): {0} c L c HD(R). For

rotation free densities we only have two cases: L = {0} or HD(R):

PROPOSITION. Γfeβ following four conditions are equivalent by pairs

for rotation free densities Pφ on hyperbolic Riemann surfaces R:

(a) d(φ) < oo

(β) PΨD(R) is canonically isomorphic to HD(R);

(γ) PφBD(R) is canonicaΐly isomorphic to HBD(R)

(δ) (R,Pφ)eOD = OBD.

Proof. Assume (a) and fix an arbitrary heH+D(R). Take un as

in the proof of Proposition in no. 6. Observe that un < h and

un = h + -±-\ Gn{ , ζ)un(ζ)P9(ζ)dξdv ,
Δlζ J Rn

and by (8)

DiiJίO = DBn(h) + ^-jR χR Gn(z,ζ)un(z)un(ζ)Pv(z)Pφ(ζ)dxdydξdv

< IKK) + ^- ί G{z, ζ)h(z)h(ζ)Pφ(z)Pr(ζ)dxdydξdv .
Δπ J RXR

By the symmetry of the measure G(z,ζ)Pφ(z)Pφ(ζ)dxdydξdη and by the

Schwarz inequality we deduce

f ί G(z, ζ)h(z)h(ζ)Pφ(z)Pφ(ζ)dxdydξdζ]2

\J RXR /

If we denote by a the term on the right, then

a = \R[\RG(Z> ζ)PΨ(ζ)dξdζ]jh\z)Pφ(z)dxdy

= JΛ(j[(Jσ G(z,ζ)dθ(ζήφ(τ)τdήhKz)Pφ(z)dxdy

= [ ([\-2π max (log τ, log r(z)))φ(τ)τdτ]h2(z)φ(r(z))r(z)dr(z) A dθ(z)
J R \ J 0 /

= Γί ί ί {(-2π m a x ( l o^ τ> log σ))φ(τ)τdτ)h2(z)dθ(z))φ(σ)σdσ
J o \ J cσ \ J o / I
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By (13), there exists a constant K such that

h\z)dθ(z) < K
a

for every σe(0,1). Therefore

a < 2πK ( — max (τσ log τ, τσ log σ))φ(σ)dτdσ
JoJo

Since — τσ log τ < — τ log τ < 1 — τ and similarly — τσ log σ < 1 — σ, we

have

— max (τσ log τ, τσ log σ) = min ( —τσ log τ, — τσ log σ)

< min (1 — τ, 1 — σ) = 1 — max (τ, σ)

and therefore

a < 2πKd(φ) .

This implies that

DRn(un) < D(h) + 2πKd(φ) < oo .

Since un <un+1 < h for every n, {un} converges to a u e P+D(R). Observe

that d(φ) < oo implies h(φ) < oo. By the same proof as in no. 6 we see

that TPu = h and (β) follows. By (19) TPφ maps PΨBD(R) injectively to

HBD(R). For an arbitrary heH+BD(R) we can find ueP;D(R) with

TPφu = h if (β) is true. But 0 < u < h implies that u e P+B(R) and

therefore ue P+BD(R), i.e. (β) implies (γ). The implication from (γ) to

(δ) is trivially true.

The essential part of the proof now appears. Here the preparation

in no. 8 plays a central role. Suppose that (S) is the case. By (16) we

can find a u in PΨD(R) such that u>0 on R. Consider its mean.

u* e P;D(R) in no. 8. Since

D(U*) = D(TPU*) + D(^-

we deduce by (8) that

oo > f G(z,ζ)u*(z)u*(ζ)Pφ(z)Pφ(ζ)dxdydξdv

J RXR

> &2Γίf (Γ(Γ G(z,ζ)dθ(ζήφ(τ)τdτ]jdθ(zήφ(σ)σdσ .
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Here k = infR u* > 0. By (12) we obtain

oo > f'(f ί[\-2π max (log τ, log r(ζ)))φ(τ)τdτ\ dθ(z)\ψ{σ)σdσ
Jo\Jco\Jo II

pi pi

= (—2π max (log τ, log σ))φ(τ)φ(σ)τσdτdσ .
Jojo

Since - logί > (1 - t),

—max (log r, log σ) = min (—log τ, —log σ)

> min (1 — T, 1 — σ) = 1 — max (r, σ)

and therefore

(1 — max (τ, σ))φ(τ)φ(σ)τσdτdσ < oo .
o

This implies e%) < oo. Q.E.D.

Uniform Densities

10. To a density P(z)dxdy on a hyperbolic Riemann surface R we
associate the global function

(33) P(z) =
r(z)dr(z) A dθ(z)

on β, which is nonnegative and Holder continuous (locally) on R except
possibly for the Green's singular set S (cf. no. 1) on which P may take
the infinite values continuously. Consider the equivalence class [φ] of
locally Holder continuous nonnegative functions φ on [0,1), where two
functions φ1 and φ2 are equivalent if there exists a constant c > 1 and
σ e (0,1) such that

C~1φ1 < φ2 < C^

on (<j, 1). Functions $9 with

(34) c>(r(z)) < P(s) < cφ(r(z))

for some constant c = cφ > 1 on R except for a compact subset Kφ of
i?, if exist, constitute an equivalence class [φ]. In such a case we write

P(z)dxdy = Pίφl(z)dxdy

and the density PM(z)dxdy will be referred to as being almost rotation
free. Rotation free densities are of course almost rotation free. We
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also call such a density as a uniform density. Observe that there exists
a constant c > 1 and a compact subset K of R such that

(35) c~Ψ9(z) < Pίφl(z) < cPφ(z)

on R — K for each φe[ψ\. Set

= infp6W&(ίo) = inf,e

(36) < c%] = inf?€M d(φ) = inf^eω (1 - msLx(τ,σ))φ(τ)φ(σ)dτdσ;
Jojo

e[φ] = infpetri e(p) = infpe[r i | p(r)dτ .
Jo

These are either 0 or oo, and

(37) 0 < b[φ] < d[φ] < e[φ] < oo .

11. First we prove that either PMB(R) is {0} or isomorphic to
HB(R) according as b[φ] = oo or b[φ] = 0 (Recall that &[̂ ] is either 0
or oo).

THEOREM. The following three conditions are equivalent by pairs
for uniform densities PM on hyperbolic Riemann surfaces R:

(a) &[?>] = 0 ;
(β) PίφlB(R) is canonically isomorphic to HB(R);
(γ) (R,Pί9JeOB.

Proof. Let <pe[φ\. Then b[φ] — 0 is equivalent to b(cφ) < oo for
every c > 0. By Proposition 6, TfP>P exists for every c > 0 and there-
fore, by (20) in no. 4, (35) implies that PMB(R) is canonically isomorphic
to PφB(R). Here observe that cPψ — Pcψ. In particular (R,Pίφl) and
(R,Pφ) simultaneously belong to or do not belong to OB. Again by
Proposition 6 we deduce the required conclusion. Q.E.D.

12. We turn to the proof for that either PίφlD(R) is {0} or iso-
morphic to HD(R) according as d[φ] = oo or d[φ] = 0 (Recall that d[φ]
is either 0 or oo). Namely,

THEOREM. The following four conditions are equivalent by pairs for
uniform densities PM on hyperbolic Riemann surfaces R:

(a) d[φ] = 0
(β) PMD(R) is canonically isomorphic to HD(R)
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(γ) PίφlBD(R) is canonically ίsomorphίc to HBD(R);

(3) ( B , P M ) i 0 z , = OBD.

Proof. Fix a ?̂e [9?]. Then dfy] = 0 is equivalent to d(cφ) < oo for

every c > 0. By Proposition 9, TfPtP and TfJ^ exist for every c > 0

and therefore, by (20) in no. 4, (35) implies that PίφlD(R) (PMBD(R),

resp.) is canonically isomorphic to PφD(R)(PφBD(R), resp.). In particular

(R, Pίφl) belongs to OD = OBD if and only if (R,Pφ) belongs to OD = 0 M .

Once again by Proposition 9, we see that pairwise equivalences of (a)-

(δ). ' Q.E.D.

13. Finally we prove that either PME(R) is {0} or isomorphic to

HD(R) according as e[φ] = oo or 0 (Recall that e[φ] is either 0 or oo).

We claim:

THEOREM. The following four conditions are equivalent by pairs for

uniform densities Pίφl on hyperbolic Riemann surfaces R:

(a) e[φ] = 0;

(β) PίφlE(R) is canonically isomorphic to HD(R)

(γ) PMBE(R) is canonically isomorphic to HBD(R)

(δ) (R,Pίφl)eOE = OBE.

Proof. Choose a φe[φ\. Then e[φ] = 0 is equivalent to e(cφ) < oo

for every c > 0. By Proposition 7, TξP,P and Γf/)P exist for every c > 0

and therefore, by (20) in no. 4, (35) implies that PίφlE(R) (PMBE(R),

resp.) is canonically isomorphic to PφE{R) (PφBE(R), resp.). In particular

(R,Pίφl) and (R,Pφ) together belong to or do not belong to OE = OBE.

Therefore, by Proposition 7, we deduce the required equivalences. Q.E.D.

14. We denote by P(a)(z)dxdy the density Pίφl(z)dxdy such that

φa{τ) = (1 — τ)'a e [φ](a e (—oo, oo)). Observe that

b(φa) = Γ(l - τy-dτ = oo
Jo

if and only if a > 2; if a > 2, then d(φa) = oo, and if or < 2, then

d(φa) = 2 (1 — max (τ, σ))φa{τ)ψa{o)dτdσ

= 2[Ί[\l-τ)ψXτ)dτ)ψa(σ)dσ
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L — σ)~adσ
l

_ 2 P(Λ ,2_2a, _
~~ 2 — αJo σ σ — °°

if and^only if a > 3/2: d(φa) = oo if and only if ^ > - 3 / 2 ;

Γ1

e(φa) — (1 — τY
adτ = oo

Jo

if and only if a > 1. Hence we obtain

I b[φa] = 0 fe e (— oo, 2)), 6[^J = oo fee [2, oo))

d[φa] = 0 fee (-oo,3/2)), c%J - oo fee [3/2, oo))

β[#ϋ — 0 fee (—oo, 1)), e[φa] = °° 0*e [1, oo)).

Therefore, for any fixed hyperbolic Riemann surface R, every degree of

degeneracies in the classification scheme (cf. e.g. [14])
(39) OG<OB<OD = OBD <OE = OBE

can occur with respect to the equation Δu(z) = P{a)(z)u(z) on R:

THEOREM. The pair (R,PM) of an arbitrary hyperbolic Riemann

surface R and a special uniform density Pia) = P [ ( 1 τ)_α]fe e (—oo, oo))

satisfies the following relations:

v-,- ,~~u ΌB fee [3/2,2));
(40) 4

Λ '~ ^'Λ^ Λ Λ fee [1,3/2));
fee(-oo,l)).

The proof is immediate if we use Propositions in nos. 11-13 and
(38). This also proves our main theorem stated in the introduction.
This theorem was originally obtained in the special case of R of the
unit disk \z\ < 1 by the present author [17]. The first relation in (40)
can also be regarded as a generalization of a classical result of Brelot
[1] obtained for plane regions R. Uniform densities we have discussed
in the present paper are those distributed almost uniformly in the
^-direction with respect to r. Another possible uniform densities are
those distributed almost uniformly in the r-direction with respect to Θ.
An analogous result as in this paper can be expected for the latter kind
of uniform densities, which we shall discuss later elsewhere.
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