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UNIFORM DENSITIES ON HYPERBOLIC
RIEMANN SURFACES

MITSURU NAKAI

We are interested in the question how the spaces of solutions of
elliptic equations vary according to the variations of underlying regions
and coefficients of the equation. We will discuss this question for the
case of equations du = Pu considered on noncompact Riemann surfaces
R. Typically we ask the properties of mappings rx: (R, P) — dim PX(R)
from the space @ of pairs (R, P) of noncompact Riemann surfaces R and
densities P on R, i.e. P(z)dxdy are 2-forms on R such that P(z)dxdy %= 0
and P(z) > 0 are Holder continuous with respect to local parameters
2 = x + 1y, into cardinals, where PX(R) are the linear spaces of solu-
tions of du = Pu on R with certain boundedness properties X. The
possibilities for X that we consider are B meaning the boundedness, D

the finiteness of Dirichlet integrals D(u) = f |grad w(z)fdxzdy, E the finite-
R

ness of energy integrals EX(u) = I (grad u(@)} + w(z)P(z))dxdy, and their
R

combinations BD and BE. Particularly interesting are the subspaces of
degenerate character of @:

Ox = t30) = {(R,P) e &; PX(R) = {0}} .

If we denote by O, the subspace of @ consisting of those pairs (R, P)
such that R are harmonically parabolic, i.e. there do not exist harmonic
Green’s function on E, then we have the following strict inclusion rela-
tions established by many authors listed in the references at the end of
this paper:

(1) OG<OB<OD:OBD<OE:OBE'
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2 M. NAKAI

An important question in this context is: Which one of R and P is more
decisive for the degeneracies (R,P)c Oz — Oy, Op — Op, and Oz — Op?
By the nature of the question B must be postulated to be hyperbolic,
i.e. nonparabolic. The purpose of this paper is to show that it is P
that determines the degeneracies of the pair (R, P), i.e. we will prove

THE MAIN THEOREM. On an arbitrarily fixed hyperbolic Riemann
surface R there always exist densities Pz, Pp, and Py such that the
pairs (R, Py), (R, Py), and (R, Pg) belong to Oz — Oy, Op — O, and
Oy — O,, respectively.

To prove the theorem we will study the equation du = Pu with
densities P uniformly distributed on the hyperbolic Riemann surface R
in the following sense. Let (dr(z),df(z)) be the polar coordinate differ-
entials on R with center z, i.e. dr(z) is the differential of the global
function 7(z) = ¢ ¢®* on R and df(z) = —*dG(z,2,), where G(z, z) is
the harmonic Green’s function on R with pole z,, If P(z)dxdy is an
arbitrary density on R, then

P(2)dxdy

13(2) = =
r(z)dr(z) /\ di(z)

is a global function on R less the Green’s singular set S, i.e. the set of
isolated points in B where |grad G(-,2,)| = 0. If there exists a continu-
ous function ¢ > 0 defined on the interval [0,1) such that P@) = o(r(2)
on R, then we say that the density P is rotation free. More generally
if there exists a constant ¢ > 1 such that

¢'p(r(2)) < P(2) < cp(r(2))

on R except for a compact subset of R, then we say that P is almost
rotation free. We also call such a density (rotation free or almost ro-
tation free) as a uniform density and denote it by P, indicating the
dependence on ¢. Set

b(p) = f :(1 — Dple)de;
d(g) = j j :(1 — max (¢, 0)e(0)g(0)dedo ;

e(p) = j:go(f)dr .

https://doi.org/10.1017/50027763000015695 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015695

HYPERBOLIC RIEMANN SURFACES 3

We will show that b(p) < co (d(g) < o0, e(p) < oo, resp.) is equivalent to
that P,B(R)(P,D(R), P,E(R), resp.) is canonically isomorphic to HB(R)
(HD(R), HD(R), resp.), where HX(R) denotes the class of harmonic fune-
tions on R with the boundedness property X = B or D, and also that
b(p) = co(d(p) = oo, e(p) = oo, resp.) is equivalent to P,B(R) = {0} (P,D(R)
= {0}, P,E(R) = {0}, resp.), i.e. (B, P,) e Oy(0p,0p,resp.). Therefore the
required densities Pz, Pj, and Py in our main theorem can be chosen, for
example, among densities P, = P, with ¢,(r) = (1 — 7)~* for @ € (— o0, 0):

(R,P)eOp — O (@el2,0));
(2) (R,P)eOp — Op (ael’,2);

(B,P)eO0p — Op (aell,);

(R,P)e Oy (e (—o0,1).

In nos. 1-3, a mean formula on level lines of Green’s function is
discussed for a certain class of functions. In particular the circle mean
formula of Green’s function will prove to be useful. We relate vector
space structures of subspaces of P(R) to those of subspaces of H(R) by
what we call canonical isomorphisms in no. 4. The determination of
classes P, X(R) in terms of z(p)(X = B,D,E; x =b,d,e) will be carried
over for rotation free densities first in nos. 5-9, which are also the main
body of this paper, and then for almost rotation free ones in nos. 10-14.

Harmonic Green’s Function

1. The hyperbolicity of a Riemann surface R is characterized by
the existence of the harmonic Green’s function G(z, () = Gg(z, ) with
pole ¢ situated at any point of R. (We use the same letters z, {, ete.
to denote the generic point of R and also a local parameter around the
point.) It is the smallest positive solution of R of the Poisson equation
4G(-,0) = —2r5, with the Dirac measure §, whose unit mass is dis-
tributed at . By the aid of Green’s function we consider the plolm'
coordinate differentials (dr(z),d6(z)) with center z,e¢ R given by

dr(z) _
(3) 7(2)
do(z) = —*dG(z,z,) .

—dG(z,2) ,

The differential d»(z) is the differential of the global function
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(4) T(z) — 6—0(5:20)

on R whose range of values is the interval [0,1). The set S ={zeR;
dr(z) N\ do(z) = 0} is referred to as the singular set, which is an isolated
subset of E. We denote by &2, the set {ze R; r(z) < p} and by C, the
level lines {ze R; 7(2) = p} for each pe(0,1). The set 2, is a subregion
of R and its relative boundary a2, = C,. If p is sufficiently small, then
£, is relatively compact, and if p is sufficiently close to 0, then 9, is
homeomorphic to the closed unit disk. The differential df(z) considered
on C, is a positive regular measure with total mass 2z(cf. e.g. [23]):

(5) Cdﬂ(z):2n.

An open arc y is said to be a regular Green line issuing from z, if
27, rNS=4¢, di(z) = 0 along 7, and sup,., () = 1. The Brelot-Cho-
quet theorem [3] says that C, is pierced almost everywhere by regular
Green lines issuing from z,(cf. [23]). This is the basis for the justifi-
cation of the following iterated integration:

IRso(z)¢(z)dr(z) A db(z)

(6) = j | @) A o)

- f : ( j Ctgo(z)dﬁ(z))rdr ,

where I' is the set of regular Green lines issuing from z, and ¢ is a
function on E.

Consider a 2-form P(z)dxdy on R. We say that it is nonnegative if
P(z) > 0 for every local parameter z = x + ¢y. Consequently P(z)dxdy
> Q()dxdy can be defined by the nonnegativeness of (P(z) — Q(2))dzdy.
If P(z) is Holder continuous for every z = x + iy, then we say that
the 2-form P(z)dxdy is Holder continuous. In this case the potential

JRG(~,C)P(C)d$d77(C — &+ 4y is of class C* and
(1) AZIRG(z, OPQdedy = —22P(2)

if I G(2,0)|P()|dédn < co for one and hence by the Harnack inequality
R
for every ze R(cf. e.g. Miranda [10]). The Dirichlet integral D(u) =
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Dxz(u) over R of a function u with weak differential du is I du N\ *du =
R

‘[ |grad u(z)fdedy < . If P(z)daxdy is Holder continuous, then
R

(8) D(JRG(-,C)P(C)dEdv) = 2z j G OPEPQdedydsdy < oo

if the right hand side has a definite meaning (cf. e.g. Constantinescu-
Cornea [4]).

2. An exhaustion {R,}; of R is a sequence of regular subregions
R, such that R, C R,,, and | 7 R, = R. We denote by H(F) the class
of harmonic functions on an open subset F of R. Let z,e B, C R, C 2,.
Consider a function w,, =w,eH®, N R, — R) N C(2, N R, — Ry for
each n > 1 such that w,|oR, = 0, w,|2, N R, =1, and *dw,|02, N E, = 0.
We set w, =0 on R, and w, =1on 2, — R,. Then {w,} is decreasing
and converges to a function w, = w on £, and

(9) lim D, (w, — w,,) = 0.

n—00

The Kuramochi theorem [7] (cf. Kusunoki-Mori [8]; [13], [23]) says that
(10) w,(2) =0.

This is equivalent to that the double 2, of 2, along C, is parabolic.
Here we append a very simple proof of (10). Let G,(z,z2,) be the Green’s
function on R, and set G,(2,2) =0 on R — R,. Take a p,e(0,p) such
that Q,, is relatively compact. Consider functions

E (z) — min (Gn(z’ ZO), _10g Po)
" min (G(z, z,), —log p,)

on 2,(n =1,2,.--). Observe that E, converges to 1 uniformly on each
compact subset of 2, as n — co and

lim D, (E,) = 0.

n—co

By the Green formula

Dap(wn) = Dg,,an(]- — W,)

:f *dwn = ——J. _ En*dwn
aRo 3(2pN\RBn—Fo)
= '—D.O,,(En’ Wy)
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and therefore, by the Schwarz inequality, D, (w,) < D,)P(E’n), proving
@10).
Ags an application of (10) we shall prove the following useful identity :

2%[0 w(@)do(z) = u(zy) + ﬁ.‘l log 7(2;)
an ’ ) i
—_ . _o .
mlogp + o LP log e Au(z)dxdy

for any nonnegative function u e C¥(2, — {z,, - - -, 2,}), where z,, -+ -, 2, are
a finite number m > 0 of points in 2,, such that du > 0, u(2) + log|z — 2|
has a C'-extension to z,(k =1,---,m), and u is bounded on 2, — V or
Dg,_»(w) < co, where V is a relatively compact open neighborhood of
{2, -+ -, 2} with V.C 2,. To prove (11) let g,(2) be the Green’s function
on £, N R, with pole z, such that » > 1 and Vc R,. The standard
application of the Green formula to g, and % on 2, N R, less small
disks at z,(k =1, ---,m) and the limiting process, making disks at z,
shrink to z,, yield

1 w(@)(—*dg,(2)) + 1 w(@)(—*dg,(2))

2 Jconky 21 J 9,n3R,

= ue) — 30,0 + o g.@mu)dzdy .
k=1 27 J 2onRy

Since ¢, and —*dg, converge to G(-,2,) + logp = —logr + logp and
d6 on 2, and C, respectively, on letting n — oo we deduce (11) if we
can show

lim u(2)(—*dg,(2) =0.

n—wo J 2pNdRy
Take exhaustion {R,}; with R, = £, and corresponding w, , = W,.
Clearly p(1 — w,) > g, on 2, N R, — 2, and thus p*dw, > —*dg,. If
D(u) < oo,

I s Rn“(z)(**dgn(z))‘ < Pofg wz)*dw,(2)

pNIRy

< Dyynan-z, (00 + [ Ju@*dw,@).
Po

If k= supg,_»|u] < oo, then

https://doi.org/10.1017/5S0027763000015695 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015695

HYPERBOLIC RIEMANN SURFACES 7

| menu(z)(—*dgn(z>)| <of,

w(@)*dw,(z)
pNIRy

< kp, f *duw,(2)

2pN3Ry

= ko, f W (@) dw,(2) = kpuD g, 02, (10,) -
(2N Ra)

In either case the required conclusion now follows from (10).

3. As direct consequences of (11) we first obtain the circle mean
formula of Green’s function ([18]) which will be convenient for our later
calculations:

(12) | 6G.0a00) = —27 max dog p, log 7).
Cp
Another consequence we need is

13) j w(2)d6(z) < 2log LD, 5 (u)
Coy,=Coy 02 e

for any 1> p, > p, >0 and any uwe HD(2,) N C¥R2,), where we denote
by HD(F)(HBD(F)) the class of harmonic (bounded harmonic) functions
on an open subset F' of R with finite Dirichlet integrals over F. Since
we can find a sequence {u,} in HBD(2,) N C¥2,) for any uwe HD(2,) N
C*2,) such that {u,} converges to u, {Dy (4, — w)} converges to 0, and
U, = ((—m) V u) A n, where A and V are lattice operations in H(2,)
(cf. e.g. [23])), we may suppose ue HBD(2,). Then %’ is admissible for
the validity of (11) and 4w?* = 2|grad uf. Therefore

_1~I W(2)d0G) = u(z) + [ log —Z_2|grad w(@)pdedy .
2r J e 271' Q2 T(Z)

The difference of these identities for r = p, and p, yields (13).

Canonical Isomorphisms

4. A nonnegative Holder continuous 2-form P(z)daxdy which is not
identically zero on a Riemann surface R will be referred to as a density
on R. Given a density P(z)dxzdy on R, we can consider the self-adjoint
elliptic partial differential equation

14 du(z) = P(2)u(z)
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invariantly defined on R. We denote by P(F) the linear space of C?
solutions of (14) on an open set F' of R. The presheaf = {P(F); F C R}
defines a harmonic structure on R in the sense of Brelot [2]. A super-
harmonic (subharmonic) function with respect to  will be referred to
as a supersolution (subsolution) of (14). For local properties of § and
related structures we refer to e.g. Royden [21]; [12], etc. Our main
concern is the global properties of P(R). We denote by P*(R) the sub-
space of nonnegative solutions in P(R). The linear subspace of P(R)
generated by P*(R) will be denoted by P'(R). The notations H* and H’
are understood in the same sense. The Myrberg theorem [11] says that
dim P/(R) > 1 for every noncompact R. This is the reason we do not
consider the null class Op in the scheme (1). We will always assume
that R is noncompact. We will make constant use of the following (cf.

e.g. [23]).
(15) HX(R) = HX(R) (X=B,BD,D)

i.e. any function in the class HX(R) can be represented as a difference
of two nonnegative functions in HX(R) (X = B, BD, D), and similarly
(Royden [21], Glasner-Katz [5], [12])

1e) PX(R) = PX(R) (X=B,BD,D,BE,E),

i.e. any solution of (14) with the property X can be represented as a
difference of two nonnegative solutions of (14) with the property X(X =
B,BD,D,BE,E).

A linear mapping r of a subspace of P/(R) into H'(R) is said to be
canonical if tu — u is a difference of two potentials, i.e. nonnegative
superharmonic functions whose greatest harmonic minorants are zero. The
intuitive meaning of this is that r# and u have the same ideal boundary
values. If there exists a nontrivial canonical mapping, then E must be
hyperbolic, and there is a unique maximal canonical mapping T». By
the Riesz decomposition of positive superharmonic functions and (7),
T = Tp is seen to have the representation

an Tow = u + %j GC,OUOPQdy € =& + i)

We denote by ©(Tp) the domain of the operator T,. Clearly a ue P'(R)
belongs to ©(T'p) if and only if ‘[ Gz, 0 |u@)|P)dédy < oo for some and
R
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hence, by the Harnack inequality, for all ze R. Take an exhaustion
{R,}7 of R and denote by G,(2,{) the Green’s function on R,. Consider
auxiliary operators

Tp = Tow = u + L [ e ouoP©dz
271' Rap

which maps P(R,) N C(R,) bijectively to H(R,) N C(R,) and supy,|T,u| =
supg,|u|, which follows from T,u|0R, = u|dR,. Clearly

Ty = lim T, u

n-—c0

uniformly on each compact subset of R for any u € D(T'») N P/(R). There-
fore we see at once that supgz|Tu| < supg|u|. If Tpu = 0, then the sub-

harmonic function 2z|u|is dominated by the potential J. G(,Du@)|P)déedy
R

and therefore v = 0. Thus T, is injective and for this reason we call
Tp the canonical isomorphism. Clearly Tp is a positive operator, i.e.
% > 0 implies Tpu > 0, and in fact Tphu > u > 0. In this case supp Tu
= supp 4. We remark that

(18) PB(R), PD(R), PER) C (Tp)
and
(190 Tx(PB(R)) C HB(R), T(PD(R)) C HD(R), To(PE(R)) C HD(R) .

To prove these take a ue P*(R) and an exhaustion {R,} of E. Since
Tu@) = u(z) + —21;{ Gz, OUQP©)dedy
belongs to H*(R,) and increasing with n, by the Lebesgue-Fatou theorem,

lim Tu(2) = u@) + - [ G, DUOPQdédy .
If % is bounded, then the left converges to a function Tu e H*(R) and
bounded, i.e. Tu ¢ HB(R) and u e (T). If D(u) < oo, then by the Dirichlet
principle, D (T,u) < D(u), and since R is hyperbolic, lim,_., T,u(z) < oo
and D(Tu) < oo (cf. [23]). Therefore u e D(T) and Tuec HD(R). In view
of (16) we deduce (18) and (19).

To determine when T = T, is surjective in (19) is a very difficult
question to settle. We only have partial results for the class PB and its
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subclasses PBD and PBE (cf. Royden [21], Glasner-Katz [5], Glasner-
Nakai [6], Maeda [9]; [12], [16], [17]). However for the special case of
uniform densities we will have the complete answer in this paper. We
denote by T¥ = TZ% the restriction of T, on PX(R) (X = B,D,E,BD, BE).
Let Q(®)dxdy be another density on R. The mapping T¢ , from PX(R)
onto QX(R) (X =B, D, E) such that T = T§.T§ », if exists, is also
referred to as a canonical isomorphism of PX(R) onto QX(R). If T%

T
PX(R) H(R)
J/ el v
QX(R)

and T3 are surjective, then clearly T3 » exists (X = B,D,E). If P and
Q differ only on a compact subset of R, then T7 , exists for every
X =B,D,E. This follows from the fact that

Topt = t + z—tj G-, OUOPE) — QE)dedy

is a bijective mapping from P'(R) to Q(R) and T4 »/PX(R) = T% » (cf.
[16]), where R, is a relatively compact subset of R such that (P(z) —
QRE)dxdy =0 on R — R,, and GF(2,{) is the Green’s function of the
equation (14), i.e. the smallest positive solusion of the Poisson equation
(4 — Pyu = —2rd,, whose existence is always assured by the Myrberg
theorem [11] (cf. [23]). To determine the existence of T7 , is also a
difficult question (cf. [16]). For later use we only state the following
simple observation: If T, , exists for every ¢ > 0 and

(20) ET'P < Q< kP

for some constant & > 1 on R except for a compact subset of R, then
T » exists (X = B,D,E). That the sole condition (20) is sufficient for
the existence of TG , is shown by Royden [21]. The same is also true
for the existence of 7§, by the energy principle. It is likely* that
only (20) implies the existence of T, but since the above assertion is
sufficient for our later purpose, we prove it here under the additional
conditions on P. We denote by Uy the common ranges of 7% for all
¢ > 0 and by Vy the range of T§. Set Uy = Uy N H* and Vi = Vy N H*.

*  That this is certainly the case is shown in the present author’s recent paper:
Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.
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By (15) we only have to show that U = Vi. Let heU% and TX.,v = h
with v e k"'P*X(R). Let u,c Q*(R,) N C(R,) such that

Ti1gnv = Tontty .

Since we can assume that the exceptional compact set in (20) is empty,
we deduce

o<u,<wv

on R, and {u,} is decreasingly convergent to a ue @"(R). Since
[ 6@ ou0e©azdy < k[ GG ovOk PO < o

and T4 ,u, = T,_.p,v converges to h as n — oo, we conclude, by the
Lebesgue convergence theorem, that

Tou=h, 0<u<w.

If X =B, then ue Q@*'B(R). If X = D, then by (8)
D) = D(h) + if Gz, vk P(D) kP dadydédy < oo
2mr JRxR
and therefore
D@w) = D(h) + -é];;jRXRG(z,cm(z)u@Q(z)Q(odxddedv

< E'D®) < o

and v e Q@*D(R). Finally suppose X = E. By the above we deduce
%) = D@) + | w@)Q@dedy
R
< K'D() + f V(kPR)dzdy < KE"*(v) < oo
R

and hence ue QE(R). We have seen that Ui C V. The inclusion
Uz D V% can be shown in the similar fashion.

Rotation Free Densities

5. A density P(z)dxdy on a hyperbolic Riemann surface R will be
referred to as being rotation free with respect to the point z, if there
exists a function ¢ on the unit interval [0,1) such that
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(21) P(z)dxdz = P, (2)dxdy = o(r(2))r(z)dr(z) N\ do(z) .

The function ¢ is automatically nonnegative and (locally) Holder con-
tinuous. To the density P, we associate the following quantities:

bp) = [ (1 — Dp(rds;
22) dlg) = ﬁﬂa — max (¢, ))e(D)p(0)dedo ;

o) = J:go(r)df .

These are finite or infinite nonnegative numbers. Observe that e(p) <
implies d(p) < oo, and d(p) < oo in turn implies b(p) < oo.

6. First we study the class P,B(R). We will denote by O the class
of pairs (R,P) of Riemann surfaces R and densities P on R such that
dim PB(R) = 0. In general the linear space L = TZ(PB(R)) isomorphic
to PB(R) is a subspace of HB(R): {0} € L C HB(R). For rotation free
densities we now show that only extreme cases occur, i.e. either L = {0}
or HB(R):

PROPOSITION. The following three conditions are equivalent by pairs
for rotation free densities P, on hyperbolic Riemann surfaces R:

(@) b(p) < co;

(®» P,B(R) is canonically isomorphic to HB(R);

(» (RB,P,)e 0.

Proof. Assume («) and fix an arbitrary he H*B(R). Let {R,}? be
an exhaustion of R and G,(z,{) be the harmonic Green’s function on R,,.
Take u, € P;(R,) N C(R,) such that u,|dR, = h. Then {u,} is decreasing
and converges to a uec P}B(R). Observe that

h(zo) = TPSo,nun(zo) = un(zo) + %J‘R Gn(zm C)un(C)P¢(C)d$d7]
= Uunl2y) + —zl;j Gal2or DU QOO Ar©) A dbC) .

The integrand is dominated by G(z,, Or(Qe(r@Q)r@)dr@) N do). Here
we remark that, by (11),

©3) L W2)d6(z) = 22h(z,) .
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This is true not only for e HB(R) but also for he HD(R). Since
tlogz' < (@A — 1) on (0,1), we deduce

[ 6w onOer©rOa© A de
- L Ucrh(C)dﬁ(C)> log e (c)ede
< ﬁznh(zo)(l — Dep(R)dr = 2rh(z)blp) < oo .
Therefore the Lebesgue convergence theorem can be applied to deduce

h(z) = u(z) + %T—JRG(ZO,C)M(C)P¢(C)d§d77 = T, uz) .

Since Tp, 4 < Tp, U, = h, we have Tpu < h and hence T, u =h, i.e.
T%, is surjective and we obtain (8. The implication from () to () is
trivially true.

Suppose that (y) is true. By (16) there exists a nonzero u ¢ P}B(R).
From (11) it follows that

(24) f WdO) > 2nulz,) .
Cp

This is also true for ue P;D(R). This comes from the fact that du =
P,u > 0. On the other hand, since logz™ > (1 — ) on (0,1),

h(zo) - Tppu(zo)
= uz) + % j Glay, DUQErEIIQdrQ) A o)
— u(z) + j (%j u(c)da(o)log e p(d)ede
> u(zo)r(l — )e(r)ede .

The nonnegative nonzero solution cannot vanish and thus wu(z) > 0.
Therefore

I:(l — Dep(t)edr < oo

and this in turn implies b(p) < co. Q.E.D.
7. From the class P,B(R) we turn to the class P,E(R) of solutions
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with finite P,-energy integrals E%e(u) = ‘[R(| grad u(z)f + u*(2)P,(2))dxdy.
We use the notation O, for the class of pairs (R, P) of Riemann surfaces
R and densities P on R such that dim PE(R) = 0. The meaning of Oy
should be clear. We know that Oy = Oz, (ef. Ozawa [20], Glasner-Katz
[6]). The linear space L = TZ(PE(R)) isomorphic to PE(R) is a subspace
of HD(R): {0} C L € HD(R). For rotation free densities we also show
that either L = {0} or HD(R).

PROPOSITION. The following four conditions are equivalent by pairs
for rotation free densities P, on hyperbolic Riemann surfaces R:

(@) elp) < oo;

(® PER) is canonically isomorphic to HD(R);

(y) P,BE(R) is canonically isomorphic to HBD(R);

®) R,P)eO0y= Oz

Proof. Assume («) and fix an arbitrary h e H*D(R). Take u, as in
the proof of Proposition 6. Observe that

B0 = Dol + | W@P,@)dzdy
= Da(l) + f B E)drE) A (@)

= Da(l) + f (f kz(z)dﬁ(z))go(r)fdr.
0 Cr
By (13), sup,e(o,nfc 1(2)d0(%) = k < co, and therefore

Bfr(h) < DO + k[ o(de < D) + k() < oo .

Since Ef¢ is the variation whose Euler-Lagrange equation is 4u = Pu,
E%s(u,) < ERe(h) < ERe(h) < oo .

Therefore the decreasing sequence {u,} converges to a v € P*E(R). Since
€(p) < oo implies b(p) < co, by the same proof as in no. 6, we see that
Tp,u =h and (@ follows. By (19), T3 maps P,BE(R) injectively to
HBD(R). For an arbitrary he H*BD(R) there exists a ue P;E(R) such
that Tpu =k if (f) is true. But0<u<h implies that w e P;B(R) and
therefore ue P;B(R) N P;E(R) = P;BE(R), i.e. (f) implies (y). The im-
plication from (y) to (6) is trivial.
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If (6) is true, then, by (16), there exists v ¢ P,BE(R) such that « > 0
on R. By (1), f W(@)d6(2) > u(z;) and

T

00 > B > [ w@P (dedy

- I : ( j uz(z)dﬁ(z)>go(z')rdr > uz(zo)f:so(r)fdf,

Cr
ie. j "o(e)ede < oo and this implies e(g) < oo. Q.E.D.
0

8. For the study of P,D(R), a little more sophisticated consider-
ations than those in nos. 3 and 4 are in order. We consider the mean
operator *:u — u* defined by

. _ 1
@5) W) = o j w0

whose domain 9, = 2,(R) is the class of measurable function « on R
such that

[ m@las@ < o

for every pe(0,1). The function w* is rotation free in the sense that
u*|C, is a constant for each pe(0,1). We associate the function

w**(r) = u*|C,
on (0,1) with u*. Then
(26) u*(2) = u**(r(2)) .

Among properties of * we state the following which will be needed for
the study of P,D(R). Let we P;D(R). Then uec 2, and

20 Dw*) < D(w);

(28) du*(z) = P ()u*(2);
(29) infu*() >0 (for u == 0);
(30) sup u*(z) < oo .

Let h = T2, ue H*D(R). Then u < h and, by (23),
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1
0<ur@) = J .. u(d(2)

< El“ W2)do(z) = hzy) ,

T J Creny

ie. ue 2, and (30) is valid. We apply (11) to u to deduce

1 _ 1 )
gjcr(z)u(z)dﬁ(z) = u(?y) + o) o log ?(C——)—'},{/(C)gg(/r(c))lr(c)drr(g) A do()

=u) + [ (o] 1080 Jrog ™2 ptoeds .

T
Therefore we have
wH(z) = ulz) + f " (2)(log 7(2) — log D)e(c)rds .
0

First of all, by the above integral representation of u*, the boundedness
of u* (or u**) implies the continuity of #* in R. Then u* is of class
C' with respect to r(z) > 0 and

our@) _

@D or(z)

Lf”’)u**(f) ()eds

1”(2:) 0 ¢ ’

Clearly ou*(z)/36(z) = 0. These show that u* is of class C* with respect
to r(z) > 0 and

Fur) 1 [P .
or:  1(2) Jo wH@p(e)ede + u*(@p(r(2) .

(32)

If we choose a branch of 4(z) = rda(z) at ze¢ R which is not in the

Green’s singular set S and if we take re?® = 7(2)e**® as a local parameter
at z, then ou* /96 = 0 and, by (81) and (82), we have

Adu*rdrdf = (a—zu* + 1 _a—u* + 1 a—zu*)frd'rdﬁ
or? r or rt 06
= u¥p(r)rdrdf ,

i.e. we conclude that (28) is valid on R — S and hence on R since S is
removable for solutions with finite Dirichlet integrals on R — S. Again
by (3D,
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our _ 1 1 u(z)go(r(z))dﬁ(z))'r(z)dr(z)

op 0 0sr<z>3p<27r Cren

=1 ( CAu(z)dﬁ(z))rdz-

_2n'po .

= 21 Au(z)dxdy .

TO J 2p

Take E,(z)jconsidered in no. 2. By the Green formula
[ B.@*aue = | B, @au@dedy + Do B .
Co 20
Observe that *du = (6u/dp)pdé on C,, and thus
[ Ba@auazdy < ©,, @)Dy + ([ Bi@edo| (24)oa0)".
2, o Co\ Op
On letting » — oo, we have
(5 5 (2o
op 2rp Je,\ Op
On integrating both sides with respect to d¢ on C,, we obtain
o ees] ((5) 5 (5%))
do < - — (== )pdf .
.[o,,( op e = oo\ Op + o\ oo e
Again the integration of both sides with respect to dp on (0,1) yields
Dw*) < D(u), proving (27). Finally, if inf, u* = 0, then there exists an

increasing sequence {r;} converging to 1 such that w*|C, < 1/k. Take
Wijk,, N (9) in no. 2 and let ¢ = maxz u* and ¢ = max, u*. Then

w*(2) < % + ¢+ CWin

on 2,, N R, — R,, and on letting #n — co, we conclude, by (10), that

1
u*(z) < =
(2) < - + ¢
on 2,, — R,. Again by making k — co, we obtain «*(z) < ¢ on R — R,
and hence on R. This means that u* takes its maximum at some point
of R, a contradiction, and (29) follows.

9. We can now complete the study of P,D(R). We will denote by
Op the class of pairs (R, P) of Riemann surfaces R and densities P on
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R such that dim PD(R) = 0. The meaning of the class Op, should be
clear. We know that O, = Opj, ([14],[6]). The linear space L = T2(PD(R))
isomorphic to PD(R) is a subspace of HD(R):{0} c L € HD(R). For
rotation free densities we only have two cases: L = {0} or HD(R):

PROPOSITION. The following four conditions are equivalent by pairs
for rotation free densities P, on hyperbolic Riemann surfaces R:

(@ dlp) < oo}

(® P,D(R) is canonically isomorphic to HD(R);

() P,BD(R) is canonically isomorphic to HBD(R);

©® (R,P,)¢e0p= Opp.

Proof. Assume (¢) and fix an arbitrary he H*D(R). Take u, as
in the proof of Proposition in no. 6. Observe that u, < k and

U =+ 21—an Gl , DULOP,(Odedy
and by (8)
D) = Dy, (h) + %L . G, DU (DU QPDP Q) dadydsdy
< D) + 51; f G OMDMOP, )P, Q) dwdydédy .

By the symmetry of the measure G(z,{)P,(2)P,({)dxdydédy and by the
Schwarz inequality we deduce

( j 6 C)h(z)h(oP,,(z)Pmdxddedc)2
< ( j GG, C)h«z)P,,(z)P,,(adxddedn)2 .
If we denote by a the term on the right, then

o = j ) ( f GG, c)P,,(c)dedc) W (@)P(2)dxdy

- I ) (L( 6, c)da(c))go(f)fdf) 1(2)P,(2)dxdy
- L (j:( — 27 max (log 7, log T(z)))go(r)rdz') R(2p(r(@)r(2)drz) A doz)

- j : ( I . (ﬁ(_zﬂ max (log 7, log 0'))g0(4:)2'dt) 12(2) dﬁ(z))go(a)ada )
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By (13), there exists a constant K such that
f W@ < K
for every oc(0,1). Therefore
@< 2ﬂKﬁﬁ(—maX (0 log 7, 7 log ))¢(e)dedo

Since —zologz < —rlogz <1 — 7 and similarly —zologe <1 — 0, we
have

—max (zo log 7, 7o log ¢) = min (—zo log 7, — 7o log o)
<min(l-r17,1—0) =1—max(s,o0)

and therefore
o < 2zKd(p) .
This implies that

Dpg,(u,) < D(h) + 2zKd(p) < oo .

Since u, < U,,, < h for every n, {u,} converges to a u € P*D(R). Observe
that d(p) < co implies b(p) < co. By the same proof as in no. 6 we see
that Tpu = h and () follows. By (19) Tp, maps P,BD(R) injectively to
HBD(R). For an arbitrary he H*BD(R) we can find u e P;D(R) with
Tpou=h if (f) is true. But 0 <u <k implies that we P;B(R) and
therefore u € P;BD(R), i.e. (§) implies (y). The implication from (y) to
(0) is trivially true.

The essential part of the proof now appears. Here the preparation
in no. 8 plays a central role. Suppose that (§) is the case. By (16) we
can find a » in P,D(R) such that >0 on R. Consider its mean
w* e P;D(R) in no. 8. Since

D(*) = D(Tpu*) + D(i [ ¢ owP.azn),
2rJ R
we deduce by (8) that
oo > LxRG(z,C)u*(Z)u*(C)P¢(z)P,,(C)dwddedrz

> ka ( j . ( j 1 ( GG, c)da(c)) (o) fdf) a9 (z)) o(@)ods .

0 0
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Here k = infy u* > 0. By (12) we obtain
ke J 0 (I o (J o(——2n max (log 7, log /"(C)))ﬁ"(f)"di-) do (z)) plo)ads
= Il I:(—Zn max (log 7, log 0))p(t)p(a)redrdo .

Since —logt > (1 — ©),

—max (log 7, log ¢) = min (—log 7, —log o)
>min(l—17,1—0)=1—max(r,0)

and therefore
f 1 j "1 — max (¢, ))e(Dp(@)codeds < oo .
[N A1)
This implies d(g) < oo. Q.E.D.

Uniform Densities

10. To a density P(z)dxdy on a hyperbolic Riemann surface R we
associate the global function

P(z)dxdy
r(x)dr(z) N\ dé(z)

(33) PR =

on R, which is nonnegative and Hoélder continuous (locally) on R except
possibly for the Green’s singular set S (c¢f. no. 1) on which P may take
the infinite values continuously. Consider the equivalence class [¢] of
locally Holder continuous nonnegative functions ¢ on [0,1), where two
functions ¢, and ¢, are equivalent if there exists a constant ¢ > 1 and
o¢e(0,1) such that

o < ¢, < 0y
on (¢,1). Functions ¢ with
(34) ¢ p(r(@) < P2) < ep(r(2))

for some constant ¢ = ¢, > 1 on R except for a compact subset K, of
R, if exist, constitute an equivalence class [¢]. In such a case we write

P(z)dxdy = Py, (2)dxdy

and the density P, (2)dxdy will be referred to as being almost rotation
free. Rotation free densities are of course almost rotation free. We
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also call such a density as a wuniform density. Observe that there exists
a constant ¢ > 1 and a compact subset K of R such that

(35) ¢ 'P,(2) < P, (2) < cP,(2)
on R — K for each pe[p]. Set

1
blpl = inf,cp,; blp) = inf«:emL(l — De()de;
101
(36) ¢ dlgl = inf,.p,; d(p) = inf,, f 0 J (1 — max (s, 0))p(e)g(0)dzedo
1
e[so] = inf%[w] 6(90) = inf¢6[¢ljo¢(f)df .

These are either 0 or oo, and
37 0 < blp]l < dlp] <elp] < 0.

11. First we prove that either P.;B(R) is {0} or isomorphic to
HB(R) according as blp] = co or blp] = 0 (Recall that b[p] is either 0
or oo).

THEOREM. The following three conditions are equivalent by pairs
for uniform densities P, on hyperbolic Riemann surfaces R:

() blpl =0;

(B PB(R) is canonically isomorphic to HB(R);

() (R,P)eO0p.

Proof. Let gpelpl. Then blp] = 0 is equivalent to b(cp) < oo for
every ¢ > 0. By Proposition 6, T » exists for every ¢ > 0 and there-
fore, by (20) in no. 4, (35) implies that P.,,B(R) is canonically isomorphic
to P,B(R). Here observe that c¢P, = P,. In particular (R, P and
(R,P,) simultaneously belong to or do not belong to Oz. Again by
Proposition 6 we deduce the required conclusion. Q.E.D.

12. We turn to the proof for that either P, D(R) is {0} or iso-
morphic to HD(R) according as d[p] = co or dlp] = 0 (Recall that d[¢]
is either 0 or o). Namely,

THEOREM. The following four conditions are equivalent by pairs for
uniform densities Py, on hyperbolic Riemann surfaces R:

(@ dlp]l =0;

@ P;D(R) is canonically isomorphic to HD(R);
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(» P BD(R) is canonically isomorphic to HBD(R);
(6) (R’P[ya]) Z OD - OBD'

Proof. Fix a gpelpl. Then dlp] = 0 is equivalent to d(cp) < oo for
every ¢ > 0. By Proposition 9, T% », and TP, exist for every ¢ > 0
and therefore, by (20) in no. 4, (35) implies that P, ;D(R) (P..BD(R),
resp.) is canonically isomorphic to P,D(R)(P,BD(R), resp.). In particular
(R, P, belongs to O, = Op, if and only if (R, P,) belongs to Op = Opp.
Once again by Proposition 9, we see that pairwise equivalences of («)-
©). ' Q.E.D.

13. Finally we prove that either P, E(R) is {0} or isomorphic to
HD(R) according as e[p] = co or 0 (Recall that e[p] is either 0 or o).
We claim:

THEOREM. The following four conditions are equivalent by pairs for
uniform densities Py, on hyperbolic Riemann surfaces R:

(@) elp]l =03

B P,,ER) is canonically isomorphic to HD(R);

(») P,BE(R) is canonically isomorphic to HBD(R);

(5) (R, P[(p]) e OE = OBE°

Proof. Choose a gpelpl. Then e[p] = 0 is equivalent to e(cp) <
for every ¢ > 0. By Proposition 7, T3 » and T27, exist for every ¢ > 0
and therefore, by (20) in no. 4, (35) implies that P E(R) (P, ,BE(R),
resp.) is canonically isomorphic to P,E(R) (P,BE(R), resp.). In particular
(R, P,y and (R, P,) together belong to or do not belong to Oz = Ogj.
Therefore, by Proposition 7, we deduce the required equivalences. Q.E.D.

14. We denote by P“(z)dxdy the density P, (2)dxdy such that
0t) =1 — ) *elpl(@ e (—o0,0)). Observe that

bp) = [ = p-de = oo
0
if and only if « > 2; if &« > 2, then d(p,) = oo, and if & < 2, then

dp) = 2 f (1 — max (5, 0))g. (g (0)deda

—2 j ( j ia - r)goa(r)dr)goa(o)do
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_ 2ﬂ ( j i(1 - T)l-adf) (1 — 0)-*do

— 2 Il(l — 0_)2—2ad0. — oo
0

T 2«

if and”only if « > 3/2:d(p,) = oo if and only if. «;>8/2;
e(p) = fa — o)edr = oo
0

if and only if « > 1. Hence we obtain

bled =0 (xe(—o0,2), ble,] = 00 (ael2,00));
(38) dlp] =0 (ae(=0,3/2), dlp]= o (xel3/2,));
elp] =0 (ae(—o0,1)), elp] = 0o (aell,00)).

Therefore, for any fixed hyperbolic Riemann surface R, every degree of
degeneracies in the classification scheme (cf. e.g. [14])

(39) Og< 0B< OD:OBD< OE:OBE
can occur with respect to the equation Adu(z) = P“(@)u(z) on R:

THEOREM. The pair (R,P®) of an arbitrary hyperbolic Riemann
surface R and o special uniform density P = Py, ,-ale€(—o0, 00))
satisfies the following relations:

(R,P“)c 05 — 05 (axcl2,0));
R, PeO0p, -0 (xel3/2,2));
R, PNeO0z— 0, (xell,3/2);
(B, P“) € Og (@e(—o0,1).

The proof is immediate if we use Propositions in nos. 11-13 and
(38). This also proves our main theorem stated in the introduction.
This theorem was originally obtained in the special case of R of the
unit disk |2 < 1 by the present author [17]. The first relation in (40)
can also be regarded as a generalization of a classical result of Brelot
[1] obtained for plane regions R. Uniform densities we have discussed
in the present paper are those distributed almost uniformly in the
g-direction with respect to ». Another possible uniform densities are
those distributed almost uniformly in the r-direction with respect to 4.
An analogous result as in this paper can be expected for the latter kind
of uniform densities, which we shall discuss later elsewhere.

(40)
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