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On a Theorem of Bombieri, Friedlander,
and Iwaniec

Daniel Fiorilli

Abstract. In this article, we show to what extent one can improve a theorem of Bombieri, Friedlander,

and Iwaniec by using Hooley’s variant of the divisor switching technique. We also give an application

of the theorem in question, which is a Bombieri-Vinogradov type theorem for the Tichmarsh divisor

problem in arithmetic progressions.

1 Introduction

The Bombieri–Vinogradov theorem implies that on average over q ≤ x1/2−o(1), the

primes less than x are equidistributed in the residue classes a mod q, with (a, q) = 1.

Specifically, we have for any A > 0 that

(1.1)
∑

q≤Q

max
a:(a,q)=1

∣

∣

∣
ψ(x; q, a) −

x

φ(q)

∣

∣

∣
≪

x

(log x)A
,

where Q = x1/2/(log x)A+5. One could ask if (1.1) still holds if we take Q = xθ,

with θ > 1
2
. This would be a major achievement, since it would imply bounded gaps

between primes [12], that is

lim inf
n

(pn+1 − pn) <∞.

The Elliot–Halberstam conjecture stipulates that we can take θ to be any real number

less than 1. This conjecture is, however, very far from reach.

One way to get past the barrier of Q = x1/2−o(1) is to relax the condition on a.

Indeed, in concrete problems, one often only needs the bound (1.1) for a fixed value

of a. Sometimes, even the absolute values are not necessary. These variants were

studied very closely in a series of groundbreaking articles by Fouvry and Iwaniec

[9, 10], Fouvry [6–8], and Bombieri, Friedlander, and Iwaniec [1–3]. We will list the

results of these authors by increasing order of uniformity.

By fixing a, one can go up to Q = x
1
2

+ 1

(log log x)B .
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Theorem 1.1 (Bombieri, Friedlander, and Iwaniec [2]) Let a 6= 0, x ≥ y ≥ 3, and

Q2 ≤ xy. Then there exists an absolute constant B such that

∑

Q≤q<2Q
(q,a)=1

∣

∣

∣
ψ(x; q, a) −

x

φ(q)

∣

∣

∣
≪ x

( log y

log x

) 2

(log log x)B.

The best known result was obtained shortly afterwards by the same authors, and

shows that one can go up to Q = x
1
2

+o(1), whatever the nature of the o(1) is.

Theorem 1.2 (Bombieri, Friedlander, and Iwaniec [3]) Let a 6= 0 be an integer and

let A > 0, 2 ≤ Q ≤ x3/4 be reals. Let Q be the set of all integers q, prime to a, from an

interval Q ′ < q ≤ Q. Then

∑

q∈Q

∣

∣

∣
π(x; q, a) −

π(x)

φ(q)

∣

∣

∣

≤
{

K
(

θ −
1

2

) 2 x

log x
+ OA

( x(log log x)2

(log x)3

)}

∑

q∈Q

1

φ(q)
+ Oa,A

( x

(log x)A

)

,

where θ :=
log Q
log x

and K is absolute.

Replacing the absolute values by a certain weight (see [1] for the definition of well

factorable), we can take Q = x4/7−ǫ.

Theorem 1.3 (Bombieri, Friedlander, and Iwaniec [1]) Let a 6= 0, ǫ > 0 and Q =

x4/7−ǫ. For any well factorable function λ(q) of level Q and any A > 0 we have

(1.2)
∑

(q,a)=1

λ(q)
(

ψ(x; q, a) −
x

φ(q)

)

≪
x

(log x)A
.

Theorem 1.3 is an improvement of a result of Fouvry and Iwaniec [10], which

showed that (1.2) holds with λ(q) of level Q = x9/17−ǫ.

If we remove the weight λ(q), we can take Q = x/(log x)B, which is even further

than in the Elliot–Halberstam conjecture. This result was obtained independently by

Fouvry [8] and Bombieri, Friedlander, and Iwaniec [1] (in stronger form).

Theorem 1.4 (Bombieri, Friedlander, and Iwaniec [1]) Let a 6= 0, λ < 1
10

, and

R < xλ. For any A > 0 there exists B = B(A) such that, provided QR < x/(log x)B, we

have

(1.3)
∑

r≤R
(r,a)=1

∣

∣

∣

∣

∑

q≤Q
(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

∣

∣

∣

∣

≪a,A,λ
x

(log x)A
.

Remark 1.5 We subtracted Λ(a) from ψ(x; qr, a) in (1.3) because the arithmetic

progression a mod qr contains the prime power pe for all values of qr if a = pe. This

induces a negligible error term in (1.3) (for B > A).
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In this article we focus on Theorem 1.4. We show in Corollary 2.2 that for any

A > 0:
• If a = ±1, then Theorem 1.4 holds if B(A) > A, and is false if B(A) ≤ A.
• If a = ±pe, then Theorem 1.4 holds if B(A) ≥ A, and is false if B(A) < A.
• If a has two or more distinct prime factors, then Theorem 1.4 holds if

B(A) > 538
743

A.

One of the applications of Theorem 1.4 and of Fouvry’s result [8] is the best known

estimate for the Titchmarsh divisor problem. We will show that Theorem 1.4 yields a

generalization of this result that is a Bombieri-Vinogradov type result for the Titch-

marsh divisor problem in arithmetic progressions, up to level Q = x1/10−ǫ.

2 Statement of Results

Here is our main result.

Theorem 2.1 Fix an integer a 6= 0, a positive real number λ < 1
10

, and an arbitrarily

large real number C. We have for R = R(x) ≤ xλ and M = M(x) ≤ (log x)C that

∑

R
2
<r≤R

(r,a)=1

∣

∣

∣

∣

∑

q≤ x
rM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

−
φ(a)

a

x

rM
µ(a, r,M)

∣

∣

∣

∣

≪a,C,ǫ,λ
x

M
743
538

−ǫ
,

where the “average” is given by

µ(a, r,M) :=











− 1
2

log M −C5(r) if a = ±1,

− 1
2

log p if a = ±pe,

0 otherwise,

with

C5(r) :=
1

2

(

log 2π + 1 + γ +
∑

p

log p

p(p − 1)
+
∑

p|r

log p

p

)

.

We also have the following similar result.

∑

r≤R
(r,a)=1

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a)−Λ(a)−
x

φ(qr)

)

−
φ(a)

a

x

RM
µ(a, r,RM/r)

∣

∣

∣

∣

≪a,A,ǫ,λ
x

M
743
538

−ǫ
.

As a corollary, we get a more precise form of Theorem 1.4.

Corollary 2.2 Fix an integer a 6= 0, a positive real number λ < 1
10

, and an arbitrarily

large real number C. We have for R = R(x) ≤ xλ and M = M(x) ≤ (log x)C that

∑

r≤R
(r,a)=1

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

∣

∣

∣

∣

=

( φ(a)

a

) 2 x

M
ν(a,M) + Oa,C,ǫ,λ

( x

M
743
538

−ǫ

)

,
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where

ν(a,M) :=















1
2

log M + C6 + O
(

log(RM)
R

)

if a = ±1,

1
2

log p + O
(

1
R

)

if a = ±pe,

0 otherwise,

with

C6 := C5(1) +
1

2
+

1

2

∑

p

log p

p2
.

Remark 2.3 If a has at most one prime factor, then for M and R both tending to

infinity we have that

ν(a,M) ∼

{

1
2

log M if a = ±1,
1
2

log p if a = ±pe.

(If R is bounded, then we should multiply by a
φ(a)

#{r≤R:(r,a)=1}
R

in the case a = ±pe,

and by
⌊R⌋

R
in the case a = ±1.)

Another corollary of our results (which actually follows from Theorem 1.4) is a

Bombieri–Vinogradov type result for the Titchmarsh divisor problem in arithmetic

progressions. For an integer n ≥ 1, we define:

τ (n) :=
∑

d|n

1, n ′ :=
∏

p|n

p.

Theorem 2.4 Fix an integer a 6= 0 and let λ < 1
10

and C be two fixed positive real

numbers. We have for Q ≤ xλ that

(2.1)
∑

q≤Q
(q,a)=1

∣

∣

∣

∣

∑

|a|/q<m≤x/q

Λ(qm + a)τ (m) − M.T.

∣

∣

∣

∣

≪a,C,λ
x

(log x)C
,

where the main term is

M.T. :=
x

q

(

C1(a, q) log x + 2C2(a, q) + C1(a, q) log
( (q ′)2

eq

)

)

,

with C1(a, q) and C2(a, q) defined as in section 3.

A version of Theorem 2.4 was obtained independently by Felix [4], who also

showed how to apply this result to a question related to Artin’s primitive root con-

jecture. Using Theorem 2.4, one can give a slight improvement of [4, Theorem 1.5]

replacing O(log log x) by c log log x + O(1), for some constant c.

https://doi.org/10.4153/CJM-2012-005-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-005-4


On a Theorem of Bombieri, Friedlander, and Iwaniec 1023

Remark 2.5 Taking Q = (log x)C in Theorem 2.4, we obtain a “Siegel–Walfisz

theorem” for the Titchmarsh divisor problem, and one could ask if this is sufficient

to give the bound (2.1) for Q = x1/2/(log x)B, since it is known that the Bombieri–

Vinogradov theorem holds with fairly general sequences satisfying a Siegel–Walfisz

condition. If this were true, then, using the same ideas as in the proof of Proposition

5.1, it would yield the following improvement of a dyadic version of Theorem 1.4,

valid for L := (log x)C+3 and R = R(x) ≤ x1/2/(log x)3C+5:

(2.2)
∑

R
2
<r≤R

(r,a)=1

∣

∣

∣

∣

∑

q≤ x
RL

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

∣

∣

∣

∣

≪a,C
x

(log x)C
.

In fact, any improvement of the level of distribution in (2.1) yields an improvement

on the range of R in (2.2).

3 Notation

We will denote by γ the Euler–Mascheroni constant. We also define the following
constants:

C1(a, r) :=
ζ(2)ζ(3)

ζ(6)

∏

p|a

(

1 −
p

p2 − p + 1

)

∏

p|r

(

1 +
p − 1

p2 − p + 1

)

,

C2(a, r) := C1(a, r)

(

γ −
∑

p

log p

p2 − p + 1
+
∑

p|a

p2 log p

(p − 1)(p2 − p + 1)
−

∑

p|r

(p − 1)p log p

p2 − p + 1

)

,

C3(a, r) := C2(a, r) −C1(a, r),

C5(r) :=
1

2

(

log 2π + 1 + γ +
∑

p

log p

p(p − 1)
+
∑

p|r

log p

p

)

.

Moreover, for i = 1, 2, 3,

Ci(a) := Ci(a, 1) and C5 := C5(1).

We denote by ω(n) the number of prime factors of n.

4 Preliminary Lemmas

We start with some elementary estimates.

Lemma 4.1 Let f be a not identically zero multiplicative function and let g be an

additive function, that is for (m, n) = 1, f (mn) = f (m) f (n) and g(mn) = g(m)+g(n)

(in particular, f (1) = 1 and g(1) = 0). Then for a squarefree integer r we have that

∑

d|r

f (d)g(d) =
∏

p ′|r

(1 + f (p ′))
∑

p|r

g(p) f (p)

1 + f (p)
.
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Proof We write

∑

d|r

f (d)g(d) =
∑

d|r

f (d)
∑

p|r

g(p) =
∑

p|r

g(p)
∑

d|r:
p|d

f (d) =
∑

p|r

g(p)
∑

d| r
p

f (p) f (d)

=

∑

p|r

g(p) f (p)
∏

p ′| r
p

(1 + f (p ′)) =
∑

p|r

g(p) f (p)

1 + f (p)

∏

p ′|r

(1 + f (p ′)).

Lemma 4.2 Let a and r be coprime integers, with r squarefree. We have for i = 1, 2
that

(4.1)
Ci(a, r)

r
=

∑

d|r

µ(d)Ci(ad).

Proof By the definition of C1(a), we have

∑

d|r

µ(d)C1(ad) = C1(a)
∏

p|r

(

1 −
(

1 −
p

p2 − p + 1

))

=
C1(a, r)

r
.

Moreover, by defining the multiplicative function f (d) := ζ(6)
ζ(2)ζ(3)

µ(d)C1(d) we

have

∑

d|r

µ(d)C2(ad)

= C1(a)
∑

d|r

f (d)

(

γ −
∑

p

log p

p2 − p + 1
+
∑

p|a

p2 log p

(p − 1)(p2 − p + 1)

)

+ C1(a)
∑

d|r

f (d)
∑

p|d

p2 log p

(p − 1)(p2 − p + 1)

= C2(a)
∏

p|r

p

p2 − p + 1
+ C1(a)

∑

d|r

f (d)
∑

p|d

p2 log p

(p − 1)(p2 − p + 1)
.

Applying Lemma 4.1, we get that this is

= C2(a)
∏

p|r

p

p2 − p + 1
+ C1(a)

∏

p ′|r

(1 + f (p ′))
∑

p|r

p2 log p

(p − 1)(p2 − p + 1)

f (p)

1 + f (p)

= C2(a)
∏

p|r

p

p2 − p + 1
−C1(a)

∏

p ′|r

p ′

(p ′)2 − p ′ + 1

∑

p|r

(p − 1)p log p

p2 − p + 1
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= C1(a)
∏

p|r

p

p2 − p + 1

(

γ −
∑

p

log p

p2 − p + 1
+
∑

p|a

p2 log p

(p − 1)(p2 − p + 1)

−
∑

p|r

(p − 1)p log p

p2 − p + 1

)

=
C2(a, r)

r
.

Lemma 4.3 Fix r > 0 and a 6= 0 two coprime integers. We have

∑

n≤M
(n,a)=1

n

φ(n)
= C1(a)M + O(2ω(a) log M),

∑

n≤M
(n,a)=1

1

φ(n)
= C1(a) log M + C2(a) + O

(

2ω(a) log M

M

)

,

∑

n≤M
(n,a)=1

rn

φ(rn)
= C1(a, r)M + O

(

3ω(ar) log(r ′M)
)

,

∑

n≤M
(n,a)=1

1

φ(rn)
=

C1(a, r)

r
log(r ′M) +

C2(a, r)

r
+ O

(

3ω(ar) log(r ′M)

rM

)

.

Proof For the first two estimates, see [5] or [11]. We now sketch a proof the last

estimate. First we assume that r is squarefree, since if it is not we can write

1

φ(rn)
=

r ′

rφ(r ′n)
.

Then we use the identity

∑

d|r
(d,n)=1

µ(d) =

{

1 if r | n,

0 else,

to write
∑

n≤M
(n,a)=1

1

φ(rn)
=

∑

d|r

µ(d)
∑

n≤rM
(n,ad)=1

1

φ(n)
.

Now, substituting in the r = 1 estimate, we get that

∑

n≤M
(n,a)=1

1

φ(rn)
= log(rM)

∑

d|r

µ(d)C1(ad) +
∑

d|r

µ(d)C2(ad) + O
(

3ω(ar) log(rM)

rM

)

.

The result follows by Lemma 4.2. The proof of the third estimate proceeds along the

same lines.
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The following two lemmas give a more precise estimate, which is made possible

by the extra weight 1 − n/M, which appears naturally in the problem (see the proof

of Proposition 5.1).

Lemma 4.4 Let a 6= 0 be an integer and M ≥ 1 be a real number.

If ω(a) ≥ 1,

(4.2)
∑

n≤M
(n,a)=1

1

φ(n)

(

1 −
n

M

)

= C1(a) log M + C3(a) +
φ(a)

a

Λ(a)

2M
+ E(M, a).

If a = ±1,

(4.3)
∑

n≤M
(n,a)=1

1

φ(n)

(

1 −
n

M

)

= C1(1) log M + C3(1) +
1

2

log M

M
+

C5

M
+ E(M, a).

There exists δ > 0 such that the error term E(M, a) satisfies

(4.4) E(M, a) ≪ǫ

∏

p|a

(

1 + 1
pδ

)

M

( a ′

M

)
205
538

−ǫ

.

Proof See [5, Lemma 5.9] (the constant C3(a) in this paper refers to C2(a) in [5]).

Note that the different behaviour depending on the number of distinct prime factors

of a comes from a certain Dirichlet series, which either has a pole (if a = ±1), is

holomorphic but non-zero (if a = ±pe) or is zero (if a has two or more distinct

prime factors) at the point s = −1.

Lemma 4.5 Fix r > 0 and a 6= 0 two coprime integers.

If ω(a) ≥ 1,

∑

n≤M
(n,a)=1

1

φ(nr)

(

1 −
n

M

)

=
C1(a, r)

r
log(r ′M) +

C3(a, r)

r
+
φ(a)

a

Λ(a)

2rM
+ E(a, r,M).

If a = ±1,

∑

n≤M
(n,a)=1

1

φ(nr)

(

1−
n

M

)

=
C1(1, r)

r
log(r ′M)+

C3(1, r)

r
+

log(r ′M)

2rM
+

C5

rM
+E(a, r,M).

The error term satisfies

E(a, r,M) ≪

∏

p|ar

(

1 + 1
pδ

)

rM

( a ′

M

)
205
538

−ǫ

,

for some δ > 0.
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Proof We will use the estimates of Lemma 4.4 by proceeding as in the proof of

Lemma 4.3. We can again assume that r is squarefree, and write

∑

n≤M
(n,a)=1

1

φ(nr)

(

1 −
n

M

)

=

∑

d|r

µ(d)
∑

n≤rM
(n,ad)=1

1

φ(n)

(

1 −
n

rM

)

,

in which we substitute the estimates of Lemma 4.4. If ω(a) ≥ 2, then ω(ad) ≥ 2 for

all d | r, so we get

∑

n≤M
(n,a)=1

1

φ(rn)

(

1 −
n

M

)

=

∑

d|r

µ(d)
(

C1(ad) log(rM) + C3(ad) + E(ad, 1, rM)
)

= C1(a, r) log(rM) + C3(a, r) + E(a, r,M)

by Lemma 4.2. Here,

E(a, r,M) ≪
∑

d|r

∏

p|ad

(

1 + 1
pδ

)

rM

( a ′d

rM

)
205
538

−ǫ

=

∏

p|a

(

1 + 1
pδ

)

rM

( a ′

rM

)
205
538

−ǫ∑

d|r

d
205
538

−ǫ ∏

p|d

(

1 +
1

pδ

)

=

∏

p|a

(

1 + 1
pδ

)

rM

( a ′

rM

)
205
538

−ǫ
∏

p|r

(

1 + p
205
538

−ǫ
(

1 +
1

pδ

))

≪

∏

p|ar

(

1 + 1
pδ

)

rM

( a ′

M

)
205
538

−ǫ

,

where we might have to change the value of δ > 0.

If ω(a) = 1, then ω(ad) ≥ 1 for all d | r, so we get

∑

n≤M
(n,a)=1

1

φ(rn)

(

1 −
n

M

)

=

∑

d|r

µ(d)
(

C1(ad) log(rM) + C3(ad) +
φ(ad)

ad

Λ(ad)

2rM
+ E(ad, 1, rM)

)

=

∑

d|r

µ(d)
(

C1(ad) log(rM) + C3(ad)
)

+
φ(a)

a

Λ(a)

2rM
+ E(a, r,M)

= C1(a, r) log(rM) + C3(a, r) +
φ(a)

a

Λ(a)

2rM
+ E(a, r,M).
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If a = ±1, then we get

∑

n≤M
(n,a)=1

1

φ(rn)

(

1 −
n

M

)

=

∑

d|r

µ(d)(C1(ad) log(rM) + C3(ad) + E(ad, 1, rM))

−
∑

p|r

φ(p)

p

Λ(p)

2rM
+

log(rM)

2rM
+

C5

rM

= C1(a, r) log(rM) + C2(a, r) +
log M

2rM
+

C5(r)

rM
+ E(a, r,M).

5 Further Results and Proofs

Proposition 5.1 Fix two positive real numbers λ < 1
10

and D. Let M = M(r, x) be

an integer such that 1 ≤ M(r, x) ≤ (log x)D. Then for R = R(x) ≤ xλ we have

(5.1)
∑

R/2<r≤R
(r,a)=1

∣

∣

∣

∣

∑

q≤ x
rM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

−x

(

C1(a, r)

r
log(r ′M)+

C3(a, r)

r
−

∑

s≤M
(s,a)=1

1

φ(rs)

(

1−
s

M

)

)
∣

∣

∣

∣

= Oa,A,D,λ

( x

logA x

)

.

We can remove the condition of M being an integer at the cost of adding the error term

O
(

x
log log M

M2

)

.

Proof The proof follows closely that of [5, Proposition 6.1]. We start by splitting the

sum over q as follows:

∑

q≤ x
rM

(q,a)=1

=

∑

q≤ x
RL

(q,a)=1

+
∑

x
RL
<q≤ x

r

(q,a)=1

−
∑

x
rM
<q≤ x

r

(q,a)=1

.

We use Theorem 1.4 to bound the first of these sums by taking L := (log x)A+B+D+4,

with B = B(A) coming from that theorem:

∑

R/2<r≤R
(r,a)=1

∣

∣

∣

∣

∣

∑

q≤ x
RL

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

∣

∣

∣

∣

∣

≪a,A,D,λ
x

(log x)A
.

We study the two remaining sums in the same way, by writing

∑

x
rP
<q≤ x

r

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

=

∑

x
rP
<q≤ x

r

(q,a)=1

∑

|a|<n≤x
n≡a mod qr

Λ(n) − x
∑

x
rP
<q≤ x

r

(q,a)=1

1

φ(qr)
,
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where we will take P ≤ 2L to be either M or RL
r

. The last term on the right is treated

using Lemma 4.3:

(5.2)
∑

x
rP
<q≤ x

r

(q,a)=1

1

φ(qr)
=

C1(a, r)

r
log P + O

(

3ω(ar) P log x

x

)

.

As for the first term, we first remove the prime powers using [5, Lemma 5.3],

which states that
∑

q≤x
(q,a)=1

(

∑

|a|<n≤x
n≡a mod q

Λ(n) −
∑

|a|<p≤x
p≡a mod q

log p

)

≪ǫ x
1
2

+ǫ.

(The set of moduli {qr : 1 ≤ q ≤ x/r} is a subset of the set of all moduli q ≤ x.) We

end up with the sum

(5.3)
∑

x
rP
<q≤ x

r

(q,a)=1

∑

|a|<p≤x
p≡a mod qr

log p.

We will now use Hooley’s variant of the divisor switching technique (see [13]). Writ-

ing p = a + qrs, we see that we should sum over s rather than over q, since the

bound x
rP

< q forces s to be very small. Note that since (qr, a) = 1, we have

(s, a) = (p − a, a) = (p, a) = 1, because p > |a|. Hence (5.3) becomes, for a > 0,

=

∑

1≤s<P− aP
x

(s,a)=1

∑

sx
P

+a<p≤x
p≡a mod s

log p.

If we had a < 0, we would get additional terms that are

≪
∑

x<q≤x−a

log x ≪ |a| log x.

Thus, up to an error ≪ log x, (5.3) is equal to

∑

1≤s<P− aP
x

(s,a)=1

∑

sx
P

+a≤p≤x
p≡a mod sr

log p =

∑

1≤s<P− aP
x

(s,a)=1

(

θ(x; sr, a) − θ
( sx

P
+ a; sr, a

)

)

=

∑

1≤s<P− aP
x

(s,a)=1

x

φ(sr)

(

1 −
s

P

)

+ E(r, a),

(5.4)

where, by the Bombieri–Vinogradov theorem,
∑

R/2<r≤R
(r,a)=1

|E(r, a)| ≤
∑

s≤2L
(s,a)=1

∑

r≤R
(r,a)=1

max
y≤x

∣

∣

∣
θ(y; sr, a) −

y

φ(sr)

∣

∣

∣
+ Oa,A

( x

(log x)A

)

≤ 2L
∑

q≤2RL
(q,a)=1

max
y≤x

∣

∣

∣
θ(y; q, a) −

y

φ(q)

∣

∣

∣
+ Oa,A

( x

(log x)A

)

≪A
x

(log x)A
.
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We would like to replace the condition s < P − aP
x

by s ≤ x in the last sum appearing

in (5.4). If P is an integer, this can be done without adding any error term, since the

last term of the sum is x
φ(sr)

(

1 − P
P

)

= 0. If P /∈ Z, then we need to add the error

term O
(

x
log log P
P2φ(r)

)

.

Putting all this together and using the triangle inequality, we get that the left-hand

side of (5.1) is

(5.5)

≤
∑

R/2<r≤R
(r,a)=1

∣

∣

∣

∣

∑

s≤ RL
r

(s,a)=1

x

φ(sr)

(

1 −
s

RL/r

)

−
∑

s≤M
(s,a)=1

x

φ(sr)

(

1 −
s

M

)

−
∑

x
RL
<q≤ x

rM

(q,a)=1

x

φ(qr)

−x

(

C1(a, r)

r
log(r ′M)+

C3(a, r)

r
−

∑

s≤M
(s,a)=1

1

φ(sr)

(

1−
s

M

)

)∣

∣

∣

∣

+Oa,A,D,λ

( x

(log x)A

)

,

since M is an integer. If M is not an integer, we have to add an error term of size

≪ x
∑

R/2<r≤R

log log M

φ(r)M2
≪

x log log M

M2
.

(We already used the fact that

x
∑

R/2<r≤R

log log(RL/r)

φ(r)(RL/r)2
≪

x log log L

L2

in (5.5).) Applying the triangle inequality once more gives that (5.5) is

≤ x
∑

R/2<r≤R
(r,a)=1

∣

∣

∣

∣

∣

∑

s≤ RL
r

(s,a)=1

1

φ(sr)

(

1 −
s

RL/r

)

−
C1(a, r)

r
log

( r ′RL

r

)

−
C3(a, r)

r

∣

∣

∣

∣

∣

+ x
∑

R/2<r≤R
(r,a)=1

∣

∣

∣

∣

∣

∑

x
RL
<q≤ x

rM

(q,a)=1

1

φ(qr)
−

C1(a, r)

r
log

( RL

rM

)

∣

∣

∣

∣

∣

+ Oa,A,D,λ

( x

(log x)A

)

,

which by Lemma 4.3 and (5.2) is

≪a,A,D,λ x
∑

R/2<r≤R
(r,a)=1

3ω(r) log(RL)

RL
+ x

∑

R/2<r≤R
(r,a)=1

3ω(r)L log x

x
+

x

(log x)A

≪
x(log R)2

RL
+

x

(log x)A
≪

x

(log x)A
.
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Proof of Theorem 2.4 Taking M = 1 in Proposition 5.1 and applying Lemma 4.3

and the triangle inequality, we get

∑

R
2
<r≤R

(r,a)=1

∣

∣

∣

∣

∑

q≤ x
r

(q,a)=1

(ψ(x; qr, a) − Λ(a)) −
x

r

(

C1(a, r) log
( (r ′)2x

er

)

+ 2C2(a, r)
)

∣

∣

∣

∣

≪a,A,λ
x

logA+1 x
.

Taking dyadic intervals, one can easily use this to show that the whole sum over r ≤ R

is ≪a,A
x

logA x
. The result follows if a > 0 by exchanging the order of summation:

∑

q≤ x
r

(q,a)=1

∑

|a|<n≤x
n≡a mod qr

Λ(n) =
∑

|a|<n≤x
n≡a mod r

Λ(n)
∑

q≤ x
r

:

qr|n−a

1

=

∑

|a|<n≤x
n≡a mod r

Λ(n)τ
( n − a

r

)

.

If a < 0, then

∑

|a|<n≤x
n≡a mod r

Λ(n)
∑

q≤ x
r

:

qr|n−a

1 =

∑

|a|<n≤x
n≡a mod r

Λ(n)τ
( n − a

r

)

−
∑

|a|<n≤x
n≡a mod r

Λ(n)
∑

x
r
<q:

qr|n−a

1.

(The last equality is exact if a > 0; otherwise we have to add a negligible error term.)

Proof of Theorem 2.1 For the first result, we take M(r, x) := M(x) in Proposi-
tion 5.1. By Lemma 4.5, we have that

(5.6)
∑

R
2
<r≤R

(r,a)=1

∣

∣

∣

∣

φ(a)

a

x

rM
µ(a, r,M) − x

( C1(a, r)

r
log(r

′
M) +

C3(a, r)

r
−

∑

s≤M
(s,a)=1

1

φ(rs)

(

1 −
s

M

))

∣

∣

∣

∣

≤ x
∑

R
2
<r≤R

(r,a)=1

|E(a, r,M)| ≪a
x

M
205
538

−ǫ

∑

R
2
<r≤R

(r,a)=1

∏

p|r

(

1 + 1

pδ

)

r
≪

x

M
205
538

−ǫ
,

hence the result follows by the triangle inequality.

The second result is a bit more delicate, since we have the full range of r, and the

innermost sum depends on R. For this reason, we need to go back to the proof of
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Proposition 5.1. We first split the sum over r into the two intervals r ≤ R/(log x)B

and R/(log x)B < r ≤ R, where we take B = B(2A) as in Theorem 1.4, and we can

assume that B(2A) ≥ 2A. The first part of the sum is treated using this theorem:

∑

r≤ R

(log x)B

(r,a)=1

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

−
φ(a)

a

x

RM
µ(a, r,M)

∣

∣

∣

∣

≪a,A,λ
x

(log x)2A
+

x

(log x)B
,

since R
(log x)B · x

RM
=

x
M(log x)B ≤ x

(log x)B . For the rest of the sum, we argue as in the

proof of Proposition 5.1. We split the sum over q as follows:

∑

q≤ x
RM

(q,a)=1

=

∑

q≤ x
RL

(q,a)=1

+
∑

x
RL
<q≤ x

r

(q,a)=1

−
∑

x
RM
<q≤ x

r

(q,a)=1

.

Taking P to be either R
r

L or R
r

M, we have that P ≤ L(log x)B (instead of P ≤ 2L). The

rest of the proof goes through, and we get that

∑

R
L
<r≤R

(r,a)=1

∣

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

(5.7)

− x

(

C1(a, r)

r
log(r ′RM/r) +

C3(a, r)

r
−

∑

s≤RM/r
(s,a)=1

1

φ(rs)

(

1 −
s

RM/r

)

)

∣

∣

∣

∣

∣

≪a,A,D,λ
x

(log x)2A
+ E2(x,M),

where E2(x,M) is the error coming from the fact that R
r

M is not an integer, which is

≪ x
∑

R
L
<r≤R

log log(RM/r)

φ(r)RM/r

1

RM/r
≪

x

(RM)2

∑

R
L
<r≤R

r2 log log(RM/r)

φ(r)

≪
x log log M

M2
.

We finish the proof by applying Lemma 4.5 and the triangle inequality.
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Proof of Corollary 2.2 By the triangle inequality we have

∑

r≤R
(r,a)=1

∣

∣

∣

φ(a)

a

x

RM
µ(a, r,RM/r)

∣

∣

∣
≤

∑

r≤R
(r,a)=1

∣

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

−
φ(a)

a

x

RM
µ(a, r,RM/r)

∣

∣

∣

∣

∣

+
∑

r≤R
(r,a)=1

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

∣

∣

∣

∣

,

hence by Theorem 2.1 we get the lower bound

∑

r≤R
(r,a)=1

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

∣

∣

∣

∣

≥

φ(a)

a

x

RM

∑

r≤R
(r,a)=1

|µ(a, r,RM/r)| − Oǫ

( x

M
743
538

−ǫ

)

,

since for M large enough, µ(a, r,RM/r) ≤ 0. For the upper bound, we write

∑

r≤R
(r,a)=1

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

∣

∣

∣

∣

≤
∑

r≤R
(r,a)=1

∣

∣

∣

∣

∣

∑

q≤ x
RM

(q,a)=1

(

ψ(x; qr, a) − Λ(a) −
x

φ(qr)

)

−
∑

r≤R
(r,a)=1

φ(a)

a

x

RM
µ(a, r,RM/r)

∣

∣

∣

∣

∣

+
∑

r≤R
(r,a)=1

∣

∣

∣

φ(a)

a

x

RM
µ(a, r,M)

∣

∣

∣

≤
φ(a)

a

x

RM

∑

r≤R
(r,a)=1

|µ(a, r,RM/r)| + Oǫ

( x

M
743
538

−ǫ

)

.

The result follows by the definition of µ(a, r,RM/r). Note that if a = ±1, then we
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have

2
∑

r≤R
(r,a)=1

|µ(a, r,RM/r)|

=

∑

r≤R

(

log(RM/r) + 2C5 +
∑

p|r

log p

p

)

= (R + O(1))
(

log M + 1 + 2C5 + O
( log R

R

))

+
∑

p≤R

log p

p

⌊ R

p

⌋

,

by Stirling’s approximation. The last sum can be handled without much effort:

∑

p≤R

log p

p

⌊ R

p

⌋

= R
∑

p≤R

log p

p2
+ O

(

∑

p≤R

log p

p

)

= R

(

∑

p

log p

p2
+ O

( 1

R

)

)

+ O(log R).

Hence,
∑

r≤R
(r,a)=1

|µ(a, r,RM/r)| = R

(

1

2
log M + C6

)

+ O(log(RM)).
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