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ABSTRACT 
The objective of this paper is to present a mathematically grounded description of the two topological 
spaces for the design problem and the design solution. These spaces are derived in a generalized form 
such that they can be applied by researchers studying engineering design and developing new methods 
or engineers seeking to understand the influence that changes in the problem space have on the 
solution space. In addition to the formal definitions of the spaces, including assumptions and 
limitations, three types of supported reasoning are presented to demonstrate the potential uses. These 
include similarity analysis to compare spaces, an approach to sensitivity analysis of the solution space 
to changes in the problem space, and finally a distance measure to determine how far a current 
proposal is to the feasible solution space. This paper is presented to establish a common vocabulary 
for researchers when discussing, studying, and supporting the dyadic nature of engineering design 
(problem-solution co-evolution). 
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1 INTRODUCTION
The design process focuses on two separate but interconnected areas: the problem space and the solution
space, which represent everything known about the problem and all of its available solutions (Anandan
et al., 2006; Maher et al., 1996). While prior research has yielded a variety of representations for design
spaces, few lend themselves to a quantitative analysis of the spaces themselves or the effects they have
on each other. Goel and Pirolli (1992) chose a graph network model, but focused only on the problem
space. MacLean et al. (1991) also used a graphical structure but combined the two spaces into a single
entity. Schätz et al. (2010) depicted the solution space in terms of set theory using Boolean rules to define
constraints. Some researchers went beyond representation and studied the applications of design space
analysis. Bowen and Dittmar (2017) used set theory to define a solution space that also incorporated
the relationship between design artifacts and process stakeholders to trace design "states". Dinar et al.
(2011) used p-maps to compare how designers think about the problem. It is noted that in each case, the
definitions used were developed for narrow application and limited in scope, hindering subsequent use
or extension.
Contrastingly, topological analysis has been used to make significant strides in an array of fields includ-
ing science (Blonder, 2018; Hijmans et al., 2005), engineering (Ruiz-Pérez et al., 2016; Zhu and Gao,
2016), and data analysis (Wasserman, 2018). There has been previous work to bring the versatility
of topology into engineering design, as well. For example, Siddique and Rosen (2001) developed a
topological representation for discrete sets of designs for the purpose of exploring different solution
configurations. Also, Taura and Yoshikawa (1994) presented a topological metric to relate the role of
components in a system to its overall function. This paper proposes that a more versatile and extensible
representation can be achieved by considering each design space as a subset of real-space. While it is not
a panacea, the formalism put forth here is intended to promote broad application and utility exploration.

2 DESIGN SPACES REDEFINED
The problem and solution of the design process are intrinsically linked and interdependent (Maher et al.,
1996; Gero and Kannengiesser, 2004). While not the focus here, this fact implies that any representa-
tions of the two design spaces should also be interconnected. In this section, the problem space P and
the solution space S are shown to be linked via a set M of mapping functions. The problem space is
represented as a subset of n-dimensional real-space, referred to here as the constraint space C, where n
is the number of parameters that are to be constrained by a set of requirements R. Similarly, the solution
space is embedded into a different subset of real-space having m dimensions, which is called the form
space F. Its dimensions are set by the number of inputs to M, which serve as the design parameters.
These spaces, and their mapping functions, are expected to evolve over the course of the design process,
changing in both shape and dimensionality.

2.1 Requirements
To begin, the requirements must be constructed in such a way as to retain their conceptual meaning while
also providing the mathematical basis necessary for topological spaces. First, let A = {α1,α2, ...,αn}

be a set of parameters which must be constrained in order to meet the needs of the stakeholders and
create a viable product. These are the constraint parameters for the problem. As an example, if a project
necessitated restrictions on volume V and mass m, then A = {V,m}.
With these parameters identified, let R = {Rα : α ∈ A} be a set of numerical requirements, indexed by
A, so that there is a one-to-one correspondence between the set of constraint parameters and the set of
requirements. Furthermore, let each

Rα = {yα ∈ R : stakeholder needs are met when α = yα,α ∈ A} (1)

This definition characterizes each constraint Rα as the set of all numerical values which the parame-
ter α could take without violating any stakeholder needs. To continue the example above, A = {V,m}
would have requirement RV for volume and another Rm for mass. If the problem necessitated an upper
limit of 100 kg for mass, then Rm = {x : 0 kg < x ≤ 100 kg}. In this manner, each requirement may be
composed of one or more continuous intervals or discrete values. When necessary, complex-valued con-
straints can be obtained by separating them into two requirements and representing the imaginary term
as a real multiplier on i. Besides being numerical, a requirement must also be testable, meaning it should
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always be possible to determine whether a value is allowable or not. Excepting notation, this is not sig-
nificantly different from much of the existing guidance for writing engineering requirements (INCOSE,
2015; Hirshorn et al., 2017). Additionally, certain topological constructs may make it possible to extend
this definition to accept categorical, or non-numerical, requirements in the future.

2.2 Problem Space
The constraint parameters in A are also used to define the constraint space. A generic topological space
is represented by an ordered pair (X ,T), where X is a set and T is a collection of subsets of X meeting
three criteria:
1. T contains the empty set ∅ and the set X
2. The union of any family of members of T is a member of T

3. The intersection of any finite family of members of T is a member of T

To ensure the constraint space meets these three criteria, let it be defined as the pair (C,TC) so that

C =
∏
α∈A

R = {y = (y1,y2, ...,yn) | yi ∈ R,1 ≤ i ≤ n} (2)

TC = {

⋃
y∈C

B(y,εy) | y ∈ C, εy ∈ R+} (3)

where n = |A| and

B(y,εy) = {y ′ ∈ C | d(y,y ′) < εy} (4)

The function d referenced above is known as a metric, or distance function, for C. This function has the
properties that
1. d(x,y) = 0 iff x = y
2. d(x,y) = d(y,x)
3. d(x,z) ≤ d(x,y)+ d(y,z)
In real-space, the standard metric is given by the Euclidean distance function

d(x,y) =

( n∑
i=1

(xi − yi)
2

) 1
2

, x = (x1, . . . ,xn),y = (x1, . . . ,xn) ∈ Rn (5)

This is known as the "usual topology" on the real-space, and when applied to C, makes it equivalent
to n-dimensional real-space. The reader is referred to Croom (2016) for in-depth proof of how metrics
generate a topology. As is common in topology, this paper will refer to spaces simply by the symbol for
their set, with the presence of its topology implied.
It is worth noting that, while the topology presented above results in one of the more familiar types of
topological space, there are many other options available to the engineer as well. Any distance function
meeting the criteria may be used, and topologies can also be defined without a metric. These provide
more general types of space that have properties different from Euclidean space. Furthermore, if multiple
topologies or metrics are desired, disparate spaces can be combined to form what are known as product
spaces. Such constructs could be useful in the future to incorporate categorical requirements alongside
numerical ones.
Since the axes of C are designated according to the constraint parameters in A, each coordinate of a
point y ∈ C corresponds to a value for the parameter associated with that axis. Certain points in C exist
for which every coordinate value is a member of its respective requirement. In other words, they meet
all of the requirements, and the problem space P is the collection of all of those points. This collection
forms a subspace of C and can be formally defined as

P =
∏
α∈A

Rα = {y = (y1,y2, ...,yn) | yi ∈ Rαi ,1 ≤ i ≤ n} (6)

2.3 Map Set
To construct the solution space, a way of testing candidate designs against requirements is needed.
Topologically, this means mapping between the spaces. Essentially, engineers do this when defining
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a plan for the verification and validation of their designs to ensure requirements are met. Here, these
checks are gathered in their various forms into a set M defined as

M = {fα : F→ Cα} (7)

where Cα represents the 1-dimensional axis of C corresponding to the constraint parameter α and F is the
form space mentioned earlier. Each element in M is a function corresponding to a specified constraint
parameter α in A, which outputs a value of α for each point in F. In general, a function f : X → Y
is any rule which assigns a member of X to a unique member of Y. Often, functions are thought of as
mathematical equations, but in this context the term also includes other tools used by engineers to assess
the adherence of a design to a constraint, such as optimization algorithms, machine learning models, or
lookup tables. Since the functions used will largely depend on the conceptual form chosen for the design,
M is an aggregation of the design decisions that have been made thus far. Once constructed, M may
be treated as a single function M : F→ C. In the context of a design space, this implies that every
design x ∈ F maps to one and only one point y ∈ C. However, in general, M is not assumed to be either
surjective or injective; meaning some points in C may have two or more corresponding designs, while
others may have none.

2.4 Solution Space
Just as the constraint parameters defined the axes of the constraint space, the input parameters for M

likewise define the axes of the form space. Let the collection of the input parameters for M be referred
to as the set B = {β1,β2, ...,βm}, where each β ∈ B represents a design parameter to be chosen by the
designer and m is the number of unique design parameters needed to calculate an output from each fα ∈
M. Every member function of M will take some subset B′ ⊆ B as its inputs, and any individual β may
serve as an input for multiple functions. The set B only contains those parameters which are essential
to validate the current set of requirements and will likely not incorporate all of the parameters required
for production until the end of the design process has been reached. The solution space can therefore be
determined at any time during the design process provided M 6= ∅, which also entails R 6= ∅. These
parameters shall be elements of the design that can be independently and directly controlled, such as the
physical dimensions of a component or number of windings in a transformer. Parameters such as mass
or volume would not, in general, be considered design parameters in this context since their value is
usually dependent on other independent parameters.
Let the embedding space F, from the previous section, be defined as (F,TF) such that

F =
∏
β∈B

R = {x = (x1,x2, ...,xm) | xi ∈ R,1 ≤ i ≤ m} (8)

TF = {

⋃
x∈F

B(x,εx) | x ∈ F, εx ∈ R+} (9)

where m = |B|. As with C before, F is also equivalent to the real-space but with a different number of
dimensions. Every point x ∈ F maps to a corresponding point in C according to y =M(x). Further, let
the solution space be

S =M−1(P) =
∏
α∈A

f −1
α (P) = {x ∈ F : M(x) ∈ P} (10)

That is to say, S is the inverse image of P under M. Equivalently, S can be described as all points in F

that map to P via M. The space S must be defined according to this inverse relationship owing to the
assumption that M may not be surjective. Conceptually, S is a collection of all of the possible designs
that are considered viable solutions to the given engineering problem, according to the design decisions
that have been made.

2.5 Constructing the Space
A simple example may help to illustrate the process of obtaining these spaces, from requirements
definition through solution space visualization. Assuming an early stage in the design process where
only two constraints have been placed on the design problem:
1. The volume of the product must be between 10 and 20 m3, inclusive.
2. The mass of the product must be between 30 and 75 kg, inclusive.
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First, determine the parameters being constrained to establish the set A define the appropriate
requirements. In this case, volume V and mass m are the parameters. So

A = {V,m} (11)

RV = {x | 10m3
≤ x ≤ 20m3

} (12)

Rm = {x | 30kg ≤ x ≤ 75kg} (13)

R = {RV,Rm} (14)

The constraint space C in this case is the 2-dimensional real space with m along one axis and V on the
other. Within C, the Cartesian product Rm × RV provides the problem space P. Figure 1a depicts P as
the shaded region residing within the plane of C.
To develop the map and solution space, design decisions need to be made. These can be changed later
without sacrificing analyzability, if desired. Selecting a solid sphere as the initial design concept gives
a map set M as follows.

fV =
4
3
πr3 (15)

fm =
4
3
ρπr3

= ρV = ρfV(r) (16)

M =

{
fm(r)

fV(ρ,r)

}
(17)

From M, a set of design parameters is obtained that can be directly manipulated when designing the
product, the density ρ and radius r of the sphere. This provides the design parameter set B = {ρ,r} and
gives R2 as the form space, with ρ and r as the axes. In a simple case, such as this, it is relatively simple
to analytically determine the solution space, leading to the plot in Fig 1b.

(a) (b)

Figure 1. (a) Lines show the bounds on constraint parameters, shaded region depicts
problem space. (b) Lines bound the region meeting the volume constraint. Irregular outline

bounds the region of allowable mass. Shaded region is the solution space.

Fig 2 demonstrates how the solution space gets its shape by plotting each constraint parameter against
its associated design variables. The projection of the surface in 2a and that of the curve in 2b each bound
the shaded region in 1b to form the solution space for this problem under the given design decisions.
In many cases, it will not be feasible or even possible to analytically determine the solution space, as
was done in this example. In those instances, the solution space can be approximated via sampling.
To do this, the engineer must use their judgment to determine an appropriate sampling method, search
space, and sample size. One approach would be to use available manufacturing capabilities to limit the
search, a technique that can lead to new insights regarding the problem as well. To illustrate, consider
that if manufacturing limitations in this case had necessitated a density below 7 kg/m3 then the solution
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(a)
(b)

Figure 2. (a) Outline at the base of the plot is the projection of the portion of the surface
which lies between the min and max allowable mass. This is the irregular shape shown in

1b. (b) The vertical lines show the projection of the curve between the min and max Volume
onto the horizontal. These are the same as the vertical lines shown in 1b.

space would have been truncated. This also highlights how the choice of search area can be critical to
obtaining the full space when sampling. Figure 3 shows another important aspect, which is the difference
in the resolution of the solution space obtained from various sample sizes.

Figure 3. The same solution space as previously shown, but constructed through sampling
techniques. By N = 10,000, ta fairly high-resolution image of the solution space boundaries

can be seen.

3 METHODS
Having laid the topological foundations for the design spaces, various applications can be explored.
This section will focus on three potential applications of these techniques: similarity, sensitivity, and
conformity.

3.1 Similarity
There are a variety of similarity measures available for comparing discrete sets. Two of the most com-
mon, the Jaccard index (Jaccard, 1912) and the Overlap Coefficient (Simpson, 1943), are respectively
defined as

oc(A,B) =
| A ∩ B |

min(| A |, | B |)
(18)

J (A,B) =
| A ∩ B |
| A ∪ B |

(19)
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Since design spaces may contain an infinite number of points, these indices can be extended to accom-
modate any topological measures µ for size, to include cardinality (Counting Measure) – which returns
the adapted index to the original definition – and n-dimensional volume (Lebesgue Measure), among
others. The measure may be selected as appropriate by the engineer. In cases where analytical mea-
surement is not possible or practical, the measure can be approximated by sampling increasingly large
subsets until convergence. Letting the representative samples of a set be denoted by

X̆ = {xi | xi ∈ �X , i = 1, ...,N } (20)

where �X is sample space of X and N is the number of points in the sample. Then the indices can be
modified as

J̃ (A,B) =
µ(A ∩ B)
µ(A ∪ B)

≈
| Ă ∩ B̆ |

| Ă ∪ B̆ |
(21)

õc(A,B) =
µ(A ∩ B)

min(µ(A),µ(B))
≈

| Ă ∩ B̆ |

min(| Ă |, | B̆ |)
(22)

both of which have a range of [0, 1]. The respective values given by these formulas provide differ-
ent information about the sets or spaces in question. While a value of zero indictates disjoint sets for
both measures – assuming finite cardinality, J (A,B) = 1 indicates A = B whereas oc(A,B) = 1 signifies
either A ⊆ B or B ⊆ A.
For the purposes of design, both of these measures convey information that can help the designer under-
stand the commonality of two spaces. However, they also have weaknesses. The Jaccard index fails to
differentiate between situations where the sizes of the individual sets vary but the sizes of the union and
intersection remain the same. Overlap, on the other hand, cannot distinguish any changes in relative set
size when one set is a subset of the other. Fig 4 demonstrates these circumstances graphically.
Due to their limitations, a combination of these equations is proposed that will more appropriately
quantify similarity for use in design spaces. Let

ss(A,B) =

√
J̃ (A,B)2 + õc(A,B)2

√
2

(23)

This new equation, referred to as spatial similarity ss, still offers a range of [0,1] with ss = 0 indicating
no similarity and ss = 1 if and only if A = B, as with the Jaccard index. However, it also captures
differences in relative size when neither of the other two are able to. Table 1 illustrates how the three
formulas handle ambiguous cases.

Figure 4. Examples of set relations which Jaccard and Overlap have difficulty differentiating.
Numbers indicate the size of the space given by µ(X). The size of the intersections are

included in both set sizes.

It should be noted that certain choices of size measure µ may introduce scenarios wherein all of the
similarity equations discussed result in a value of 0 when the intersection is in fact non-empty. For
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Table 1. Similarity values for sets in Figure 4. Bolded values denote
similarity scores shared with another case for the same index.

J̃ õc ss
a 0.333 0.500 0.425
b 0.333 0.556 0.458
c 0.208 0.556 0.420
d 0.250 1.000 0.729
e 0.500 1.000 0.790

example, using volume gives a similarity of 0 when the intersection is a lower dimension than the
sets themselves, as in circles intersecting at a point or cubes intersecting on a face. However, it is
generally expected that these occasions are rare and will be known to the designer when the intersection
is calculated, as they would be indicated by all points in the intersection sharing the same value for at
least one coordinate.

3.2 Sensitivity
Since the similarity indices presented all have ranges on the interval [0,1], it is possible to quantify
change in a space X from state 1 to state 2 as

1X1→2 = 1− Similarity(X1,X2) (24)

It should be noted that any similarity index may be substituted in this equation, provided that it produces
a measure of sameness between the spaces X1 and X2 on the interval [0,1]. This concept of change can
then be used to define a new measure of sensitivity between related spaces, such as the sensitivity of the
Solution space to changes in the Problem space. Since S is dependent on P, their states are intrinsically
linked. And the sensitivity of that link can be quantified by

1S

1P
=

1− Similarity(S1,S2)

1− Similarity(P1,P2)
(25)

This idea can be extended to determine the impact of each individual requirement on the solution space
as well. Since each Rα is a set and the similarity indices are set-based equations, the sensitivity measure
can be use to compare S to Rα for any requirement in R. By extension, a notion of change gradient can
also be determined such that

5S =


1S
1Rα1

...
1S
1Rαn

 , n =| A | (26)

which can provide an indication of those requirements, or combinations of requirements, which would
result in the greatest change in the solution space.

3.3 Conformity
The third technique is a measure on the conformity of a design, which indicates the smallest adjustment
necessary to bring an infeasible design into the solution space. That is, the distance from a point in F

which is not a member of S to the nearest boundary of S.
The specific distance metric used can be tailored to the topology of the Form Space as well as to the
needs of the engineer. In the example presented in Section 2.5, we have R2 as our Form Space and
the Euclidean distance as our metric. Determining the nearest point in the solution space analytically
may not be a trivial task in most cases. However, when sampling, there are a number of algorithms
for finding nearest neighbors which may be used. Fig 5b demonstrates how this could be done for an
infeasible design in the previously defined Form Space.
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(a) Similarity: 0.258 (b)
1r = 0.9456
1ρ = 0.1730

, d = 0.9613

Figure 5. (a) Shows the similarity of the Solution Space from Figure 1b to one that would
result from adjusting RV to [7.5 m3, 18m3] and Rm to [27 kg/m3, 52 kg/m3]; (b) Minimum

adjustment to bring a design having r = 1 and ρ = 2.75 into conformity with the
requirements.

4 CONCLUSION
In this paper, a formalism has been proposed for the Problem Space and the Solution Space as true topo-
logical spaces. It was then shown that this representation can be paired with a variety of topologies to fit
the needs of the project. This characterization offers new avenues of comparison and decision-making
through topological analysis methods. Although the methods included are simple in their complexity, it
is intended that the definitions put forth will be used to explore the breadth of topological analysis tech-
niques available. The primary goal of this endeavor has been to provide the field with a formalization
of the design spaces that is applicable beyond this work and that can be used by others in ways of their
own imagining.
This preliminary work has demonstrated the foundational concepts of this formalism and illustrated
several possible applications. In subsequent work, steps will be taken to show how this can be extended
to more complex scenarios involving hierarchical systems, discrete and non-numeric design variables,
as well as interdependent requirement sets. Integration with existing design techniques and tools will
also be addressed. Such capabilities are necessary to allow engineers to incorporate this methodology
into their existing workflow with little disruption, thereby augmenting current design strategies.
Potential areas for future work include the adaptation of persistent homology to identify features in high-
dimensional spaces, the use of design criteria as either gradients on the Solution Space or a separate
"performace space" which may allow for direct optimization of the design, and the development of
software to ease the use of these techniques in complex engineering projects.
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